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Coulomb Energy and Nuclear Radius

B. 0 JANcovIcI
Palmer Physical Laboratory, Princeton University, Pr&sceton, Eem Jersey

(Received April 5, 1954)

The apparent discrepancy between the values (1.45&&10 "A& cm) for the nuclear radii derived from
mirror nuclei and those (1.2X10 "A& cm) derived from ii-mesonic atoms was investigated. The conven-
tional calculation of the Coulomb energy difference b,E, between mirror nuclei is improved in two respects:
the usual uniform model is replaced by the more elaborate shell model with a Rnite square well potential,
and the exchange terms are taken into account. An equivalent Coulomb radius R, is defined by R,= (6/5)
(Ze'/nE, ); an equivalent meson radius is defined by Esi= (5/3)&(r')Ap, where (r')Ap is the mean square
radius of the electrical charge distribution. The two extreme cases of the pairs (F",0") and (0",N") are
investigated. The computation gives R,/Rsr =1.18 in 0, R,/Air=1. 07 in N'i. These results are smaller
by about 8 percent than the experimental ratios. However, the experimental discontinuity in R, at the
closure of the p shell is reproduced.

I. INTRODUCTION

'HE experiments which determine the nuclear
radii may be divided into two groups: fast

nucleon scattering, n-decay lifetimes, yields of charged
particle initiated nuclear reactions, probe the range of
nuclear forces, whereas Coulomb energy differences for
mirror nuclei, electron scattering, p,-mesonic atom x-rays
probe the electrical charge distribution. It is difficult
to compare values for the radius of the nucleus as given

by methods which belong to diGerent groups, as these
methods do not measure the same quantity. On the
other side, it is desirable to get consistency inside the
same group. The present paper is concerned with the
determination of the electrical charge distribution.

Whereas Coulomb energy diGerences between mirror
nuclei were usually explained in terms of a radius of
the order of 1.45)(10 "A& cm, electron scattering, ' and
more recently, p-mesonic x-rays' were fitted by a smaller
radius of the order of only 1.2&&10 "A& cm. Actually,
mirror nuclei experiments are concerned with light
nuclei, while the most accurate measurements with
p,-mesonic atoms are carried out with heavier nuclei.
However, the results in each range of A extrapolate
very well, and it seems very likely at the present time
that the radius from meson experiments would be
1.2)&10 i3A& cm for lighter nuclei. To explain this
discrepancy, several authors pointed out that the
assumed nuclear model of a uniformly charged sphere
was too crude an approximation.

Actually, the electron scattering and the p-mesonic
atom x-rays measure essentially the mean quadratic
radius (r )A, & of the charge distribution, " which is
related to the radius R of the uniform sphere model by

(r')s„&= (3/5) ~R, (1)

whereas the Coulomb energy diGerence hE, between
mirror nuclei of charges Z and Z+1 is related to the
same radius R by

hE, = (6/5) (Ze'/R). (2)
' Lyman, Hanson, and Scott, Phys. Rev. 84, 626 (1951).' V. L. Fitch and J. Rainwater, Phys. Rev. 92, 789 (1953).
s L. N. Cooper and E. M. Henley, Phys. Rev. 92, 801 (1953).
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If the assumption of a constant charge density is
dropped, (1) and (2) may be considered as mere
definitions of an equivalent meson radius

Rsr = (5/3) '*(r')A '*,

and of an equivalent Coulomb radius

R,= (6/5) (ZH/SZ, ). (&)

R~ and R, are now just a convenient way of expressing
(rs)AP and /5, E„' one can expect that Rsr and R, will,
in general, have diGerent values.

It has been proved'4 that, if the same charge dis-
tribution is assumed for every proton, any departure
from the uniform model would lead to E.,&R~, thus
making the discrepancy between the two experiments
worse. However, qualitative considerations' showed
that there was some hope to improve things by using a
shell model, in which the charge distribution is not the
same for all protons, and also by taking into account
the exchange terms in the calculation of d,E,. If, in a
first approximation, the electrostatic field is considered
as a perturbation, hE, is the electrostatic energy of the
last proton in the Coulomb field of the other protons.
The last proton has a smaller binding energy and is
often in a higher angular momentum state than the
other ones; its wave function extends toward the
periphery of the nucleus, where the electrical potential
is smaller, and AE, is lowered. The exchange terms also
lower AE, . Hence, for a given R~, a shell model is ex-
pected to give a smaller dE, and a bigger R, than the
uniform model. However, a quantitative check of this
argument will prove that these eGects are not large
enough to remove the discrepancy.

It will be shown in the present paper that one has to
expect, on the basis of the above model and an R~
= (5(rs)s„/3)'= 1.2X10 isAl cm, larger Coulomb ener-
gies (and hence smaller R,) than the experimental
data give.

Two extreme cases have been investigated: the pairs
(F',0') and (0",N's) In F' the last proton is in a

~E state outside the closed s and p shells, thus providing
4 F. Bitter and H. Feshbach, Phys. Rev. 92, 83/ (1953).

89



390 B. G. JAN COVI CI

a highly "favorable" case for computing a small satisfy
5E, and hence a large E.. Conversely, in 0", the last
proton is part of a closed p shell, and provides an
"unfavorable" case.

(H+ C)%'F=EF@'F,

'o =Eo+o,

(10a)

(10b)

IL THE SQUARE WELL MODEL

A square well potential was assumed; its radius was
arbitrarily taken as 8=1.4X j.0 "A' cm. The initial
choice of R is not very important, the ratios Rsr/R and
R,/R are not expected to depend significantly on the
absolute value of R. The same will be true then of
Rsr/R, which is the quantity given by the experimental
data.

Let fi(r) by r times the radial part of the wave
function for a nucleon of orbital angular momentum /.
It is normalized to unity so that

where IEF I
and IEo[ are the binding energies of F"

and 0". As far as ground states are concerned, the
wave functions minimize energies so that

Eo=(co [a[+,)&(e,[B[e.), (11a)
EF—= (+F

I
&+C

I +F)«+o I
e+C

and
(4F [ C I+F)&EF E—o &(+o I

C
I +o) (12)

It could be shown that (+o[C[+o)—(+F[C[+F)
much less than 2 percent of EF—Eo. Consequently, a
perturbation theory calculation gives fair results with
either %F or 4o. Actually, (O' F ICI+F) was calculated
providing thus a lower limit for Ep —Eo.

The Coulomb wave function used for +F is

~bs(p) =&s~(RP). (13)

It is convenient to express lengths in units of the well
radius R, and to set p=r/R. Inside the well, Pi is of
the form

A(p)=~iRpj i(hip) «» P~&1 (6)

A i is a normalization coefficient; $i is given in terms of
the reduced mass M of the nucleon, its binding energy
[EI, and the well depth V, by

1
pi i(tip)—

-pji(tip) dp

1
ph, (ig,—p)

p»i(ihip) d-p
, (14)

The well depth is adjusted to 6t the experimental
binding energy of the last nucleon: this binding energy
determines by (9) and (8) or by (13) the wave function
outside the well, except for the normalization coe%-
cient B~. The continuity requirement at p= 1,

p, =R[2Jbl(V —[EI)/asj&. (7)
or, in the special case of the last proton of F'~,

j& is a spherical Bessel function as de6ned by SchiG. '
The functions j& are tabulated. '

If the binding energy plus centrifugal barrier of a
proton is large as compared to the Coulomb barrier,
the deformation of the wave function by the Coulomb
barrier can be neglected and the wave function outside
the well is correctly represented by

y, (p) =B,Rphi(sriip) for p & 1.

1 —pjs(hp)
pj s(bp) dp

1 d—S(Rp), (15)
- ~(RP) dp

determines Pi, and by (7), the well depth V.
The other wave functions are then determined.

Their pi and sli parameters are obtained from (14) and
from the relation

$p+rlp= R'2M V/h' (16)
8~ is a normalization coeKcient;

n, =RL2m [El/&sj:; (9)

h~ is a spherical Hankel function. ' The functions hg are
not tabulated but are easily expressed in terms of
rational fractions and exponential functions.

The preceding argument does not apply in the case
of the last nucleon of I", the binding energy of which
is very small. In this case one can argue in the following
way. The only diBerence between the Hamiltonians of
F"and 0'~ is the Coulomb energy C of the last nucleon.
The Harniltonians are, respectively, H+C and H; the
corresponding wave functions are 4'p and 0'o, which

'L. I. SchiII, Qaaltura 3fechalics (McGraw-Hill Book Com-
pany, Inc., New York, 1948), p. 77.' Tables of Spherical Bessel Panctioas (Columbia University
Press, New York, 1947).

TABLE I. The Coulomb function F(r). P(r) is r times the radial
part of the wave function for a d proton of reduced mass 16/17, in
the field of a central charge Z= 8, with a binding energy 0.586 Mev.

1010 Cm 10»(dF/%dr, m) jI
3.077
3.692
4.308
4.923
5.538
6.154
6.769
7.385
8.000

1.195
0.7621
0.5141
0.3612
0.2618
0.1944
0.1473
0.1134
0.08845

—7.638—6.708—5.991—5.438-5.004—4.655—4.370—4.131-3.930

0.7535

0.9547

1.124

1.267

1.391

The normalization coeKcients A~ and 8~ are required
to fit (3) and the requirement that ipi be continuous at
p=1. The integrals on Bessel or Hankel functions,
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which are required for fitting (5) can be evaluated
analytically. '

The mean square radius (r')&„i of the charge dis-
tribution is then computed for the residual nucleus of
charge Z by

(r') o„——(1/Z)R' P~t l ill 'p'dp (17)
0

where the summation extends over all Z protons. The
integrals in (17) are easily evaluated analytically by
expressing Bessel and Hankel functions in terms of
trigonometrical and exponential functions.

The Coulomb energy of the last proton is also com-
puted, exchange terms being included, by Slater's
method, r leading through (4) to the Coulomb equiva-
lent radius. All integrals involved in this calculation
had to be carried out numerically.

FIG. 1. The wave functions of F' . P is r times the normalized
radial wave function. The ordinate is I/i in units of the re-
ciprocal radius of the well.

F17~O17

Effective meson radius of 0"

The squares of these functions (probability of presence
III. APPLICATION TO TWO EXTREME CASES at distance r from the origin) are plotted in Fig. 1.

6.5 percent of the s charge distribution, 15 percent of
the p one, and 29 percent of the d one are outside the

The last nucleon, decaying from a proton to a neu-
tron, is in a d state, outside closed s and p shells.

Well depth

The well radius is initially chosen as E.=3.6)(10 "
cm. The binding energy of the last proton was taken
as jE~ =0.586 Mev. Outside the well the wave func-
tion will be a Coulomb function P(r); inside the well,
the wave function is taken as a Bessel wave function.
The Coulomb wave function P(r) was computed by
Breit and his collaborators' and kindly made available
to the author for the above energy, a reduced mass
16/17; an angular momentum l = 2. F(r) is tabulated in
Table I, together with its logarithmic derivative and
its square integral. One obtains from (15), $o

——4.59,
and from (7), V= 41.2 Mev.

Wave functions of F"
The wave functions in this well are as follows:

s wave functions

p &~1: it o = (10.29/R)'p jp(2.55p),

p&~ 1: Po= (14200/R)&php(i3. 80p);

The mean square radius is found to be 0.68338. for
an s wave function and 0.8090R for a p one. From (17)
and (3) the effective meson radius is found to be Rsr
= 1.01'..

2Fo(d,s)+6Fo(d P) =8.62 (e'/R)

The exchange Coulomb energy is

(19)

—( /5)G'(d, ) —( /5)t '(d p) —( / 5) '(d, p)
= —0.52(e'/R); (20)

the total Coulomb energy is thus AE, =8.10(e'/R),
and by (4), the equivalent Coulomb radius is R,= 1.19R.

We thus obtain R,/Rsr 1.18. ——

Q O15~+15

Effective Coulomb radius

In Condon and Shortley's notation, the direct
Coulomb energy of the d proton is

p wave functions

p & 1: Pi ——(20.50/R) ~pji(3.61p),

p~& 1: Pi ——(1343/R)amphi(i2. 88p);

d wave function,

The P transition is from the configuration s'Po; s'P'
to s'p', s'ps. It is convenient to look at it as a transition

(18) of a p hole in closed s and p shells.

Well depth

p &~ 1: Ps (30 64/R) ~pj s(3 61——p.), .

p)~1: its ——(23.89/Rs)&10 'oF(Rp).

'K. U. Condon and G. H. Shortley, The Theory of Atomic

Spectra (Cambridge University Press, Cambridge, 1953t},Chap. VI.
' Breit, Hull, Johnson, Huebner, Benedict, and Smolen (private

communication).

The well radius is chosen as 8=3.45X10 "cm. The
standard value

~
E~ =8 Mev was taken for the binding

energy of the p nucleons. Corrections of reduced mass
were neglected, and also any deformation of the wave
functions by the Coulomb field. From (11),one obtains

(,=3.48, and, from (7), V =34,6 Mev.
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Wave functi ons TABLE IL Values of R,/Ror

The wave functions in this well are:

s wave functions,
F17~O17
Q16~N16

Square well

1.18
1.07

Oscillator well Experimental

1.20 1.27
1.08 1.17

p~&1: 4o= (9.47/R)fpjo(2. 49p),

p& 1: go= (3373/R) fpho(i3 19.p);

p wave functions.

The total Coulomb energy is thus AE, =7.30(e'/R),
(21) and by (4), the Coulomb radius is R.= 1.15R. We thus

get R,/Rsf = 1.07R.

p~&1: Pt= (17.52/R)'p jt(3.48p),

p&~ 1: ft (127.——2/R)'pht(i2. 07p).

The squares of these functions are plotted on Fig. 2.
8.8 percent of the s charge distribution, 22 percent of
the p one are outside the well.

Effective meson radius of N"

IV. THE OSCILLATOR WELL MODEL

It is interesting to see how much the final results
R,/Rsr are dependent on the special potential well
which is assumed. The same calculations can be carried
out, exactly and easily, using Talmi's methods, ' for the
less accurate model of an infinite oscillator well. The
results are then R,/Rsr ——1.20 for F'r, and R,/Ror 1.08——
for O15

The mean square radius is found to be 0.7030E. for
an s wave function and 0.8767R for a P one. From (17)
and (3) the effective meson radius is found to be
E~——1.078.

V. DISCUSSION OF RESULTS AND COMPARISON
WITH EXPERIMENTAL DATA

Effective Coulomb radius

The direct Coulomb energy of a p proton is

2I"(d,s)+5F'(P,P) = 7.78 (e'/R).

The exchange Coulomb energy is

—(1/3)G'(P, s) —(2/5)G'(P, P) = —o 48(e'/R)

The theoretical results and the experimental values
are listed in Table II. The experimental values for
R,/Rsr are obtained from the experimental R, and an
assumed 8~= 1.2A&&10 "cm. It is seen that the shell
model reproduces the experimental discontinuity in E,

(22) at the closure of the p shell. However, the value of
R,/Rsr remains too small by 8 or 9 percent. The oscil-
lator potential's results are very close to the square

(23) well's and show that it is not possible to suppress the
discrepancy by changing the potential. The results are
not very sensitive to the exact form of the potential.
Thus, there is still an unexplained discrepancy between
the values given for nuclear radii by mirror nuclei and
by p-mesonic atoms.

FIG. 2. The wave functions of O' . P is r times the normalized
radial wave function. The ordinate is ~P ~

s in units of the reciprocal
radius of the well.
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