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Susceptibility Tensor and the Faraday Effect in Ferrimagnetics
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(Received April 14, 1954)

The components of the susceptibility tensor have been calculated for the two-sublattice model of a ferri-
magnetic in which damping is neglected, and the results related to the theory of the Faraday eRect in these
materials. It is shown that in most cases the only change necessary is the replacement of the electron gyro-
magnetic ratio by the eRective gyromagnetic ratio of the material. The eRect of the sublattice structure is
more apparent when the material has a compensation point, for then the rotation can change sign two or
more times as a function of temperature or composition. The rotation to be expected for an unmagnetized
antiferromagnetic is also determined, and some of the simpler results are generalized to the case in which there
are an arbitrary number of sublattices. Other possible sublattice eRects are also briefly considered.

INTRODUCTIOÃ
' 'F the electronic magnetic moments in a ferromag-
~ - netic material are subjected to a magnetic 6eld
having a constant component in the s direction and a
small oscillating component in the xy plane, then it has
been shown' 4 that the gyroscopic behavior of the spins
leads to expressions for the transverse components of
the magnetization of the form

M.= $,H, i(i/of)H-„;
M„=+2(t/of)H +$,H„,I

where co is the circular frequency of the oscillating 6eld.
A consequence of this tensor character of the suscep-

tibility is that the index of refraction for a circularly
polarized plane wave propagated in the s direction
depends upon the sense of rotation of the 6eld vectors.
If a linearly polarized wave is incident upon the
material, its two components of opposite circular
polarization will travel through the material with dif-
ferent phase velocities. Their resultant at any point is
still a linearly polarized wave, but one whose plane of
polarization has been rotated through an angle propor-
tional to the distance traversed in the medium, a
result which is familiar from the usual description of the
Faraday e6ect. One 6nds the angle of rotation after a
distance l to be given by

e= (22re, ff&/c)ll',

provided that $„$„,and (l /of) are all small compared to
unity, and where e,ff 2 ( ~

e
~
+sf) if one assumes the

dielectric constant to be a complex scalar. In an appro-
priate set of units, therefore, the rotation per unit
length of path is simply given by

In the common case in which the applied frequency co

is su%ciently large compared to the ferromagnetic

resonance frequency, it is easily shown4 that

where p is the gyromagnetic ratio of the ferromagnetic
e]ectrons and M is the equilibrium component of the
magnetization in the direction of the constant field. A
principal reason for the simplicity of the results given
by (2) and (3) is that damping terms which affect the
response of the magnetization to the oscillating field
have been neglected; in general, if damping is included,
then f', $, and P„allbecome complex, as has been shown

by Hogan, with a resulting complication in the ex-
pression for the rotation. For our purposes, the explicit
inclusion of damping terms in the equations of motion
is not necessary, and for simplicity will be neglected,
although it win. occasionally become convenient to
include damping in an implicit manner as is often done
in the elementary theories of optical dispersion.

Experimental results' obtained by using various
ferrites are in good agreement with the predictions
given by (3). This can be the more readily understood
since it has been shown' that the resonance frequency
of ferrimagnetics can, in most cases, be quite accurately
taken to be of the same form as that given by the
standard theory of ferromagnetic resonance. It is
necessary, however, that the gyromagnetic ratio of a
single electron, p, be replaced by the e6'ective gyromag-
netic ratio, y, ff, defined as the ratio of the total mag-
netic moment to the total angular momentum of the
specimen. In the simplest case in which the ferrimag-
netic material can be adequately described as being
comprised of two magnetic sublattices, we have

yeff M/~ (Ml+M2)/L(M1/71)+ (M2/72) j (4)

As a result, it is reasonable to expect that the expression

(3) for the Faraday rotation should actually be written
for ferrimagnetics as

i = —y,ffM, (5)' D. Polder, Phil. Mag. 40, 99 (1949).
2 F. F. Roberts, I. phys. et radium 12, 305 (1951). ' R. K. Wangsness, Phys. Rev. 91, 1085 (1953);93, 68 (1954).
~ C. L. Hogan, Bell System Tech. J.31, 1 (1952);Revs. Modern Hereinafter, these papers will be denoted by I and II, respectively,

Phys. 25, 253 (1953). and numbers in following parentheses will refer to the corre-' G. T. Rado, Phys. Rev. 89, 529 (1953). sponding equation of the paper.
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340 ROALD K. WANGSNESS

which reduces to (3) in the ferromagnetic case in which
one assumes the sublattice gyromagnetic ratios to be
equal.

Ordinarily, this change can be expected to have no
great effect upon the observed rotation since the p, of
the sublattices are of the same magnitude, and also the
magnetization of one sublattice is dominant over the
complete range of temperature or composition con-
sidered. An interesting situation arises, however, when
the ferrimagnetic in question possesses a compensation
point for magnetization, that is, a temperature or com-
position at which the magnetizations of the two sub-
lattices are equal and oppositely directed. This means
that the dominant magnetization changes from one
sublattice to the other as the compensation point is
passed through and the net magnetization will change
-ign provided that any constant external magnetic
ti.eld is suKciently small. Both of these possibilities have
been realized experimentally. "Further, one can expect
the y; to be different so that there will also exist a com-
pensation point for angular momentum which, in
general, will not coincide with that for magnetization.
Thus, in the range between these two points, M and 5
will be parallel rather than antiparallel as normally
occurs, and we see from (4) that the effective gyromag-
netic ratio of the material will have a sign opposite to
that of the magnetic electrons themselves. Such an
effect would not be observed by the usual absorption

type resonance experiments, but (5) indicates that it
should be detectable by a change in sign of the Faraday
rotation.

We shall now illustrate the eRect of these qualitative
considerations by considering a definite example. In
Fig. 1 are shown values of magnetization and y, ~~ which

are similar to those which have been observed as a
function of temperature for I i0.5Fe~.2~Cr~. 2504."The
temperatures m and s are the compensation tem-
peratures for magnetization and angular momentum,
respectively; the magnetization is taken to be positive
for all temperatures since the constant field which is
used in the Faraday effect is assumed to be large enough
to ensure that the net magnetization will always be
aligned parallel to this field. The negative sign of y, ff

makes f positive in the normal regions and a reversal in
sign is then inferred from (4) for the temperature range
between m and s although it is known' that such a
definition of y, qf in this range is not exact. Then, ac-
cording to (5), the rotation can be obtained by a simple
multiplication of the curves; the resulting curve is also
shown in the figure. We note that (4) and (5) together
would make the rotation infinite and discontinuous at
s; actually, of course, this cannot be the case, and we
should expect that the qualitative effect of any real
damping would be to join these branches in a smooth
manner (as in the case of optical dispersion) with the
result that the actual rotation at s would be zero as
shown. The general trend is clear, however, and we see
that a consequence of the concept of effective gyromag-
netic ratios is that as the temperature is varied the
observed rotation should change sign near m and again
near s.

In the following sections, we shall justify these simple
considerations by a more rigorous discussion. First, we
shall calculate the exact expressions for the components
of the susceptibility tensor for a two-sublattice system,
and then consider the expressions obtained for the
rotation in the special case in which the material ap-
parently behaves in resonance experiments as a true
ferromagnetic. After this we shall consider in some
detail the effects that the existence of compensation
points would have on the curve shown in Fig. 1. The
rotation to be expected for an antiferromagnet will also
be obtained from the results for the general two-sub-
lattice case. Finally, we shall generalize our results as
far as possible for the case in which we are dealing with
an arbitrary number of sublattices.

When it is necessary to discuss a specific example, we
shall restrict ourselves to a material exemplified by the
temperature dependence shown in Fig. 1, although the
discussion can be easily adapted to other cases, such as
may occur as a function of composition.

Fro. i. Qualitative dependence of the magnetization, effective
gyromagnetic ratio, and Faraday rotation upon temperature.
m and s are compensation points for magnetization and angular
momentum, respectively.

6 K. W. Gorter and J. A. Schulkes, Phys. Rev. 90, 487 (1953).
~ L. R. Maxwell and S. J. Pickart, Phys. Rev. 92, 1120 (1953).

THE SUSCEPTIBILITY TENSOR

We shall use the notation of I and II, except that the
resonance frequencies discussed there will now be
denoted by orp, so.that or represents the frequency of the
external field.

If II and H„areassumed to be proportional to e'"',
then we assume that 3I and M„also vary as e'"', so

J. S. van Wieringen, Phys. Rev. 90, 488 I'1953}.
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M;=Ml;+M2;, hj=MU M—2;, (6)

that the equations of motion become

i'idM1 2 (Ay+ By+Cy+Dy)Mly
+ ', (A„-By—+C„D„—)M2„y——l—M1Hy,

icuM2 +2'(Ay By Cy+Dy)Mly
', (A„—+-B„C„—D„)M—2„= y2M2—H„,

iidMly+2(A +B,+C,+D )Ml,
', (A —B-+C—. D)M—2 =ylM1H. ,

i(uM2y 21(A B C +D )Ml
+ ', (A,+-B, C, —D,)M—2, y2M—2—H, .

If we introduce the new variables

and

{(7172) PMQj ~ [(ll +j) (rl r2) M1M2

+Q, (& 'M +~ 'M ))). (17)

THE APPARENT FERROMAGNETIC CASE

It was shown in II that when the product of the
molecular field coeKcient and the net magnetization is
large compared to the components of the applied and
anisotropy fields the resonance frequency has essentially
the same form as that given by the theory of ferromag-
netic resonance; namely, &u2' ——y,«'Q Q„.In this ap-
proximation, P=XM and 2F= (Xyly2S)2 according to
II(2). Generally we will also have

~
2F ~))M (op so 'tllat

n (aP—a)p') (—2F),
where j=@,y and the notation

P1~1~+2~2)

the equations become

and then we find that (16) and (17) become

{j= & V«jM/(~ 'Y«2 Q~Qy)~

4j= —v.«'MQ j/(~' —v«PQ.Qy).

(18)

(19)

and where

$,= S '(2,$„—X~ ), t

py= 5) '(ZyN. ,—X~2),

{= —(~'/&) (v+ '—6'),

(9)

jI'= A*(&+Ay v Cy)+C. (v—Wy— v-By)—
= Ay(v+A. —v-C*)+Cy(v+D. —v-B*)

~(Yl+2P) +YlY2M1M2{P[Yl(ni +nl )
++2(n2 +n2 ))+rlMlni 'ni +r2M2n2 n2 ) (11)

X,=y+B;+y C; = (X—Xj)(71—y2)'M1M2

+ (jpM1+72 M2)Qj+ rpMpnl;+r2 M2'n2, , (12)

2;=y+A; yC; =y,F2[PM—+M1M2(n»+n»)], (13)

AiBi CjDi 7172{(ll +j) (Mi ni j+M2 n2j')

+Q '(P+Mlnlj+M2n2j)+M1M2ni 'n2j) (14)

and K), the determinant of the coeS.cients of the homo-
geneous equations corresponding to (8), is given by

n = ((O2 —cu02) (a)2+(O22 —2F) (15)

If desired, Eqs. (11)—(14) can be written in terms of
the macroscopic eGective demagnetizing factors due to
anisotropy by using II(9), but for many of our purposes
it will be sufhcient simply to know the components of
the susceptibility tensor when anisotropy is neglected.
Thus, if we set n;, =0, we 6nd from (9) and (10) that

f'= —(~'/&)[(71M1+7~2)~' —5'(Vn&)'j (16)

i (vM ByMy Cyhy = y+.Hy

koA, —Dykey —Ayhy = —y~yy) g

B,M,+C,D,+is)My =y+H,
D,M,+A 6 +i&shy=y~,

When we solve Eqs. (8) for M and M„,we find them
to be of the form given in (1), where

In most of the experiments which have been per-
formed on the Faraday eGect in ferrites, the external
field has been kept small enough so that co is large com-
pared to the ferromagnetic resonance frequency. In
addition, it is usually a good approximation to assume
that

~
p«iM

~
&&~.2 ' Under these conditions, Eq. (18)

is seen to reduce to the usual expression given in (5)
and that

~ hajj ~
&&1 as expected. Thus, the results of this

section verify our previous qualitative derivation of the
formula (5) which has been amply tested by experiment.
Equation (5) does differ from the usual formula in that
it involves y, ~f which, however, under these conditions
cannot be expected to diGer much from the gyrornag-
netic ratio of the sublattice constituents and hence will

be close to that of a free electron. Equation (18) also
predicts the change in sign to be expected of the rotation
as the field is in.creased to make the resonant frequency
finally larger than co, this eGect is familiar from the
study of the paramagnetic Faraday eGect and has been
experimentally observed in ferrites. ~

EFFECT OF A COMPENSATION POINT

It is quite diKcult to discuss the dependence of (16)
upon temperature both exactly and in very general
terms because no quantitative description of the tem-
perature variation of the individual sublattice mag-
netizations seems to exist. What we shall do instead is
to extrapolate our previous results as well as possible
through the region of the compensation points and
augment this by more precise discussions at the com-
pensation points where exact calculations are more
easily done.

I. Qualitative Discussion

The usual experimental procedure is to represent coo

as the product of the appropriate function of the ob-
9 Second article in reference 3.
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f, will change sign a total of four times: at 222, T', s,
and Te'. This leads to a temperature dependence of f,
similar to that shown by the solid curve in Fig. 4. As
Hy decreases to H„the points P and 7"approach each
other and eventually coincide so that there will be a
smooth transition from the curve of Fig. 4 to that of
Flg. 3.

II. M=O

With M2 ———M~, we know that, with the neglect of
anisotropy, cup' ——0, and —2F~—L(Vi—V2)XMi)'&&&o'
from II(14) and II(12), so that (16) becomes

T' s T"

FIG. 2. Dependence of squared experimental gyromagnetic ratio
upon temperature. Dashed lines locate two additional tempera-
tures at which rotation will vanish for large enough external field.

(vl v2)~1(~ jvlv2+ )

f-' —E(v.-v.)l ~ 3')
(23)

f = —oPv pM/(oP —v 2&F2) (20)

where we have put Hr2=Q, Q„.
There are now essentially two cases to be considered

corresponding to whether or not the constant Geld is
large enough to make HJ greater than a critical field H,
which is determined by the maximum value of p p

and is defined by the equation

served Geld needed for resonance and an experimental
gyroniagnetic ratio which we shall write as p, p thus,
~&P=v, p'Q, Q„.In contrast to the prediction of infinity
given by (4) at the point where S=0, the limited experi-
mental data and the theoretical results given by I(22)
and II(18—19) indicate that v p' is large but finite at
the compensation point for angular momentum. The
general behavior to be expected of y,„p'is shown in Fig.
2.

It is, therefore, probably not too unreasonable to
expect that a fairly accurate representation of the rota-
tion as a function of temperature can be given by the
following generalization of (18),

Since in most cases the applied field is small and the
molecular field (~liM2~) large compared to the field
needed for resonance at the applied frequency, Eq. (23)
can generally be approximated further as

f = —~2/P2(v, —v,)m,g.

III. S=O

(24)

(v 2 v 2)~4~
le=

viL~'+liv2 (vi —v2) ~iQ)'
(25)

The approximate form of (25) corresponding to (24) is

For this case, it simpliGes matters to assume that we
are dealing with the usual experimental case in which
the sample has axial symmetry about the direction of
the constant field so that Q,=Q„=Q.Then we find
from II(16, 18, 19) that

Xy (v v)—M Q=F—

and therefore X)= (co2—F)'. Equation (16) is then found
to reduce to

Zl 2 —2!Hc +,/ Yexp max ~

Using (21), we can then write (20) as

Vexp+/L1 (+fVexp/+cVexp mex) ] (22)

—(vi+v2)~'
'

l vv"(v.—v.)~.Q
IV. The General Aspect of the Rotation

(26)

Equation (22) indicates in general that there will be an
infinite discontinuity in t, when v, p' = (H,/Hy)'v, p

Accordingly, when damping is taken into account, we
would actually expect the rotation to pass through zero
at this point.

Now when IIr(H„ the denominator in (22) will
never vanish, and if we assume that the sign of p p

has the same temperature dependence as shown in Fig. 1
for v,«, then the rotation predicted by (22) is as shown

by the solid curve in Fig. 3. This, of course, is similar
to that found in Fig. 1.

On the other hand, when H~&H„ there are two
temperatures P and T" at which we can expect the
denominator of (22) to vanish; The method of finding
T' and T" is illustrated in Fig. 2. This result means that

Using the results of the last two sections, we can
now get an estimate of the relative signs and magnitudes

FIG. 3. Qualitative plot of rotation vs temperature for small
applied field. Dashed line shows the effect of the more exact calcu-
lations for the compensation points upon the shape of the curve.
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of f' at the two compensation points. It will be suflicient
for our purposes to use (24) and (26). We find that

i./i -= —(vi+v2)~'/(viv2'0'). (2&)

It is immediately evident from (27) that |has opposite
signs at these two points so that the rotation has
changed sign at least once between nz and s. A satis-
factory estimate of the relative magnitudes is obtained
by taking y~ y2 y, so that

If./f-I = ( /vg';

however, we shall continue to write

Q=H+ (N N, )M—=H+ (N N, ) (y—i—y2) (Mi/yi).

If we substitute as fairly representative the values
H=500, N N, =5—, (yi —p2)/yi ——0.1, Mi ——600, and
co/y= 3000, we find a value for the ratio of about 14.

We have yet to determine the magnitude and sign
of, say, t, relative to the normal value fr given in (18).
If we assume that the applied frequency is large com-
pared to the ferromagnetic resonance frequency we find
from (18) and (24) that

i -/if ='/((v2 xi)v—.«&'MiM3 (28)

In order to make further use of (28), we must choose
which of the sublattice magnetizations is to be regarded
as being dominant at a given temperature, although it
is easily seen that our final results are independent of
our particular choice. We shall assume that M~ is the
dominant magnetization from T=O to the compensa-
tion point for magnetization. In other words, for T(m,
we assume that ~Mi~) )M2~, and for T)«i, that

Mi~ &~M2 . Now the condition for S=O is that
M2/Mi

~

= y~/yi
~

. If S=0 is to occur at a temperature
below that for which M=0, then we see that

~
y2~ & ~pi.

On the other hand, if 5=0 is to occur at a temperature
above that for which M=O, then we must have ~y2~)

~ pi ~. Since it is this latter case which corresponds to
the situation pictured in Fig. 1, we see that we have
(y2 —yi)ye«) 0, so that f' and i ~ always have the same
sign according to (28).

In order to estimate the relative magnitudes of i
and iq, we shall assume that y,«y and M -', Mi in
addition to the numerical estimates used in the last
paragraphs. Then we hnd that

t „/ir 20 (id/yH g)' 0 02, .

where we have put —)M~ ——Hg 104 oersted.
In summary, we have found that | is very small

although not yet zero and shows no sign change, while

f, is of the same order of magnitude as the usual rotation
but is always of the opposite sign. We are now able to
redraw Figs. 3 and 4 somewhat more accurately. The
6rst crossover near m will occur at a slightly higher
temperature while the crossovers shown at s in Figs. 3
and 4 should occur at somewhat higher and lower tem-
peratures, respectively. Hence, the general aspect of

FIG. 4. Qualitative plot of rotation vs temperature for large
applied field. Dashed lines shows the effect of the more exact
calculations for the compensation points upon the shape of the
curve.

the rotation for the two cases should be more like that
shown by the dashed lines in Figs. 3 and 4. The curves
are meant to be purely qualitative and there is no
necessary quantitative signi6cance in the values of the
relative maxima and minima.

As yet, there are no substantial experimental data
which can be compared with these predictions, although
preliminary results obtained on a sample of Lip. 5Fe~.~s-

Cr~.2504 by Brown and Hebbert of this Laboratory" ap-
parently show a behavior similar to that of Fig. 3.
Some of the difficulties encountered in measuring the
rotation of waves propagated in a wave guide rather
than as plane waves and which comp/icate the inter-
pretation of the results have been discussed by Hogan. '

2(o'y'M P («—,+n )H/X) (29)

where 5) can be evaluated by the use of II(20) and the
preceding equation for P.

For convenience, we shall simplify this equation
somewhat by introducing the anisotropy and exchange
fields in the usual way by setting N, =H,/Mi, and
—XM~=H~, we shall also assume that H~))H.

If we now keep only the largest terms in II(20) and
preceding equations, we And as usual that

p
=2P H@H~= P)

"R. W. Brown and R. S. Hebbert (private communication).

THE ANTIFERROMAGNETIC CASE

It is easy to adapt our general results to the case in
which the material is antiferromagnetic; however, if
we were simply to take p&=p2 and M=O, the rotation
would be zero by (23). Actually, we must now take
anisotropy into account since it is known to have so

important a role in antiferromagnetic resonance. We
shall assume, as in II, that y;= y and e;;=e, . According
to II(9), this last assumption not only implies equal
anisotropy constants but equal values of 3f, i.e., M =0.
As a result, we are omitting corrections of higher order
in H since M is not exactly zero when H= 0; this will
be seen from our results below which will still give a
value of i proportional to H in spite of our assumption
that M=O.

With these assumptions, we easily flnd from (10) that
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so that I)= (cP—capp)'~cop'. Substituting these results
into (29) we get

pp'—HMi/(yH~~'). (30)

It is interesting to compare the magnitude of this
expression with that for the ferromagnetic region given
by (18). We find that

f./f'r=(o'HMi/(Yy, iiH jX~'M) =10 '

if we continue to use the same numerical approxima-
tions as before, and, in addition, take H, =10'. The
expected value for the rotation in the antiferromagnetic
case is thus much smaller than that for the ferromag-
netic case. On the other hand, if we compare (30) with
the value to be expected in the paramagnetic region
above the Curie temperature where we can write
f„=—yM= yxH, w—e find that

f,/f ~=pi'M i/(y'7tH~ii') = 1

if we assume the value of the susceptibility to be about
6X10 4. Since these last two quantities are of the same
order of magnitude, one would not expect to observe
an abrupt change in the rotation as the material is
cooled below the Curie temperature in contrast to
what is observed for the absorption. "

This interesting result that one could expect to find
a Faraday rotation for an antiferromagnet even if &=0
is another case which illustrates how important is the
anisotropy for the determination of the electrodynamic
properties of the antiferromagnetic case. This is most
easily illustrated by considering the explicit form taken
by the general Eqs. (8) in this case. They are easily
found to be

i(oM —HM„—H hy ——0,

iorA —2HEM„—HAy ———2MgH„,

HM +H,A,+iYuM„=0,

2H~M, +HA, +i(oh„=2MiH„

where pi=or/y and where we have written H,+2H~
~2HE. Upon inspection of these equations, we see that
the existence of a nonzero H is the only thing that
keeps us from treating M, and M„independently from

and 6„,and thus serves as the necessary coupling
which brings the exchange 6eld into the resonance
frequency and also makes the transverse components
of the magnetization depend on the oscillating com-
ponents of the applied G.eld. This is vividly illustrated
when one calculates $ and i and finds them both pro-
portional to H, while the exchange 6eld enters in only
through the determinant of the coeScients.

AN ARBITRARY NUMBER OF SUBLATTICES

The calculation of detailed results equivalent to those
of the last sections for the case in which we are dealing
"Trounson, Bleil, Wangsness, and Maxwell, Phys. Rev. 79, 542

(1950);L. R. Maxwell and T. R. McGuire, Revs. Modern Phys.
25, 279 (1953).

ipse Q, (M, /y;) = MH„+—HM„,

ipp Q, (M,„/y,) = MH. HM, . — (32)

For small deviations from the s direction we can expect
3f;; to be proportional to M;, and, in the limit of strong
molecular 6elds, the constants of proportionally 8; will
be the same for all sublattices. "Then we can write

so that Eqs. (32) become

us M, = —y.iiMH„+pppM„

ia)3f„=y, (gMH, —a)p3f
„

where cop= y, ggH.

When these last equations are solved for M, and 3f„,
we find the results to have the form (1) where

which essentially agree with (18) and (19).

DISCUSSION

The results of our calculations in the previous sections
have been seen to support in general the qualitative
discussion given in the introduction. It would be pos-
sible, of course, to obtain better approximations to our
very general results, but since most of the effects which
have been predicted have not yet been observed experi-
mentally, this is not really necessary at present.

On the other hand, a thorough discussion of ferri-
magnetic resonance and allied eGects requires for com-
pleteness that damping be included in as simple and
accurate a manner as possible. When this is done, a
possible sublattice eGect to be considered is that the
relaxation times for the various sublattices are very
likely unequal because of the different nature of their

J. Smit and H. P. J. Wijn, Advances in E/ectronics VI (to be
published).

with an arbitrary number of sublattices would seem to
be too complex to be possible. Instead, we shall show
only that the simplest results as given in (18) and (19)
are probably very accurately also true in this case.

For simplicity, we shall not include demagnetizing
and anisotropy fields so that the equation of motion for
the ith sublattice becomes

dM;/dt=y, M, X (I+pi Xg, M,),
where the P;I, are molecular field coefficients satisfying
the relation 3,1,=)I„.Summing this equation over all
sublattices, we find that

d[Q, (M,/y, )]/dt= (Q; M;) &&I, (31)

since P,~ X,~ M;)& M~ ——0. If we let M =P; M;,=g; M, ,
M, =Q; M;;, and assume as usual that M; and H, are
small and proportional to e'"', we find from (31) that
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surroundings. These probably unlike quantitative
interactions between the ions and the crystalline lattice
as well as among the magnetic ions themselves may then
result in different approaches to thermal equilibrium.
In this connection one may be able to devise a method
of measuring the relaxation times of the individual sub-
lattices; a possible approach may consist of a careful
study of line widths and saturation properties of a
series of compounds of varying composition in which
one alters the constituents of the sublattices in a known
and regular manner.

The apparent inertial mass of a moving ferromag-
netic domain wall, which was 6rst discussed by Doring, "

. Doring, Z. Xaturforsch. Ba, 374 (1948); G. T. Rado,
Phys. Rev. 83, 821 (1951}.

is known to be a consequence of the connection between
the electronic angular momentum and magnetic
moment and arises from the precessional motion of the
spins in the internal demagnetizing fields of a moving
wall. In fact, the apparent mass per unit area depends
on y and it is tempting to think that in a ferrimagnetic

ff should be involved instead. If this wer e actually
the case, then it may be observable as a dependence of
the natural resonance frequency due to wall motion
upon the temperature or composition.

I wish to thank Dr. T. R. McGuire and Dr. G. T.
Rado for some helpful discussions, and Mr. R. %.
Brown and Mr. R. S. Hebbert for permission to
mention their preliminary experimental work.
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Backscattering of Kilovolt Electrons from Solids*

EaNEsT J. SrERNoLasst
Cornell University, Ithaca, See Fork

(Received November 13, 1933)

The total number and energy distribution of backscattered electrons at 0.2—4 kev incident energy (V)
have been measured for six elements using electrostatic retarding potential techniques. For atomic number
Z&30, backscatterirlg was found to be essentially independent of V and almost linearly dependent on Z.
For Z&30, backscattering decreases with decreasing V below 2—3 kev to values less than those for elements
of Z —. 30, and it no longer is a simple function of Z. The ratio of the mean energy of the backscattered
electrons to that of the primaries is found to be close to one-half for Z=6 and to increase only slightly for
the heavier elements. These results are shown to indicate a dominant role of inelastic processes in the scatter-
ing of intermediate energy electrons, in contrast to scattering at very high energies, where elastic interactions
control the phenomenon.

I. INTRODUCTION

'+RESENT experimental and theoretical knowledge
of the interaction of intermediate energy electrons

with complex atoms is still very limited, in contrast
to the situation at energies very large or very small
relative to atomic binding energies. Measurements of
the total number and energy distribution of electrons
backscattered from solids such as reported on below
o6er a means of shedding new light on the relative
importance of elastic and inelastic processes in the
intermediate energy region. Such information is of
importance in the formulation of a theory of back-
scattering more complete than existing theoretical
treatments. ' Aside from its practical interest, data on

*This paper constitutes part of a thesis submitted in partial
fulfillment of the requirements for the Ph.D. degree at Cornell
University. Portions of the work were carried out at the U. S.
Naval Ordnance Laboratory, %hite Oak, Maryland, and at the
%estinghouse Research Laboratories, East Pittsburgh, Penn-
sylvania. A report on preliminary work was presented at the
November, 1950, meeting of the Electron Physics Division
of the American Physical Society, by Sternglass, Frey, and
Grannis LPhys. Rev. SS, 391 (1952)j.

f Now at the westinghouse Research Laboratories, East Pitts-
burgh, Pennsylvania.

Bothe, Ann. Physik 6, 44 (1949); see also article in

the backscattering process is also of value in the
development of theories of bremsstrahlung production,
cathode-luminescence, secondary emission, and born-
bardment-induced conductivity, where information on
the primary beam spreading and total energy loss in
the material is required. In particular, knowledge of
the number of backscattered electrons at low energies
would for the erst time allow a separation of the true,
low-energy secondary electrons from the total yield of
emitted electrons for comparison with theory. '

At present, reliable data on the number of back-
scattered electrons' exist only for a few elements below

IIundbuch der Physik (Springer, Berlin, 1933),Vol. 24, part 2, p.1
for summary of earlier work.

'See the review article on Secondary Emission by K. G.
McKay, Advances in E/ectronzcs (Academic Press, New York,
1948), Vol. 1.

3 The term "backscattered electrons" as used here refers to
all electrons emitted from a bombarded target whose energy is
greater than 50 ev in accordance with the usual convention. This
de6nition is designed principally to eliminate the true, low-energy
secondary electrons, more than 95 percent of which have energies
less than 30 ev for all solids and which will be referred to simply
as "secondary electrons. " It must be remembered that, because
of the indistinguishability of electrons, the so-called "back-
scattered electrons" dered in this manner include some high-
energy secondaries formed in close electron-electron collisions.


