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Nuclear Scattering of High-Energy Electrons*
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The Born approximation is used to calculate matrix elements for the elastic and inelastic scattering of
high-energy electrons by nuclei. Curves and simple numerical relations are given to describe the manner in
which scattered amplitudes depend upon nuclear characteristics.

INTRODUCTION

HE highly energetic beams of electrons now avail-
able from accelerators offer promise in the exam-

ination of nuclear structure. Indeed, Hofstadter,
Fechter, and McIntyre' have investigated the scattering
of electrons of about 100 Mev by various nuclei and
have obtained not only a very accurate value for the
nuclear radius but also more detailed information about
the charge distribution in the nucleus, especially near
its surface. This is to be expected since A of these elec-
trons is about 2&10 ", just about the right order
for the exploration of nuclear structure.

For an adequate analysis of these experiments, ex-
tensive numerical calculations including exact solu-
tion of the Dirac equation are necessary. Such calcu-
lations have been made by Vennie, Ravenhall, and
Wilson' with very interesting results. However, these
calculations require much time and expensive high-
speed computing machines, and it will be dificult to
explore in this manner the inRuence on the scattering
of all parameters in the charge distribution.

It was therefore felt that a thorough investigation
by means of the Born approximation would still have
value. We fully realize that the results of this paper
can be expected to be directly valid only for very light
nuclei. There is some hope however that for heavy
nuclei the Born approximation might give at least a
Part of the scattered amplitude: Barangers has shown
that to a certain approximation, the scattered amplitude
may be represented as the Born approximation ampli-
tude plus a correction depending primarily on Ze'/hc.
Some aspects of the Born approximation have been
discussed by Schiff4 after this thesis was written but
before its publication.

It is shown that analysis of the cross section for
elastic scattering can provide information on nuclear
radii and charge distribution. The latter is described
herein by two parameters, one directly related to

*Based on Ph.D. thesis submitted to Cornell University&
February, 1951.

t Operated by the General Electric Company for the U. S.
Atomic Energy Commission.' Hofstadter, Fechter, and McIntyre, Phys. Rev. 91, 422,
(1953);92, 978 (1953).' Yennie, Wilson, and Ravenhall, Phys. Rev. 92, 1325 (1953);
Phys. Rev. (to be published).

s E. U. Baranger, Cornell University thesis (1954). Part of her
results were published in Phys. Rev. 93, 1127 (1954).

4 L. L Schitt, Phys. Rev. 92, 988 (1953).
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possible changes in proton population from nuclear
center to "edge, " and the second related to the sharp-
ness of definition of a nuclear boundary.

The differential cross section for inelastic scattering
summed over nuclear energy levels, is found to depend
on the relative location of pairs of particles. Information
on possible regularities in the internal "construction"
of nuclei might be obtained from this quantity. Models
chosen for the calculation of the inelastic effects include
several kinds of crystal lattice patterns for proton pair
distributions and a box in which nucleons are correlated
due only to the action of the Pauli principle.

ELASTIC SCATTERING

In the Born approximation, the differential cross
section for the elastic scattering of an unpolarized beam
of electrons of energy 8 and charge e by a nucleus of
charge Ze into the solid angle dQ(= sin8dgdg) is

( e' cos-', 0 q
'

&2E sin'-', 8)

f Z 2

X ' @o @op exp(stl R;)dRt ~ dRg dQ, (1)
j=l

where
~ q ~

= (2E/kc) sin-,'i7, R; is the jth spatial coordi-
nate in the nuclear system, and C 0 is the ground state
wave function for the target nucleus. The electron-
nucleus interaction has been taken to be Coulomb in
form:

g2

V=—
)

where r, is the electronic coordinate.
The first factor in da describes the Rutherford scatter-

ing by a single proton; its value is 10 "cm' per unit
solid angle for E=100Mev and 0=90'. The second
factor gives interference effects amongst wavelets
scattered by various protons. +ere the probability
distribution known for the nucleus, it would be possible
to predict exactly the angular distribution of scattered
particles. In lieu of this, there are hypothesized spatial
nucleon configurations from which are calculated the
corresponding scattered amplitudes.

~Cs~' in the integral for do. contains all proton con-
figuration coordinates symmetrically, so that the square
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FIG. 1. Nuclear form factor for elastic scattering:
models 1, 2, and 5,

of the matrix element is

where

Z'
~

Po*goexp(iq r)dr

ttto I|IO=
J

C'O C'Og dR~'I
j=l

the erst power of which may quite naturally be referred
to as a "nuclear form-factor" F.

Possible variation in charge density in the nucleus is
allowed through use of the model described by

(1+f) expL —(r a)/du3, —

where the normalization constant is

r&a,
(5)

&=4~~'t's( +If)+ (&+f)(&+ ~+ d'))

Of the parameters in
~ 4 0

~

', f and d obviously determine
the shape of the proton density, - - the average internal

i.e., ~ttlo~ dr is the probability that there is one proton
in dr, with the positions of all other protons arbitrary.
It is convenient to compare the scattering by an ex-
tended nucleus with Z protons to that by a point charge
of strength Ze. The relevant ratio is just

t2

yo*yp exp(iq r)dr

FlG. 3. Nuclear form factor for elastic scattering:
models 1 and 3.

charge behavior, and the sharpness of a boundary. Even
though adoption of a picture with spherical symmetry
renders impossible any analysis of quadrupole moments,
there nevertheless is ample opportunity for study of
the two features mentioned.

The nuclear form factor, F, is examined against the
dimensionless quantity I2r —=qg(r'). qf is taken as
more appropriate than qa since the latter places undue
emphasis on a single aspect of the models used for the
density.

The variations employed in "internal" and "external"
charge distributions are given in Table I. The numbers
in the left-hand column are model numbers to which
reference will be made in later discussions, and f
and d have already been mentioned. Two models
calculated, 6 and 9, are written explicitly since no
choice for f and d describes them.

For nearly all models employed, a characteristic
diRraction pattern is found in the scattered beam,
maxima and minima occurring in the product of the
Rutherford scattering and the square of the form factor.
YVith model 9, the exponential density which lies
closest to the shape adopted by Stanford workers, "4
the calculated form factor displays no diGraction eGects.
F is plotted versus qr for a representative selection of
these models in Figs. 1, 2, 3, and 4. Careful numerical
analysis of F' versus qr shows that d, r, and f acct the
scattering in ways which are independent of one another
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FlG. 2. Nuclear form factor for elastic scattering:
models 2 and 4.

Fn. 4. Nuclear form factor for elastic scattering:
models 6, 7, 8, and 9.
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TABLE I. Nuclear density models and their
characteristic parameters.

Model number

1
2
3
4
5

7
8
9

10
11
12

0.0
0.4
0.0
0.4
1.0

I ~.l'= b( —)/&-"
0.0
0.0

Idol'= (b'/8n) exp( —br)
0.4
1.0
1.0

0.0
0.0
0.1
0.1
0.0

0.2
0.5

0.2
0.1
0.2

form factor in Fig. 4 for model 6, a simple shell of
charge. ) Empirical formulae which have been found to
fit the characteristics of Ii' at extrema as just discussed
are:

F'(first maximum)/F'(second maximum)
=5.86+ (18.6d)'4' (6)

or coupled in a calculable way. These features of the
scattering will now be discussed.

First, the ratio of the two values of Ii' taken at its
first and second maxima depends significantly on d,
but hardly at all on f. This is illustrated in Table II.
The constraint that dF/d(qr) =0 serves to express F'
at maxima as a function of d and f alone, so the varia-
tion of the above ratio with qr need not be considered.
It is clear that a fuzzy boundary tends to decrease the
second maximum relative to the first.

Secondly, the values of qr at which the first maximum
in P' occurs may be found once an assignment of d is
made. As mentioned, the condition dF'/d(qr) =0 ex-
presses qr (first maximum) as a function of f and d.
However, it is seen from Table III that the variation
of qr (first maximum) with f is of no importance.

Finally, there is the evaluation of the internal param-
eter f For t.his, one can refer to the absolute value of
F' at 6rst maximum. A large value of f, implying a
sharp peak in charge density near the nuclear surface,
has the effect of increasing the form factor. (See the

TABLE II. Ratios of maxima in F' and characteristics
of corresponding nuclear density.

F~(first maximum)
F~ (second maximum)

5.86
5.90
6.06

8.28
8.41

12.3
12.9

0.1
O. i

0.2
0.2

0.
0.4
1.0

0
0.4

0
0.4

be obtained from experiment, it is necessary to measure
do./dQ as a function of angle of scattering, and calculate

(do/dQ). „,(2e'EZ cos-,'())—'(hcq)'= (F'), p. (9)

If the ratio of Ii' at its first two maxima were known
to 10 percent, d could be fixed to within %0.025. Since
d is a rather fine detail of nuclear structure, this
accuracy appears satisfactory. Even for a heavy nucleus,
do/dQ for elastic scattering is only about 10 "cm'.
Thus, there is the problem of a measurement only
barely within current accurate experiments —coupled
with the possibility that inelastic eGects and back-
ground may mask the elastically scattered beam.

Should d be found to be 0.1 to about 10 percent, qr
would be calculable from (7) to 0.5 percent. But since
r is known only in terms of qf= (2E/hc) sini28j, it is
likely that the experimental determination of the
scattering angle at the peak of a rather broad maximum
will limit the accuracy of r.

For intermediate values of both f and d, a value of F'
accurate to 10 percent would fix f to about ~0.1.

Although the situation suggested by the preceding
discussion is an agreeable one, it cannot be inferred that
the measurements mentioned would necessarily estab-
lish numbers for the parameters. Other features of the
elastic scattering, such as absolute values of maxima
beyond the first, location of minima, etc., should be
given accurately. Indeed, it may be impossible to
satisfy all requirements with a three-parameter density
function. Possible reasons for such failure would be
lack of spherical symmetry in the charge distribution, an

qr (Grst maximum) =4.48+ (3 9d)2 6

f 1+)(1+8)'+0.561f}&
F'(first maximum) =F00'

1+(6.65d)' "

(7)

(8)

TABLE III. qr at first maximum in F' for various
values off and d.

q1 ('first maximum)

where
F002= (0.0862)'

4.46
4.46
4.50

0
0.4
1

Equations (6), (7), and (8) fit a large set of detailed
calculational results to less than 2 percent in most cases.
It may be of interest to give examples of the theoretical
accuracy with which they indicate d, F, and f can be
measured, and to point out experimental difficulties
which would be met. Of course, for any information to

4.58
4.57
4.56

5.05
5.01
4.98

0
0.4

0
0.4
1

0.1
0.1
0.1

0.2
0.2
0.2
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independent of the final energy of the electron. More-
over, for the purpose of actual summation of (11),both
Ep and cos'~0 may be regarded as constant.

The sum rule applied to (10) gives then for the total
inelastic scattering into dQ:

internal structure of the nucleons which would modify
the Coulomb interaction at very small distances,
signi6cantly large magnetic eGects, and of course,
breakdown of the Born approximation.

INELASTIC SCATTERING
2 1

The cross section for inelastic scattering in which
the nucleus is left in an excited state characterized by ~ 4, 2E sin2&g)
C and the electron has a final energy Ep, is given by

da 4 pe' ) 'Ee cos'-', 8

dqs vr EAcl E qs'
where

~
Cs~CsldR dQ, (13)

2 2

, C *Csg exp(iqs R;)dRt dRz, (10)

f'=P exp(iq R,). (14)

where
(kcqs)'= E'+Ee' 2EEe c—os-', 0.

It is possible to measure transitions to a de6nite
excited state a of the nucleus by measuring the energy
of the scattered electron. However, we shall find that
more information on nuclear structure is revealed if
we sum over all possible final states n. Theoretically,
this is most easily done by keeping qp fixed; experi-
mentally, of course, it would be easiest to measure at
constant angle 0.

The two types of summation are not identical as can
be seen from (11); however, if E is several hundred
Mev, the di6erence is not large. The transition prob-
abilities (10), for given qs, are closely related to those
for the photoelectric eBect; therefore, experimentally'
the most important excitation energies will be of the
order of 15—30 Mev. It can easily be shown from (11)
that under these conditions, and with qp held fixed,
0 will not vary much with excitation energy within the
range for which the cross section (10) is large. There-
fore, although the sum is performed for q 6xed, this is
closely equivalent to keeping 8 constant. Indeed, when
the important energy changes in the scattering are small
compared to the energy of the incident electron, g and
8 are related by

i *i =Z+P' exp[iq. (R&—R,)].

~Cs' integrated over all coordinates save one (or two)
can be expected to have the same form regardless of
which coordinate (or pair of coordinates) remains, so
for the purpose of integration, one may write

f'=Z exp(iq Rt),
and

Pt =Z+Z(Z —1) cos[q (Rt—Rs)].

In combination with t'*f, ~Cs~' is integrated over all
coordinates save two to give a "two-particle density"
which characterizes the correlation in location of
pairs of protons: this density is hereafter called
II(Rt,Rs). Combined with f, ~Cs~' is integrated over
all but one coordinate and, thus, gives the "single
particle density, " p(Rt), such as was used in the dis-
cussion of elastic scattering. Corresponding to the form
factor Ii, there now exists a factor,

( q( = (2E/he) sin-,'8, (12) ~F~'= ~ (1+(Z-1)cosq. (R,-R,))

The second term in the curly bracket in (13) gives the
(11) elastic scattering, while the first term is the total

scattering. From (14),

-7-(= ~

2

XII(R„R,)dR,dR, — "p(R,) exp(iq R,)dR, , (15)

ae-

tL4-'=

;i-
9

4

~ ~

/
da3

10 12

QD

I ~

I ~
I I

n ~ .
Ml I I~l I f I

I
I ~ I I I I I I I I ~ 1 I I I ~ which describes the e8ect of nucleon spatial distribution

on the inelastic scattering.

CRYSTAL MODELS

As the first model for illustration of possible effects of
nuclear structure on inelastic scattering, consider the
following normalized two-particle density,

FiG. 5. Square of nuclear form factor for inelastic scattering
(simple cubic structure model).

5 K. Straucb, Ann. Rev. Nuclear Sci. 2, 105 (1953}.

11(R„R,) = [(Z—1)V,b'~']-t

X Q exp[ —(Rts —un)'/b']. (16)
n&0
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FIG. 6. Square of nuclear form factor for inelastic scattering
(face-centered cubic structure model}.

This is based on the assumption that the particles are
arranged as in a regular crystal lattice, smeared out to
some extent in a manner similar to thermal motion.
In (16), Vi= total nuclear volume; extends over (Z—1)
occupation points; Ris= Ri—Rs, n= a numerical vector
locating occupation points in a lattice, e.g., in a simple
cubic structure, n is a triplet of integers; a=edge of
basic cubic cell in lattice, and 6=parameter determining
certainty with which a proton can be found at or near
an occupation point.

Apart from the assumption of a crystalline structure,
this model may also be seriously in error due to the
fact that it effectively fails to recognize the edge effects
which arise for a finite nucleus. The parameter 5 is taken
as proportional to a:

b=alnl/cr. (17)

Introduction of n in (17) means that the sharpness of
correlation between nucleons decreases as their distance

l
n

l
increases, thus making the assumed structure more

similar to a liquid than to a solid. The additional param-
eter n permits adjustment of this sharpness inde-
pendent of lnl =(s.

The scattered intensity in this case is found quite
readily to vary as

give the sharpest interference patterns. While separate
peaks in l5'l' for the simple cubic structure can be
identified as constructive interference in scattering
from specific pairs of lattice points, the same is not true
for the face-centered lattice model. For this latter
case, none of the "resolution factors" 0. was suKciently
large to prevent the smearing of adjacent peaks into
each other.

Since the Born approximation is really not valid for
such a heavy nucleus as Pb, it is not appropriate to
discuss any quantitative details of K The curves given
are of value in demonstrating the kind of inelastic
scattering which might be expected and in providing
a form factor which can perhaps be corrected to give
accurate results.

where

sinvx (sinx —x cosxy '
I ~
I'=1-0 —

I l d, (2o)
vx E x' i

f (slilx —x cosx)

i
X= 2~Kris/II

v= ql./2m S,
X=Z'/2,

X= 2s XRts/I,

where R&2 is the upper limit for inter-particle distances
in the nucleus. In Figs. 7 and 8, l

Pl' is plotted wersls

qrp, where rp is the radius of a spherical volume con-

"FERMI PARTICLE" MODEL

The last model to be considered is one in which the
Z protons are constrained to be within a cubic box of
edge I and to be correlated only through the Pauli
exclusion principle. For such a model, it can be shown
that the square of the inelastic form factor is

where

sin mqu

cpa
exp—

sinqRp —gRp cosgRp '
—9Z (18)

LO

O.O-

0.6-
?-7

Zs ——g(3Z/4m P)', (19)

and p is the average number of protons assigned to each
unit cell in the lattice.

lPl' for Pb is plotted versus ga in Figs. 5 and 6.
Figure 5 presents the data for a simple cubic lattice
structure, while Fig. 6 corresponds to the assumption
of a face-centered cubic structure. The curves are not
given for small qa, since it is in this range that the calcu-
lation is least realistic in regard to edge effects. As is to
be expected, large values of the parameter o, consistently
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FIG. 7. Square of nuclear form factor for inelastic scat tering
(Fermi particle model).

6 J. H. Smith, Ph.D. thesis, Cornell University, 1951 (un-
published).
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Fio. 8. Square of nuclear form factor for inelastic scattering
(Fermi particle model).

COMPARISON OF ELASTIC AND INELASTIC
SCATTERING

In the limit of large q, the inelastic scattering is Z
times the scattering from a single proton, as if the

taining one nucleon. Thus,

L,3= -',4' rp'.

For comparison with the crystalline model results, it
may be said that a for the simple cubic structure is
only slightly greater than 2rp.

The principal dependence of
~

P~' is on qro. In addi-
tion, there is a somewhat less important dependence
on 8~2/ro One

p. ossible choice is Rz2 ——A&ro, and indeed,
4zrR&23/3 describes the nuclear volume correctly. The
choice E»=22&rp probably would overestimate the
nuclear size. More generally, one can use E~2=grp, in
which case a given value of g would mean that some
nucleus with A between g and g'/8 was described. The
values g=3, 6, and 12 were calculated, corresponding
to either Pb with g=6 or 12, or to Al with g=3 or 6.
The cases X—+~ for an infinite nucleus and g=20 to
bridge the gap to finite dimensions are also included.

protons scattered independently. For small g, the elastic
scattering is Z' times that of a proton. Both of these
results are well known. It is also clear that at large q
the inelastic scattering is much larger than the elastic.

Apart from the possibility of separating elastic and
inelastic scattering by measuring the energy of the
scattered electron, the interference phenomena for the
two types of scattering can also be distinguished by
the angles at which they occur. The interferences in
elastic scattering are determined by qE, where 8 is the
radius of the nucleus, because the entire nucleus
participates in the phenomenon. The inelastic scatter-
ing, on the other hand, depends primarily on the corre-
lation of neighboring protons, and hence on harp. The in-

terference phenomena in elastic scattering, therefore,
occur at smaller angles (smaller q) than those for in-

elastic. Taking Pb as an example —in spite of the
inapplicability of the Born approximation —we have
E.=6rp. Hence, the first maximum of elastic scattering
occurs at grp =0.75. At this value of q, the Fermi model

gives an inelastic scattering of less than 40 percent
of the asymptotic value, and only at much higher harp

is the asymptotic value approached. For the crystal
model, even higher harp are significant: the first maxi-
mum occurs at grp&3. There will thus be no confusion
between elastic and inelastic maxima.

In conclusion, we should like to repeat our warning
that the results of this paper must not be used for
heavy nuclei because the Born approximation is not
valid for these
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