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Threshold Field Properties of Some Superconductors*
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Some re6ned measurements of the critical 6eld curves for tin, thallium, indium, and mercury have been
completed and the results compared with the speci6c predictions of the Gorter-Casimir and the Koppe
versions of the two-Quid model of superconductivity. Neither version is completely adequate, although
each has points in its favor. The Koppe prediction of a universal critical 6eld curve for all superconductors
is not veri6ed. The Gorter-Casimir 0. model has greater Qexibility than the Koppe model, and although
it is capable of giving a fair description of the critical 6eld data, it is in some respects also inconsistent
with the data. The isotope effect in thallium has been observed and is consistent with the half-power law.

INTRODUCTION

~

'HE threshold field curve, which defines the phase
boundary between the normal and supercon-

ducting states, is a fundamental characteristic of super-
conductors. From the thermodynamics of the super-
conducting phase transition it follows that the difference
in free energies of the normal and superconducting
states is proportional to the square of the critical field.
Consequently one can check the applicability of
thermodynamic reasoning to the problem by quantita-
tively comparing threshold field data with calorimetric
data for mutual consistency. Such comparisons have
been made in the past by other observers, and the
correctness of the thermodynamic treatment has been
adequately confirmed.

This paper is primarily concerned with another aspect
of the threshold field curve. Since the threshold field is
determined once the free energies of the normal and
superconducting states are given it provides a means
of testing theoretical models of superconductivity in
which the free energy is explicitly given as a function
of temperature. The two-fluid model of superconduc-
tivity is such a model, and in the present paper we
shall use some recently obtained precise critical field
measurements on tin, mercury, indium, and thallium
to compare with some specific forms of the two-Auid
model.

Because of the relatively high precision of the present
data it becomes practicable to try to interpret some of
the finer details of the critical field curve. In a recent,
paper' a very general form of the two-fluid model was
described and some of the present experimental data
were briefly presented in a preliminary form. In this
paper we shall be more directly concerned with de-
scribing the experimental aspects of the investigation
and giving a more detailed analysis of the data.

The data for tin were given in an earlier paper' in
connection with an investigation of the isotope effect.
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We give here some additional parameters which have
been calculated from the original data. The thallium
data also stem from an investigation of the isotope
e6ect and have not been previously published in detail.
These measurements on tin and thallium revealed
systematic departures of the critical field curves from
parabolic form of a kind which were generally con-
sistent with some forms of the two-Auid model. It was
therefore also thought advisable to investigate the
behavior of indium and mercury with high precision
techniques. A limited comparison of this sort using the
tin data has been given by Bender and Gorter. '

EXPERIMENTAL METHOD

The method of measurement was the null magnetic
method described in an earlier paper. ' The identical
apparatus was used for the thallium measurements.
For mercury and indium an apparatus with another
pickup coil system was used which diGered from the
one described chiefly with respect to number of turns
and coil resistance. Some typical transition curves
observed in the course of these experiments are given
in Figs. 1, 2, and 3 as well as in Fig. 4 of the earlier
paper. ' The critical field is taken as that field at which
the specimen would become completely normal if there
were no rounding-oG of the upper portion of the transi-
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FiG. 1. Transition curves for thallium.

s P. L. Bender and C. J. Gorter, Physica 18, 59/ (1952).
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were reduced from the oxide form and the chemical
purity figures refer to the original oxides. The samples
were melted ie M'clo after reduction and subsequently
recrystallized in the course of which process the purity
was probably somewhat enhanced. The natural metal
samples were in all cases Johnson-Matthey Specpure
materials.

The tin and thallium samples were kept in the Pyrex
glass capillaries in which they were crystallized. Since
tin does not stick to clean Pyrex this probably resulted
in no appreciable strain when the specimens were cooled
down. Thallium, however, does stick somewhat to glass
so there is a possibility that strain may have been
present. One of the indium sampjes In-1 was crystallized
in a Pyrex capillary in which it was sealed oG and used.
Since indium also tends to stick to glass a second
sample In-2 was cast and crystallized, and then the
glass was etched oG in HF. The crystal was kept and
used in a loosely fitting glass tube.

Mercury sample Hg-4 was enclosed in Pyrex and
frozen just prior to using. The second sample, Hg-P-1,
was a free rod and was made by slowly freezing mercury
in a glass tube lines with thin paper. The freezing
mixture was a mixture of dry ice in alcohol, and the
tube was slowly lowered into the bath so as to promote
slow crystal growth. After freezing, the rod was slipped
out of the enclosing tube, the paper lining removed.
and the frozen rod reinserted so that it was free of the
walls. The rod was kept cold until used.

T = 3.28I ~K
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The collected results of the critical field measure-
ments are given in Tables I, II, and III. The original
tin data were tabulated in the earlier paper. ' Some
minor changes have been made in the values of some
of the tin constants. In the earlier analysis where
relative changes were more important, the computations
were based heavily on diGerence Ineasurements whereas
in the present paper each of the isotope curves has
been considered by itself.

The transitions were for the most part reasonably
sharp and the frozen-in moments were no more than a
few percent. The thallium data are probably the
poorest, as shown both by the scatter of the points in
Fig. 5 and by the breadth of the transitions in Fig. I.
This may be, in part, due to strain resulting from
adhesion to the glass walls of the capillary and in part,
to chemical impurity.

The eGect of strain may be gauged from the com-
parative data of the two indium specimens and the
mercury specimens. In-1 was used in the original glass
capillary in which it had been cast whereas the glass
was. removed. from In-2 by etching in hydroQuoric
acid. The transitions are slightly sharper for In-2, and.
there is a small but observable change in the critical
field curve, includ, ing a small reduction in the initial
slope and a Ioweririg of the transition temperature.

THE SPECIMENS

Some of the physical properties of the specimens are
given in Table II.The isotopic tin and thallium samples
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Pre. 3.Transition curves for mercury. Hg-4 sample in Pyrex tube;
Hg-F-1 free rod of mercury.

tion curve. The steep slope of the transition curve is
extrapolated to the level of M (the mutual inductance
setting for balance) in the normal state, and the
corresponding value of the 6eld is taken as the critical
field.

In some cases where the transitions were sharp, as
for the mercury and indium single crystals, it was
possible to 6x the critical field to within about one
tenth of an oersted. In the case of thallium, however,
soigne of the transitions were less sharp and have a
probable uncertainty of three or four tenths of an
oersted. The errors due to nonuniformity of the 6eld
and to uncertainty in the calibration constant of the
magnet are each less than ~~ percent.
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TABLE I. Threshold field data for the specimens.
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ToK
Tl-5

H Oersteds
T1-205-2

ToK H oersteds
T1-203-1

T'K H Oersteds ToK
In-2

H oersteds ToK
In-1

H oersteds

2.370
2.350
2.330
2.294
2.171
2.001
1.805
1.598
1.524
1.257

2.95
4.87
7.86

12.33
28.2
47.9
69.8
91.2
99.2

122.4

2.358
2.351
2.344
2.334
2.330
2,310
2.297
2.294
2.170
2.001
1.994
1.805
1.745
1.598
1.464
1.257

3.70
4.40
5.32
6.76
7.46
9.80

11.42
11.93
27.8
47.3
47.7
69.0
75.6
90.2

103.2
122.3

2.384
2.381
2.375
2.374
2.372
2.370
2.358
2.351
2.344
2.334
2.330
2.310
2.297
2.294
2.170
2.001
1.994
1.745
1.464
1.237

1.35
2.08
2.73
2.74
2.92
3.45
4.98
5.96
6.44
7.95
8.67

10.92
12.76
13.52
29.0
48.9
49.4
77.1

104.4
123.9

1.219
1.230
1.648
1.862
2.023
2.300
2.624
2.875
3.110
3.237
3.281
3.321
3.379

T'K

1.268
1.913
2.456
2.888
3.292
3.580
3.862
3.986
4.014
4.064
4.067
4.098
4.128
4.148

238.5
237.7
207.7
188.5
173.7
144.4
107.3
75.0
43.7
26.1
19.80
13.(0
5.30

Hg-4
K oersteds

368.2
323.3
267.8
212.8
154.5
107.5
57.7
34.1
28.6
19.1
18.0
11.6
6.46
2.32

1.287
1.698
1.967
2.295
2.353
2.900
3.136
3.291
3.364
3.392
3.411

ToK

1.249
1.935
2.512
2.924
3.385
3.750
3.992
4.098
4.145

237.7
205.8
181.8
146.7
141.3
74.0
42.5
21.1
9.90
5.87
3.17

Hg-I'- j.
K oersteds

3713
326.8
260.6
208.8
137.8
78.0
31.9
10.85
1.84

Both of these effects are usually associated with strain,
i.e., the less the strain the lower are both T, and
(dH/dT) r, The same is. true for Hg-4 and Hg-F-1, the
former of which was enclosed in a glass capillary while
the latter was a free rod and possibly also a single
crystal. The transitions were appreciably sharper for
Hg-F-1 and the transition temperature slightly lower.
There was little difference in the initial slope.

It is quite possible that the thallium data may have
been influenced somewhat by strain. The tin was
probably strain free because of the fact that tin does
not usually adhere to clean glass.

The critical field curves are closely parabolic in the
lower range of temperatures, but aU except those for
mercury clearly deviate from the simple parabolic form
at higher temperatures. The mercury curve is however
closely parabolic over the entire range. The over-all
departures from the parabola, h=i —t2, are exhibited
in Figs. 4 to 7 where the differences between a parabola
drawn through Ho and T„and the observed data, are
plotted in normalized form. Ho is the critical field at
absolute zero, T, is the zero-field transition temperature,
and h and t are the reduced field and temperature H/Hp
and T/T„respectively. The differences, although small,
are quite observable. The significance of the solid and
dashed curves will be explained later.

The critical field curves all have this feature in
common. At low temperatures they are parabolic and

at temperatures near T=T, they are all linear. We
can therefore specify four observable parameters for
each curve, Hp, T„)dH/d(T')jr=p and (dH/dT)r„
without reference to the detailed intermediate form of
the curve. These quantities are tabulated in Table II,,
and were obtained by least squares adjustment of
straight lines to selected portions of the data, namely
H, (T') near T=O and H, (T) near T=T,. It turns out
that both slopes are related to interesting physical
quantities in the two-fl. uid description of a supercon-
ductor. If H, (T) is expressed as a polynomial in T,
then the slope [dH/d(T') jr p is the coeKcient of the
leading term. Other coeKcients may be evaluated frorv

T„(dH/dT)r, and intermediate points. Some fourth
degree polynomial representations found in thIs way
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I'io. 4. Plot of the deviation of the critical Geld data for tin
from the parabola 1—t'. The solid curves are the deviations
calculated for the n model. The broken curve is the deviation
calculated from Koppe's model. O Sn-112-1; ~ Sn-124-1.
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TABLE II. Observed threshold Geld curve parameters.

Sample

Sn 1).2-1

Sn 118-1

Sn 124-1

Tl-5
(nat. Tl)
Tl-205-2
(cV= 205.02)
Tl-203-1
(3f=203.33)

To
oK

3.8090
(0.0089)
3.7452

(0.0010)
3.6657

(0.0027)

2.3917
(0.0025)
2,3861

(0.0010)
2.3956

(0.0007)

Ho
oersteds

312.3
(0.63)

303.3
(1.52)

298.4
(0.54)

172.8
(1 4)

171.4
(1.1)

170.0
(1 1)

-('—.".),.
oersted s/'K

144.3
(1.3)

139.8
(0.49)

141.0
(1.54)

125.8
(5.6)

129.2
(2.0)

130.5
(1.7)

dH
d(T~) T 0

oersteds/ K~

23.42
(0.66)
22.92
(0.13)
23.98
(0.18)

31.85
(0.71)
31.62
(0.50)
30.40
(0.33)

42 mmX0. 33 mm
99.58% pure
57 mmX0. 39 mm
99.19% pure
23 mmX0. 31 mm
99.91% pure

64 mmX0. 5 mm
specpure thallium
37 mmX0. 35 mm
99.73'P0 pure
52 mmX0. 51 mm
99.74% pure

Remarks

Cast and used in Pyrex capillaries;
probably single crystals

Cast and used in Pyrex capillaries;
presumably single crystals

In-1
(nat. In)
In-2
(nat In).
Hg-4

Hg-r-1

3.4314
(0.0010)
3.4178

(0.0019)
4.1596

(0.0011)
4.1538

(0.0008)

278.9
(0.78)

275.0
(0.46)

404.5
(2.7)

410.7
(4.0)

149.6
(1 8)

142.2
(1.5)

196.2
(2.1)

196.9
(1.6)

25.16
(0.21)
24.68
(0.14)
22.81
(0.49)
23.56
(0.70)

52 mmX1 mm; single crystal cast in Pyrex capillary and kept
in glass envelope; specpure indium.
45 mmX1 mm; single crystal cast in Pyrex capillary and glass
etched oA' in HF; specpure indium.
62 mmX1 mm; 99.999 Hg in Pyrex capillary.

50 mm)&2. 5 mm; 99.999 Hg free rod (presumably single
crystal).

(Figures in parentheses are the standard deviations of the numbers above them. )

are as follows:

Sn h = 1—1.078t' —0.103ts+0.181t4,

In h = 1—1.051t'—0.123t'+0.1745t4,

T} h= 1—1.053t' —0.152t'+0.206t',

Hg k=1—t'

From the observable parameters we can also calculate
values for y, the molar specific heat coefFicient associated
with tke electrons in the normal state. These values,
calculated from Eq. (3) below, are as follows:

Sn y=4.45X10 ' cal/deg' mole,

Hg y=5.3 X10 cal/deg' mole,

In y=4.0 X10~ cal/deg' mole,

Tl y= 3.65X10 4 cal/deg' mole.

ISOTOPE SHIFT IN THALLIUM

In the course of these experiments the isotope shift
between the two thallium samples, of mass 205.01 and
203.33, was observed. The value of the exponent e in
the relation M'Ho=const was calculated using the
approximation e= (hH/Hr)r=p/(AM/Ms), where hH
and DN are the differences in critical field and mass for
the two samples. (AH)r —p was obtained by extrapo-
lation of the critical field differences to T=O. It was
found that &=0.49 with a standard deviation of & j.0
percent arising from the uncertainties of extrapolation.
Thus while the precision is not high the value of the
exponent is consistent with the half-power relation
previously observed in tin' and mercury. 4

4 Reynolds, Serin, and Xesbitt, Phys. Rev. 84, 691 (1951).

DISCUSSION

Before discussing the relation of these results to the
two-fluid model we shall brieQy summarize some of the
features of this model from the standpoint of the
treatment referred to earlier. ' From this point of view
superconductivity is associated with changes in the
energies of the electrons near the surface of Fermi
distribution, which may be described by saying that a
fraction of the electrons enter a condensed state, losing
their thermal excitation and entropy. The degree of
condensation is described by a parameter co which by
definition takes on values between 0 and 1 as the
transition temperature goes from T, to 0. The excited
and condensed fractions are treated like two phases in
thermal equilibrium. The distribution between the two
phases varies so that first, at T= T„allelectrons are in
the excited phase and then gradually condense as the
temperature is lowered, until at T=O all are in the
condensed state. Excluding lattice terms the free energy
of the superconducting state is

F,= —Prp ——,'yT'E (a&),

where the first term is the condensation energy and the
second is the thermal excitation term. P is given by
Hp'V /8s. , in which V is the molar volume. E(a&), a
function of co, is the effective normal fraction, and takes
on values from 1 to 0 as T goes from T, to 0. Minimizing
Ii, with respect to co yields the equilibrium condition

K'(cp,)=IC'(0) (T,/T)',

in which co, is the equilibrium value of co and also a
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generalized form of the Kok relation

Ho'V,
„

E'(a).)=-
T,24m E'(0)

(3)

distribution and consequently goes back a little further
than the 0. model.

In the n model E(&o) is given by

E(~)= (1—~),
Some explicit forms for the critical 6eld curve and some
related derivatives may be readily obtained. These are

h'= (0,+i'[1—E(a),)j/E'(0),
ch/eh=&/i ~,/hi,

(4)

-c(h')
E((0,)= 1—jp(0) = 1—E'(0) 2h, (6)

.c(p) c(&')

in which h and t are the normalized critical 6eld and
transition temperature, H/Ho and T/T, . It follows
from these that

where n is a parameter of the superconductor. When
0.=-', the critical 6eld curve reduces to the well-known
parabolic case, and both the electronic entropy and
specific heat follow a T' law. Most previous treatments
and applications of the 0. model have assumed that
e=-,'. However by taking n as a general parameter we

get an extra degree of freedom which is useful in
describing the departures from parabolic form which
are actually observed. A more detailed discussion of the
0, model has been given in the paper referred to earlier. '
We need only remark here that for the cx model Eqs.
(4), (7), and (8) become

)c(h')~-' -
p ch y-'

E'(0)=
i i

= i21 [, P)(c(t2) ) , 0 ( c(t') 2 ( 0

f'ck) (cru. )
(chi, , ( ch i, ,

t~

I~=1—+] —1 )i «~--&
ln

E'(0) = n, —

(Cor,/Ct) (,———2 (1—tt) .

(10)

(11)

(12)

It will be apparent that h(i) is determined once &u, (i)
and E(a,) are known. Conversely if the detailed form
of h(t) is known, both &o.(t) and E(cu,) may 'be deter-
mined. Moreover the quantities E'(0) and (C~./Ck) ~=&

may be evaluated if IIO, T„and the slopes
[CH/C(T')$r=o and (CH/CT) r, are known.

We shall compare the observed form of h(t) and the
quantities E'(0) and (des,/Ct) & t with those calculated
on the basis of two special forms of the two-fluid model,
the 0. model of Gorter and Casimir, ' and the Koppe'
model.

The n model is a purely ad ho@ description, and while
the Koppe model is based on ideas proceeding from
Heisenberg's theory of superconductivity, it too may
be considered on an ad hoc basis. However it makes a
de6nite assumption about the statistics of the Ielectron

Koppe's model postulates a de6nite form for E(~)
based on the assumption that the density of electron
states has a discontinuity at the Fermi level. Koppe's
expression for E(&o) cannot be given in closed form but
has been evaluated numerically' and is a function of
only reduced variables. Consequently the same E(cu,)
and h(t) apply to all superconductors according to
Koppe. This model gives a critical field curve which is
not quite parabolic but which has the same curvature
as the parabola at i=0, namely [Ch/C(t') j~,———1.

Both the n model and the Koppe model are compared
with the data in the difference plots Figs. 4 to 7. The
solid curves are the difference between a parabola
passing through Ho and T', and the n-model curves for
various values of o;. The broken-line curve is that
predicted by the Koppe model.
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FEG. 5. Plot of the deviation of the critical field data for thallium
from the parabola 1—P. The solid curves are the deviations
according to the a model and the broken line that according to
the Koppe model. The open points represent data normalized
with a value of Hp obtained by passing a parabola through the
points near 1=0. The solid points represent data normalized
with a value of Hp found by passing a cubic through all the points.
o, ~ Tl-203-1; V, Tl-5; z, Tl-205-2.

5 C. T. Gorter and H. B. G. Casimir, Physik. Z. 35, 963 (1934).
6 H. Koppe, Ann. Physik 1, 405 (1947).
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FIG. 6. Plot of the deviation of the critical field data for indium
from the parabola 1—P. The solid curves are the deviations
according to the a model and the broken line that according to
the Koppe model. The open points represent data normalized
with a value of Hp obtained by passing a parabola through the
points near 5=0. The solid points represent data normalized
with a value of H p found by passing a cubic through all the points.
h, , ~ In-1; o, ~ In-2.

7 See references 1 and 5, also B. B. Goodman, Cambridge
thesis (unpubhshed).
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relations:
E'(0) = {2Ldh/d(t')]& s} '= —n (13)

(dh/dt) g r =———(2/1 —n) &. (14)„.02
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FIG. 7, Plot of the deviation of the critical 6eld data for mercury
from the parabola 1—t2. ~ Hg-4, o Hg-F-1.

TasLK III. Derived quantities pertinent to n and Koppe models.

Sample —X'(0)
1 -2X —K'(0)

L(dh/dt)g 17 ~ f(dh/dt)g 17»(f(dh/dk)g 172

Sn-112-1
Sn-118-1
Sn-124-1
Tl-5
Tl-205-2
Tl-203-1
In-1
In-2
Hg-4
Hg-F-1

0.46
0.47
0.46
0.47
0.48
0.49
0.47
0.48
0.50
0.50

0.35
0.33
0.33
0.34
0.38
0.41
0.41
0.36
0.50
0.50

3.1
3.0
3.0
3.0
3.2
3.4
3.4
3.1
4.0
4.0

1.42
1.41
1.39
1.44
1.54
1.65
1.60
1.49
2.0
2.0

The Koppe model appears to be a satisfactory
representation for the indium data and a fair represen-
tation for the thallium, for which the precision is
somewhat poorer. However it is not consistent with the
mercury data, which is closely parabolic, or with the
tin data which has somewhat greater curvature.

The n model, with its extra parameter, is somewhat
more Qexible than the Koppe model, but it too is
inconsistent with soyne features of the data. It should
be noted that the experimental data in the plots of
Figs. 4—7 de6ne curves whose curvature is sensitive to
small changes in the value of Hp used for normalization.
The data represented by the open points were normal-
ized using a value of Hp found by passing a parabola
through the data in the region of T=O. The solid
points were obtained using a value of Hp found by
passing a cubic through all of the points. The 6rst
technique is probably better and the parameters of
Tables II and III were determined by this method.
The tin plots of Fig. 4 were also normalized in this way.
The mercury data were normalized by passing a pa-
rabola through all the points. There was no signi6cant
difference between this parabola and, that 6tted locally
to the points near T=O.

We can apply some internal consistency checks to
see how well the 0, and Koppe models succeed in
describing the data. In the n-model description a is
related to the slopes at /=0 and t= 1 by the following

If the n model is a good representation the n determined
by (13) and (14) should be the same as that giving the
best 6t in Figs. 4—7. In Table III we have tabulated the
quantities —E'(0) and 1 2[—(dh/dt) ~ i] ' for each of
the specimens. For the mercury data, which is parabolic
and which would check in any case, there is of course
agreement. For the other three metals however —E'(0)
runs from 0.46 to 0.49 whereas the n computed from
(dh/dt) & i is considerably lower, of the order of 0.3—0.4.
In fact if one now examines the deviation plots of
Fig. 4 there is a trend in the data in the direction of
increasing n, as P goes from 1 to 0. Stated in another
way, for P(0.4 the data is closely linear in P whereas
the o.-model curves exhibit greater curvature. It appears
therefore that the e model, with constant n, represents
the data in an approximate fashion but is not an
accurate description.

It is noteworthy that Koppe's model predicts a
critical held curve which has the same curvature as the
simple parabola at t=0. In Koppe's model E(a&,)
decreases exponentially as t—&0. In this region the
critical field curve is an insensitive tool with which to
explore E(co.). Measurements of specific heat and
thermal conductivity below 1'K would be revealing
and some recent determinations' of the latter have
indeed indicated exponential behavior. Goodman' has
suggested that this behavior is essentially a character-
istic of a system with a finite gap between the ground
state and the lowest excited state.

In the treatment of the general two-Quid model' the
speci6c heat discontinuity is given by

(C, C„)/yT,= —E'(0)—L(dh/dt) )=i]'. (15)

This quantity is tabulated for all of the specimens in
Table III. Koppe has predicted that this quantity is
numerically equal to w'/(12 ln'2) = 1.7118 for all super-
conductors, which is apparently not borne out.

In conclusion it appears that neither the n model nor
the Koppe model gives a completely adequate de-
scription of a superconductor. The Koppe model is not
quite Qexible enough and its prediction of a unique
reduced critical field curve for all superconductors is
not veri6ed. In particular it is inconsistent with the
parabolic form observed with mercury. The n model
has enough Qexibility to give an approximate character-
ization of critical 6eld curves, but it appears that the
model with constant o. is an oversimpli6ed description.

The authors are indebted to Dr. H. P. R. Frederikse
for valuable comynent and discussion.

s B. B. Goodman, Proc. Phys. Soc. (London) A66, 217 (1953);
J. G. Daunt, Proc. Schenectady Cryogenics Conference, 1952
(unpublished).


