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A natural time-dependent generalization is given for the well-known pair distribution function g(r) of
systems of interacting particles. The pair distribution in space and time thus defined, denoted by G(r, t),
gives rise to a very simple and entirely general expression for the angular and energy distribution of Born
approximation scattering by the system. This expression is the natural extension of the familiar Zernike-
Prins formula to scattering in which the energy transfers are not negligible compared to the energy of the
scattered particle. It is therefore of particular interest for scattering of slow neutrons by general systems of
interacting particles: G is then the proper function in terms of which to analyze the scattering data.

After defining the G function and expressing the Born approximation scattering formula in terms of it,
the paper studies its general properties and indicates its role for neutron scattering. The qualitative behavior
of G for liquids and dense gases is then described and the long-range part exhibited by the function near the
critical point is calculated. The explicit expression of G for crystals and for ideal quantum gases is brieRy
derived and discussed.

I. INTRODUCTION

" 'N two special cases, the 6rst Born approximation for
~ - the scattering of x-rays or particles by a system S
of interacting particles is known to express the differ-
ential cross section in terms of simple density distribu-
tion functions for the particles of S.

(i) If S is in a pure quantum state and if this state
does not change in the scattering process, the latter is
elastic and the differential cross section is expressible in
terms of the density distribution p(r) for one particle
of the system (supposed for simplicity to be composed of
identical particles). This applies for example to the
elastic scattering of x-rays or electrons by the electrons
of an atom''

(ii) If the energy transfers occurring in the scattering
process are negligible compared to the energy of the
scattered photon or particle, the momentum transfer is
essentially unique for each scattering angle and the dif-
ferential cross section per unit angle is expressible in
terms of the pair distribution function g(r) of 8, which

describes the average density distribution as seen from

a particle of the system. This is the so-called static ap-
proximation which applies, for example, to the sum of
elastic and inelastic scatteririg of x-rays and electrons

by the electrons of an atom, '4 as well as to that part of
the scattering of x-rays by solids, liquids, and gases
which leaves the atomic quantum states unchanged. ' '

The purpose of the present paper is to show that in

Born approximation the scattering cross section is

always expressible in terms of a suitably generalized

pair distribution function G(r, t) depending on a space
vector r and a time interval t, and to study this function

' I. Wailer, Z. Physik 51, 213 (1928).
s N. F. Mott, Proc. Roy. Soc. (London) A127, 658 (1930).
e I. Wailer and D. R. Hartree, Proc. Roy. Soc. (London) A124,

119 (1929).' P. M. Morse, Physik. Z. 33, 443 (1932).'I. Wailer, dissertation, Uppsala, 1925 (unpublished).
6 F.Zernike and J.Prins, Z. Physik 41, 184 (1927);P. Debye and

H. Memke, Ergeb. Tech. Rontgenk. II (1931).

in some detail for a number of systems. For scattering
theory this would be of rather academic interest in

connection with x-ray scattering, for which the condi-
tions of case (ii) above are usually well fulfilled. The
same hoMs for electrons, for which, however, the Born
approximation is of much more limited applicability
than for x-rays, For slow neutrons, on the contrary,
(wavelength &1A) now used in a rapidly growing
variety of scattering experiments, ~ the energy transfers
are usually comparable to or larger than the incident

energy, whereas the first Born approximation holds

quite well provided the neutron-nucleus interaction is
described by means of the Fermi pseudopotential. The
need has thus arisen for an improvement of the static
approximation for scattering by general systems, and
correction terms valid at relatively high neutron ener-

gies have been calculated by Placzek and by Kick. ' We
present here a general solution to this problem, ap-
plicable at all neutron energies, by describing the Born
approximation scattering in terms of the time-de-

pendent pair-distribution function G.
Furthermore, the fact that 6 has often, even for

complicated systems, a number of qualitative properties
which are easy to visualize, makes it in many cases a
practical tool for the discussion of scattering experi-
ments. Its use for the analysis and interpretation of
experimental data has been illustrated elsewhere on
the case of slow neutron scattering by ferromagnetic
crystals. 9

The generalized pair-distribution function G(r, t), to
which neutron scattering gives direct experimental

access, turns out to be a very natural extension of the
conventional g(r) function. Independently of its use in

scattering theory, it is of genuine interest from the
general standpoint of statistical mechanics. Its physical

r See, e.g. , D. J. Hughes, Pde Neutrou Research (Addison-
Wesley Publishing Company Cambridge, 1953).

e G. Placzek, Phys. Rev. 86, 377 (1952); G. C. Wick, Phys. Rev.
94, 1228 (1954).' L. Van Hove, Phys. Rev. 93, 268 (1954).
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meaning is particularly simple in the absence of quan-
tum effects: G(r, t) is then, for the system under con-
sideration, the average density distribution at a time
1'+1 as seen from a point where a particle passed at
time t'. This definition has to be slightly modified for a
quantum system, in view of the noncommutativity of
the operators representing particle positions at diferent
times. In all cases G(r, l) describes the correlation between
the presence of a particle in position r'+ r at time t'+t
and the presence of a particle in position r' at time t',
averaged over r'. It essentially reduces to g(r) for 1=0

The concept of time-dependent correlations has
already been used in connection with neutron scattering
by crystals in unpublished work by Glauber. "

The choice of a proper definition of the pair dis-
tribution G(r, t) for general quantum-mechanical sys-
tems requires some care since it deals with correlations
between noncommuting quantities. We will be led to it
conveniently by starting from the Born scattering
formula and following a natural extension of the well-
known procedure to introduce the g(r) function in the
static approximation. This is done in the next section,
where a number of general properties of G(r, t) are also
derived.

The use of the pair distribution 6 to describe neutron
scattering data is indicated in Sec. III. This distribution
is the proper function in terms of which to analyze the
angular and energy distribution of neutrons scattered by
general systems of nuclei, in exactly the same way as the

g(r) function is the proper function with which to an-

alyze angular distributions in x-ray scattering. In full

analogy with the x-ray case, it is expected to be useful

mainly for systems too complicated to allow an explicit
calculation of either the scattering or the pair distribu-
tion. Liquids and dense gases are clearly the principal
examples of such systems.

The advantage of using pair distribution functions
for the analysis of scattering data is their simple and
intuitively clear physical meaning, which makes their
qualitative behavior rather easy to visualize. It is
therefore of importance to form as complete a picture
of this behavior as possible, and, in absence of su%.cient
experimental data, it is indicated to discuss systems for
which the pair distribution function can be entirely or
partly calculated. In the present paper we treat mainly
liquids and dense gases, for which the general shape of
6 is easy to guess and its long-range part near the
critical point can be calculated (Sec. IV). We also
consider more briefly crystals (Sec. V) and the ideal
quantum gases (Sec. VI).

With the experimental data available so far, the best
example of the usefulness of pair distributions in space
and time for the analysis of scattering data is provided
by the case of magnetic scattering of neutrons by ferro-

'" R. J. Glauber (private communication); Phys. Rev. 87, 189
(1952); Phys. Rev. 94, 751 (1954), and forthcoming paper.
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where res, kp, and k= kp —x are the mass and the initial
and Anal wave vectors of the scattered particle. The
operators r, represent the position vectors of the S
particles of the scattering system S, whose initial and
final quantum states are labeled by mp, e and have
energies Enp, E„, respectively. The bracket L jnp"
denotes a matrix element and pap is the statistical
weight of the initial state rsp (usually the Boltmann
factor divided by the sum of states). The function W(s)
is defined by

2

W(s) = exp(sx r) V(r)dr

If, besides the momentum transfer kx, we introduce
the energy transfer

hrp = k'(kps —k')/2m

Eq. (1) can be written

d20
=2 3(x,oi),

dQde
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a
"H. Palevsky and D. J. Hughes, Phys. Rev. 92, 202 (1953);

G. L. Squires (to be published). We are indebted to these authors
for communication of their results before publication.

magnetic crystals. "A short account of the analysis has
already been published. ' The full discussion will appear
as a separate paper.

II. THE PAIR DISTRIBUTION IN SPACE AND TIME

A. Definition

The correct definition of G(r, 1) for a general quantum-
mechanical system is best inferred from the Born ap-
proximation scattering formula. The nature of the
scattered particle and the details of the scattering law
are, of course, largely irrelevant for this purpose. We
will assume that the scattered particle is nonrelativistic
and interacts with the particles of the system S through
a potential V(r) depending on distance only. For sim-
plicity S is supposed to be composed of one single type
of particle. The differential scattering cross section per
unit solid angle and unit interval of outgoing energy &

of the scattered particle is given in the first Born
approximation by
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where, for given momentum and energy transfers,
S(sp,pp) is independent of the mass and energy of the
scattered particle as well as of the interaction potential,
whereas A depends only on the properties of the indi-
vidual particles of S. This separation of two factors in
the differential cross section is quite general; it is an
immediate consequence of the use of momentum and
energy transfers as independent variables.

It is now an easy matter to express in terms of a pair
distribution the function S(sp, (p) which, in the first Born
approximation, contains the scattering properties of the
system S. If it is remembered that in the static approxi-
mation [case (ii) of the introductionf the differential
cross section per unit solid angle,

the enclosed operator:

~ ~ 0 gp 0 ~ ~ gp
nO

With the help of the convolution formula for the
Fourier transform of an (ordered) product, we obtain
finally the expression

which defines G(r, t) entirely in terms of space and time
variables, with the proper ordering of the operators
belonging to diGerent times.

For t= 0, all operators commute and the integration
can be carried out, leading to

d(r
I

(P(r

dQ I} dQde

is essentially, as a function of x, the Fourier transform
over r of the g(r) function, it is natural to expect S(sp, pp)

to be essentially the Fourier transform over r and t of
the pair distribution in space and time G(r, t). We there-
fore define the latter through the equivalent equations: or

G(r,0)=N '(g 8(r+r (0)—r;(0))),

G(r,0)=5(r)+N ' p (()(r+ri —r;))=5(r)+g(r), (11)
S sp, pp = 2pr 'N exp i sp. r oA —G r, f drd3, 6 l&j

or

G(r, f) = (2pr)
—'N —' exp[i(o)f —

sp r)j S(x o))dspd(p. (7)

The coeflicient (2pr) 'N in (6) is introduced for con-
venience. It makes G(r, f) independent of N and asymp-
totically equal to the number density for the large
systems of statistical mechanics, in which the limit
N—}pe is to be taken. From Eqs. (4) and (7) one gets,
successively,

G(r, t)=(2pr) 'N 'Q Pnpg P t dip exp( —isp r)
-p - i, ;=iJ

[exp(—iv. ri)]„"'exp(iE„f/5)

[exp(isp. r;)]~p" exp( iE pt/I—i), (8)

N

G(r, f)=(2pr) —'N ' P (}tip exp( —isc r)
L, j=l ~

~ (exp{—sip ri(0)} expfisp r;(f)}).

The last formula contains the Heisenberg operator r, (f),
defined for all j and i by

r, (t) =exp(i'/h) r; exp( —itII/O),

where H is the Hamiltonian of the system. "The bracket
) stands for the average of the expectation value of

~ The introduction of a time variable to eliminate the 8 function
in Eq. (1) and the subsequent consideration of time-dependent
operators have become familiar in scattering theory. See, e.g. ,
A. Akhiezer and I. Pomeranchuk, J. Phys. (U.S.S.R.) 11, 167
(1947); G. C. Wick, reference 8.

according to the familiar definition of the conventional
pair distribution g(r). Similarly, in the scattering
formula, if the incident energy is sufficiently large corn-
pared to the energy transfers, the momentum transfer
for a given scattering angle is independent of the out-
going energy, and the differential cross section per unit
solid angle becomes

d2o.do
de= 5A J~S(sp&(p)(fM

dQ ~ dQde

=SANJ exp(isp r)b(f)G(r, f)drdt

= [sN/(2prI)ss) JsNW(z) 1+ exp(isp r)g(r)dr
j~

the familiar formula in the static approximation. Just as
measurement of d(r/dQ provides an experimental deter-
mination of g(r) in the latter approximation, the pair
distribution in space and time G(r, f) is experimentally
accessible through measurements of ds(r/dMe.

G(—r, t) = (G(r, t) }*, — (12)

B. General Properties

We will now discuss a few immediate properties of
the pair distribution in space and time. G(r, t), which is

in general complex, has the Hermitian symmetry,
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easily derived as follows: from (10),

(G(rr) )*=, r0 ' p ( dr'8(r' —r;(r))ll(r+ r, (0)—r'))

I dr"ll(r —r; (1)+r")d (r, (0)—r"))
i, ; J

=X—' P dr"t')(r r;(—0)+r")
l, j 6

Xd(r, (—1) —r"))
=G(—r, t). —

In the second step the integration variable is r"= r' —r;
the third step uses the invariance of the expectation
value under the unitary transformation exp(itji)'/h),
whereas the last is based on the even character of the
() function. Property equation (12) is equivalent with
the fact that S(i0,(d) is a real-valued function.

Complex values of G(r, t) reflect quantum properties
of the system. Indeed, under classical conditions, the
operators in (10) reduce to commuting c numbers and
G takes the real, positive value:

G(r, t) =1V—'(g S(r+ri(0) —r, (t))).

As announced in the introduction, it is seen to describe
the average density distribution at time t'+t as seen
from a point which was occupied by a particle at time
t'; this distribution is independent of t', here given the
value 0.

XVhen quantum effects are present, —they are for
any actual system in certain ranges of r and t values —,
6 is complex and the simple physical interpretation
given above cannot hold in view of the noncommu-
tativity of particle positions at diferent times. How
this noncommutativity enters into the expression of G
can best be seen by introducing suitable density
operators. Let us consider in space a volume element
AV centered at point r and define the Heisenberg
operator t()P(r, t) satisfying t( P(r, t)P=P for all states P
of the system for which, with probability one, at least
one particle is in hV at time t, and AP(r, t)()t =0 for all
states such that, with probability one, no particle is in
d V at time t. One has, in the limit of infinitesimal AV,

t( P(r, t)/t( V= P l)(r—r;(t)),

and thus, taking identical volume elements around each
point,

G(r, t) =X 'AV ' dr"(AP(r", 0) AP(r"+r, t)). (13)
l

simple formula:

G(r, t) =p 't(—, V '(—aP(r" 0) AP(r"+r, t)), (14)

where r" is an arbitrary point in V. From Eq. (13) or
(14) follows immediately that the real part of G is
related to the average value of the symmetrized product,

—,'{tI(P(r",0) AP(r"+r, t)+AP(r"+r, t).AP(r",0)),
and is therefore the natural extension to quantum
systems of the classical, real-valued, pair distribution
function in space and time, whereas the imaginary part
reduces essentially to the average value of the com-
mutator of tI(P(r",0) and AP(r"+r, t).
I)'1 In the case of systems for which the symmetric or
antisymmetric character of the wave function is of
little importance, and which can thus be regarded as
composed of distinguishable particles (Boltzmann
statistics), the G function splits naturally into a part G,
describing the correlation between positions of one and
the same particle at diferent times, and a part Gg
referring to pairs of distinct particles (the subscripts
stand for "self" and "distinct, " respectively). They are
defined as follows:

N

G, (r1t) =E 'p ~d—r' ()(r+r, (0) r')—

X 8(r' —r;(1))), (11)

N

Gd(r, t) =E ' P dr' ()(r+ri(0) —r')
g'ps' &

Xd(r' —r;(1))) (16)

They verify separately the symmetry condition (12)
and equations of type Eq. (13) with density operators
t(P;/t) V defined for individual particles. For t=0, they
reduce to

G.(r,0)=&(r), G.(r,0)=g(r). (1&)

For the systems of large numbers of particles studied
in statistical mechanics, solids, liquids, or gases, the
pair distribution G(r, t), in the definition LEqs. (9) and
(10)j of which the statistical weights pep must be given
the Boltmann value

p~0 ——Z ' exp( pE p), Z—=p exp( pE 0) —(18)
np

(P '= temperature T multiplied by Boltzmann constant
ki)), has especially simple asymptotic expressions for
large r or

~

t) . For such systems, the particles in regions
widely separated in space are statistically independent,
and so are the properties of the system at two widely
distant times. For sufficiently large r or large It~, we
can thus write asymptotically

For a system homogeneous in space (like a gas or a
liquid), enclosed in a volume V=X/p, we get the very ( P l)(r+r(0) —r')5(r' —r, (t))) p(r' r)p(r'), —

l, 7=1
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where

N

p(r') =(E &(r' —r (t))) (19)

correlation term G',

G'(r, t) =G(r, t) N—' dr' p(r' r)—p(r'), (22)

is the average density at point r', independent of the
time t. Hence, from Eq. (10), we can write the asymp-
totic formula

has also a simple significance for scattering. Insertion
in (6) gives

S(ip cp) =5(pp) exp(isp r) p(r)dr

G(r, t) N—', dr' p(r' —r)p(r'), (20)

G(r, t) p. (21)

It is the difference between G and its asymptotic
value (20) which represents the correlation between
pairs of particles. The instantaneous part of this corre-
lation is contained in G(r,0)=5(r)+g(r) and is well
known from the study of the familiar g (r) function. The
interest of G for t @0 is to describe in addition its time
dependence: if we consider a given, fixed point of
space through which a particle passes at time 0, the
density distribution of the system is disturbed around
this point not only at time 0, but before and afterwards.
The average time variation of this disturbance is repre-
sented by the G function. As formally expressed by Eq.
(20), the disturbance is negligible far from the fixed
point at all times, and everywhere in the system long
before and long after time 0. Except in the case of long-
range order or under critical conditions, to be discussed
later on, the size and duration of the disturbance are
characterized by a length Ep and a time Tp of micro-
scopic dimensions such that Eq. (20) holds for all t if
r)&Rp and for all r if

~

t
~

))Tp. Rp is the range of the pair
correlation, Tp its reluxatioe time. To establish from
first principles the existence of Rp and Tp, and, a fortiori,
to calculate G in terms of intermolecular forces, are
dificult problems of statistical mechanics, unsolved
except in very special cases. The relaxation time Tp in
particular is obviously related to the irreversible return
of a locally perturbed system to equilibrium, and thus
depends on the ergodic properties of the system. Such
problems will not be touched upon here. We hope to
have shown, however, that quite apart from its interest
for scattering theory, the pair distribution in space and
time is an important extension of the conventional g(r)
function from the standpoint of general statistical
mechanics.

The separation of G into its asymptotic value and a

"For large
~
t ~, Eq. (20) is valid also for systems with a small

number of particles if the initial state is a pure quantum state,
nondegenerate in energy. The asymptotic convergence for

~

t
~

~~
may then, however, hold only in the mean, as is the case for a har-
monic oscillator.

the right-hand side of which is the often considered
autocorrelated density. " In particular, for an homo-
geneous system, p(r') is a constant, the number density
p=N/V (V volume of the system), and Eq. (20) reduces
to

+ (2ir) 'N expels(r. r rdt)—j G'(r, t)drdt (2.3)

The 6rst term of the right-hand side represents elastic
scattering (&p=0); for an homogeneous system of large
dimensions it reduces to Npb(&p)6(sr), i.e., to forward
elastic scattering, which in the first Born approximation
is indistinguishable from the unscattered beam. The
second term represents inelastic scattering: since G'
tends to zero for r and

~

t
~

+ro, the -energy distribution
has no peak of form b(cp) in any scattering direction,
nor has its angular distribution any peak of form 5(x)
in the forward direction. In some cases, however, the
convergence of G' to zero may be slow. This will then
produce, through the Fourier transform in the last
term of (23), singularities of weaker type in the angular
and energy distribution of inelastically scattered par-
ticles. A simple example of this situation is provided by
slow neutron scattering in crystals and will be discussed
in Sec. V.

The range Ep and relaxation time Tp determine the
orders of magnitude 5/Rp 5/Tp of average momentum
and energy transfers in those scattering processes which
are appreciably affected by the collective properties of
the system S. Let us consider incident particles with
momentum of order l't/Rp, and let us determine under
which condition the values of G for ~t~ Tp make an
important contribution to the scattering. The condition
is that the angle of scattering depends appreciably on
both momentum and energy transfers )if it depends
essentially on momentum transfer alone, the static
approximation applies and the scattering depends on
G(r, 0) onlyj. It requires that the spread hhk in the
length Ak of the final momentum, due to energy trans-
fers of order It/Tp, is at least comparable to the mo-
mentum transfers Pt/Rp. Since d, k (eRp) ', where o is
the velocity of the incident particle, the condition is
v &Rp/Tp or Ti& Tp, where Ti is the time Rp/v in which
the incident particle travels over a correlation range.
In the latter form, the physical meaning of the condition
is obvious: the time variation of G aGects the total
scattering and angular distribution only for a particle
spending at least a time of order Tp over a correlation
length Rp. If on the contrary Ty((Tp, the scattering is
not affected by the values of G for

~

t
~

Tp. Apart from
the distribution of outgoing energies, it is then entirely
determined by the value of G for ~t~((Tp, and the
static approximation gives a good description of the



LOON VAN HOVE

effect of collective properties of 5 on the scattering, in
the sense that do/dQ can be calculated by replacing
G(r, t) by G;o(r, t)+G(r, 0) G;—d, (r,0), where G@ is the
pair distribution function for an ideal gas of same
density and temperature as 5.

For incident particles of wavelength Rp, the ratio
T,/To is essentially equal to the ratio of average energy
transfer to incident energy. A very crude estimate of Rp
and lp for actual substances, solids or liquids at, average
temperatures, gives Rp~10 ' cm, Tp 10 " sec, and
thus Ti/To 10'/i) if the incident velocity n is measured
in cm sec '. This gives Ti/To 10 ' for photons of
arbitrary wavelength, and T&/To 1 for neutrons of
wavelength around 1 A or somewhat larger, i.e., exactly
of the right order Rp for which collective eIIfects on scat-
tering are most conveniently observed. For electrons of
wavelength around 1 A, one finds Ti/To 10 '.

Before closing this section, we mention an extension
of the G(r, t) function to systems of identical particles
with spin, to be used later in connection with spin-
dependent scattering. If a; is an operator depending on
the spin of the jth particle, the same for each particle,
a spin-dependent pair correlation is de6ned by

I'(r, t) =S—' P dr' a)(0)B(r+ r)(0) r')—
g, ~=a 0

xa;(t)~(r —r;(.i))), ' (24)

between neutrons and the nuclei of the scattering
system S. If the true interaction is replaced by the cor-
responding Fermi pseudopotential,

V (r) = (2s ak'/m)b(r),

where ns is the neutron mass and a the scattering length
of the nuclei assumed all identical, the Born approxima-
tion formula can be applied. "Equations (2), (3), and
(6) give then, for the cross section of S,

d20 82/ k
exp[i(x r a)t)] —G(r, t)drdt. (26)

dM6 2%5 k'p &~

If the nuclei of 5 have a nonvanishing spin, this equa-
tion assumes a to be spin independent. For nuclei with
a spin-dependent scattering length, or for nuclei
belonging to different isotopes (the mass differences
being neglected), Eq. (26) is simply replaced by

d2cr E
exp)~(x r o)t)] —I'(r, t)drdt,

dQde 2m A kp ~

with the spin- or isotope-dependent scattering lengths a;
to be used in the definition (24) of I'."In most cases the
nuclei can be treated as Boltzmann particles and the
spin or isotope disorder can be considered perfect, so
that Eq. (25) applies, and, remembering G=G,+Gd, we
obtain

in terms of the Heisenberg operators,

a, (t) =exp (i'/))t) a; exp (—t'tH/It) .

d 0'coh d 0 inc
+

diode dQde diode
(27)

For a system of Boltzmann particles with spin-inde-
pendent Hamiltonian II and for the thermal distribu-
tion (18), there is no correlation between spins nor
between spins and positions. Using the definitions (15)
a,nd (16) we then find

I'(r, t) = (a')AQ, (r, t)+(a)A„'Gq(r, t),

where a is any of the a, 's and ( .)A„denotes an average
over the spin states of the corresponding particle. Corre-
lations involving the spins can be produced either by
the symmetry requirements of the wave functions
(Bose-Einstein and Fermi-Dirac particles) or by spin
interactions. The erst case is illustrated in Sec. VI. The
second case occurs in ferromagnetic substances and will
be discussed in a separate paper.

The extension of the foregoing considerations to
systems composed of different types of particles is
straightforward and will not be given here.

III. NUCLEAR SCATTERING OF SLOW NEUTRONS

As mentioned before, it is for the scattering of slow
neutrons that use of the pair distributions in space and
time is of most practical interest. %e consider in the
present section scattering due to the nuclear interaction

Equations (28) and (29) are the so-called coherent and
incoherent scattering cross sections.

The separation Eq. (23) of elastic and inelastic scat-
tering applies to Eq. (28). A similar separation can be
performed for Eq. (29) by considering the limit of G,
for )t~ —+~. In the static approximation we get, as in
Sec. II,

do«) /dQ= (a)APtV 11 exp(tv. r)g(r)dr, (30)

do.;„,/dQ= ((a')A, —(a)A,2}tV. (31)

The incoherent cross section no longer depends on the
structure of S. Equation (30), identical to the Zernike-

'4 The relevant information on slow neutron scattering will be
found, for example, in J. M. Cassels, Progr. Nuclear Phys. I, 185
(i9505.

d' ),o(a)A, 'X k
I exp[i(x r o)t)] G(r—,t)drdt, (28)

dQd6 2' 5 kp ~

d'o;„, ((a')A, —(a)A,2}$ k
exp/i(x r o)t)]-

dQdt 2x'5 kp ~

G, (r, t)drdt. (29)
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Prins formula for x-ray scattering, has often been used
before in connection with slow neutrons. " "

The physical interest of Eqs. (28) and (29) is entirely
similar to that of the familiar Eq. (30). It mainly con-
cerns systems for which a complete calculation of pair
distributions in terms of elementary forces cannot be
carried out. Indeed, whenever an explicit calculation is
possible, it leads to the diGerential cross sections as
directly as to the pair distributions. For more compli-
cated systems, however, like liquids or dense gases, the
pair distributions, dealing with two-particle conigura-
tions in space and time, are much easier to visualize
than the cross sections, and a qualitative prediction of
their behavior is almost always possible, thus providing
great help in understanding the main features of the
scattering. For such systems, on the other hand, the pair
distribution is the proper quantity in terms of which to
interpret the scattering data, and since it contains very
important information on the local structure of the
system, its experimental determination is desirable.
Equations (28), (29) provide the basis for such a deter-
minat. ion.

Complete measurements of d'o/dQde, i.e., of the
angular and energy distribution of scattered neutrons,
will provide a direct determination of G or G, by inver-
sion of a 4-dimensional Fourier integral (2-dimensional
for isotropic systems). At present, for intensity reasons,
energy distributions of scattered neutrons are still
dificult to observe, even when they spread over wide
ranges. Progress will, however, undoubtedly be made
in this direction" and it is to be hoped that complete
sets of experimental values for d'o/dQde will eventually
become available.

A simpler but much less direct and less satisfactory
approach to the experimental study of G or G, can be
made by measuring transmissions (i.e., total cross
sections) or angular distributions in their dependence
on the incident wavelength Xo. For angular distribu-
tions, the contribution to the scattering of values of G
or G, with t ~0 will manifest itself through the fact that
the di6'erential cross section

(d' /od dQ)fe(e)de, (32)

where f(e) is determined by the detector used, does no
longer depend on Xo and on the scattering angle 0

through the single combination Xs ' sin(e/2), as it does
in the static approximation with f(e) constant. Since
a quantity like Eq. (32) has a complicated functional

~s O. Chamberlain, Phys. Rev. 77, 305 (1950).
"Placzek, Nijboer, and Van Hove, Phys. Rev. 82, 392 (1951)."L Goldstein, Phys. Rev. 84, 466 (1951)."P. C. Sharrah and G. P. Smith, J. Chem. Phys. 21, 288 (1953).
"Henshaw, Hurst, and Pope, Phys. Rev. 92, 1229 (1953).
'0 Crude information on energy distributions of neutrons scat-

tered by solids has been obtained by P. KgelstaG, Nature 168, 290
(1951);B. N. Brockhouse and D. G. Hurst, Phys. Rev. 88, 542
(1952);R. D. Lowde, Proc. Roy. Soc. (London) A221, 206 (1954).

G, (r 0)—8(r) G„(r 0)—g(r)

lim G, (r', t) = lim G, (r,t')=0,
I &'l~~

(33)

(34)

lim Gd(r', t)= lim Gd(r, t')=p,
7'~ao

l
t'

I ~00
(35)

where p is the number density. Except in the neighbor-
hood of the critical point, the convergence in Eqs. (34)
and (35) takes place over a length Rs of the order of
intermolecular distances and a time To of the order of
the time needed by an average particle of the system to
travel over a distance Ro. To is essentially identical
with the Debye relaxation time.

Under the same condition of a mean de Broglie wave-
length small compared to interatomic distances
(A~&&Re), no quantum effects will manifest themselves
in G~, which deals with pairs of particles separated by
distances of order Es, and Gs(r, t) is thus a real-valued,
positive function, even in t. The situation is slightly dif-

"The determination of pair distribution functions based on the
superposition approximation of Kirkwood, J. Chem. Phys. 3, 300
(1935), cannot be considered reliable for dense systems. It has
been discussed for a gas of hard spheres by B. R. A. Nijboer and
L. Van Hove, Phys. Rev. 85, 777 (1952), and by B.R. A. Nijboer
and R. Fieschi, Physica 19, 545 (1953).

expression in G or G„ the analysis of its experimental
values is bound to be much more dificult than it would
be for d'o/dQde, and the choice of a detailed procedure
would require careful consideration.

The next sections deal with the properties of G and
G, for special systems. Their aim is to form a more
accurate picture of the behavior to be expected for
these functions and to illustrate the correspondence
between some of their properties and simple features of
the angular and energy distributions obtained in scat-
tering.

IV. LIQUIDS AND DENSE GASES

The discussion of pair distributions in space and time
for liquids and dense gases presents the same difficulties
as the corresponding discussion for the instantaneous
pair distribution g(r). Although the general behavior
of the distribution functions can easily and safely be
guessed, no reliable method has yet been found to'cal-
culate them in terms of the intermolecular forces."We
will therefore limit ourselves to a description of their
most immediate properties.

Except for the case of substances of light atomic mass
taken at very low temperatures, like liquid helium for
example, the particles in a liquid or a dense gas have a
mean de Broglie wavelength X~=5(2Mk~T) '* small
compared to the distance between particles or, what
amounts to the same, to the range of interatomic forces.
M is the mass of the particles in the system. Under
these conditions, the distinction between G, (r, t) and
Gq(r, t)=G G, is poss—ible and these functions, which
are independent of the direction of r, verify, as already
mentioned,
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ferent for G, (r, t), which for very small times

I
t

I
-k/knT-(). ~/Z p) Tp,

is entirely concentrated in the region r X& where
quantum eGects are appreciable. For small displace-
ments of this order, however, the potential acting on a
particle is practically constant, so that the ideal gas
value can be adopted for G, :

G, (r, t)~{2prt(kttTt —ik)/M} pt'

&&exp f
—Mr'/[2t (kti Tt—ik) j) .

This holds for
I
t

I
«Tp. For larger times, the form of G,

is affected by the interatomic forces, but quantum
eGects become negligible, and G, thus also becomes real-
valued positive and even in t. Characteristic shapes of
G, and Gd are given in Fig. 1 for three ranges of t values:

I
t

I
«Tp (the curve for G, is to be understood as repre-

senting the real part of the function if ItI &5/kttT),
T,, and ItI»T, .

For quantum liquids like liquid helium at low tem-
perature the situation is, of course, entirely different.
The distribution function G has complex values for all

nonvanishing times. We will not try to make a guess at
its theoretical shape but want to stress the interest of
its experimental determination.

After these general considerations, let us return to
the case of the so-called classical liquids (Xtt «Rp) wlllcll

will now be studied in the neighborhood of the critical
point. When critical conditions are approached, the

ftf« To

/
/

I .r
I
l

/

0 r

qualitative behavior of G, is not expected to be greatly
modified. G~, however, is known to exhibit long-range
correlations resulting from the occurrence in the system
of spontaneous density fluctuations of macroscopic
size. In contrast with the short-range part of the pair
distribution, these long-range phenomena can be ex-
plicitly studied, at least for temperatures T slightly
above the critical temperature T„by the methods of
macroscopic fluctuation theory. The applicability of
such methods is actually not restricted to the neighbor-
hood of the critical point. They make a general study
possible for the scattering from macroscopic density
fluctuations, by permitting the calculation of the value
and the time dependence of the Fourier components
of Gg'.

"fGe (r,t) p) exp (i—tp r)dr,

for macroscopic I(: '. This question, studied by Landau
and Placzek for light scattering, "will not be treated in
full generality in the present paper, where we limit
ourselves to the more special case of critical fluctuations.

The behavior of g(r) =Gd(r, 0) near the critical point,
for T)T, and for r large compared to the intermolec-
ular distance, has been determined by Ornstein and
Zernike. "It is given by

Ge(r,0)~p+ (4n.rp'r) 'e "p", r&&rp, (36)

where rp is a length slowly varying with temperature
and density, of the order of the range of the forces, with
value 1 at the critical point, and ap is the reciprocal
length

(37)

defined in terms of the isothermal compressibility
gr= p i(clp/Bp)r. Equation (36) holds for r»rp, in the
temperature and density region where rpKp((1. Its
derivation assumes the system monophasic. Through
its dependence on xT, the range ~p ' of the pair corre-
lation becomes infinite at the critical point, where Eq.
(36) reduces to

Gd (r,0) p+ (47rrp'r) ', r» re. (38)

ftl» T,

FIG. 1.The dependence of G, (r,t), (————) and Ge(r, t), (———)
on r for three values of t. The solid line corresponds to the average
density of the system.

We have now to determine the time variation of G~
for r)&rp. The long-range part of the pair distribution
Ge(r, t) can be identified with the average shape at
time t of the spontaneous macroscopic density Quctua-
tions in the system, as seen from a point through which
a particle passed at time 0. Following Onsager, '4 it is

~L. Landau and G. Placzek, Physik. Z. Sowjetunion 5, 172
(1934). For a more detailed exposition, see J. Frenkel, Eirtetic
Theory of Liqsids (Clarendon Press, Oxford, 1946), pp. 244 ti.
The author is indebted to G. Placzek for illuminating discussions
and communication of unpublished work on this subject.

23 L. S. Ornstein and F.Zernike, Proc. Acad. Sci. Amsterdam 17,
793 (1914); Physik. Z. 19, 134 (1918).The length rp in onr Eq.
(36) is related by 6rp'=e' to the length e defined in the latter
paper.

s4 L. Onsager, Phys. Rev. 37, 405 (1931);3S, 2265 (1931).
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exp (—or Apkot), (39)

natural to assume that macroscopic variables which
have taken nonequilibrium values as a consequence of
spontaneous fluctuations have on the average in their
return to equilibrium the same time variation as if
their initial nonequilibrium values had. been produced
by suddenly released artificial constraints. This time
variation is given by the well-known phenomenological
laws of irreversible processes, in our case the Navier-
Stokes equations for viscous Qow supplemented by the
continuity equation, and the equation for energy
transport involving heat conduction.

Since we deal with Quctuations of small amplitude,
all equations can be linearized and treated by Fourier
analysis. We then find three independent plane-wave
fluctuations of wave vector k: two corresponding to
damped waves propagating with sound velocity in the
directions of k and —k, and one of nonpropagating
nature, with a time dependence given by the factor

Integration over the angles then gives

Gd(r, t) p+ (4vro'r) —'ego(AoItI)', r(AoItI) i], (42)

where the function + of two dimensionless arguments
is defined by

O(v, w) = 2v='* exp( —w')

&& exp( —x' —vx) sinh(2') dx. (43)
Jp

It is easily expressed in terms of the error integral:

@(v,w) =exp(-,'v' —vw). P(-', v —w)

—expP, v'+vw) P(-', v+w),

W(~)= —, " exp( —X')dy.

The behavior of G~ for large r and for large and small

I tI is immediately obtained from
with

Ao=«(p~. ) '=«(pc. ) '(x s/xr) (40)
%(v,w) exp( —vw), for w))1, w&)v; (44)

+(v w)~4' —'"v 'w exp( —w') for v))1 v))w (45)
x is the coeKcient of heat conduction, c„and c, are the
specific heats per particle, at constant pressure and
volume, respectively, and y8 is the adiabatic compres-
sibility

xs= p '(cip/~P)s

exp( amok't) e—xp(ok r)dk.

of (39). One has thus, remembering that Gd is even in t,

Gq(r, t) p+(47rro') '(7rAoI tI) P~'

exp —Kpf
I Ap[tI

(41)
r'

"The foregoing analysis of spontaneous fluctuations has been
carried out by L. Landau and G. Placzek (reference 22) to account
for the occurrence of a triplet line in the Quctuation scattering of
light by liquids, and to calculate the line widths.

(5: entropy). As expected, the fluctuations of the two
first modes are found to be adiabatic and the third
mode is a fluctuation at constant pressure. "

When the critical point is approached, whereas
Quctuations of the two first modes remain normal, the
magnitude of the spontaneous Auctuations at constant
pressure increases indefinitely. They alone thus con-
tribute to the long-range part of the pair correlation,
and the time dependence of Gd for r))rp and t)0 can
be obtained by multiplying each Fourier component of
Eq. (36) by the corresponding factor (39), i.e., by
calculating the convolution of Eq. (36) with the Fourier
transform,

we get
I tI &Ao-'rpo

v &Kprp((1, w & r/rp.

Hence, for r»rp, the asymptotic form (44) of 4 can be
used, and Gq(r, t) G~(r, O) for r))rp. To present this
conclusion differently, we can say that as

I
t

I
increases,

the time dependence of the long-range part of Gd sets
in only for times"

"The following estimate is made by using values of x, c, and xa
calculated for rarefied gases, with the help of kinetic theory for x.

Equation (44) shows that the expression Eq. (42)
reduces to Eq. (36) in the limit of t—+0. Its strict validity
is, however, restricted to values of ItI large compared
to the microscopic relaxation time lp considered before,
since the phenomenological equations used in our
derivation apply only to quantities averaged over a
time interval large compared to the duration of micro-
scopic Quctuations. This limitation accounts for the
occurrence of a spurious discontinuity at 3=0 in the
derivative of the right-hand side of (42) with respect
to t; this derivative, if calculated correctly for t of
microscopic order of magnitude, would be found con-
tinuous and equal to zero at t=O. Apart from the con-
dition ItI))Tp, the derivation of Eq. (42) requires of
course roKp((1 and r)&rp as for Eq. (36). It is, however,
interesting that the latter condition can be abandoned
for all times for which the expression (42) differs appre-
ciably from its value (36) at t=O. Indeed, it follows
from (41) that whenever ItI&)Ao 'ro' the value of
Gz(r, t) for all r, even of order rp, is overwhelmingly
determined by the values of G&(r,O) for r)&rp. If now

I
t

I
is not large enough to satisfy this condition
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at which the short-range part of the pair distribution
has completely reduced to the instantaneous value of
the local macroscopic density, the variation of which is
correctly described by Eq. (42) for all r. It is 6nally
to be remarked that Ao ' increases indefinitely when
the critical point is approached, corresponding to an
increasingly slower time variation of the macroscopic
part of the pair correlation.

The above discussion is valid for monophasic systems
near the critical point, i.e., for gases at densities near
the critical density p, and temperatures slightly
above the critical temperature T,. The relevant con-
dition for its applicability is that the dimensionless
quantity,

Kpf p= (PkBTXT)

be small compared to one, let's say of order 0.1 or smaller.
A more concrete idea about the corresponding density
and temperature ranges is obtained by using the ap-
proximate expression for pz given by the van der Waals
equation of state. One finds that at the critical density
or a density di6ering from it by less than some 5 per-
cent, one must have T—T, &0.005T,."

For temperatures approaching T, from below, the
system is no longer monophasic at densities near p,
and the previous treatment is then not strictly appli-
cable. It seems, however, likely that the long-range
part of the pair distribution and its time variation will

not be radically diferent from what we have found them
to be for T above T,.

I.et us now indicate a few consequences of the above
discussion for the scattering of neutrons by liquids and
dense gases, for neutron wavelengths of the order of the
separation between particles or larger. Away from
critical conditions and apart from the forward elastic
peak. , which is entirely coherent, the di6erential cross
section d'o/dMe is a smooth function of outgoing energy
and angle of scattering, corresponding to average mo-

mentum and energy transfers or order kEO ' and hTO ',
respectively. This applies to coherent and incoherent
scattering alike, although the collective properties of
the liquid will evidently acct the scattering to a
greater extent in the coherent case. Qualitative shapes
to be expected for the angular and energy distribution
could easily be obtained from Fig. 1 by Fourier trans-
formation.

When critical conditions are approached, whereas no
rapid change is expected to occur for incoherent scat-
tering, the occurrence of a tail of increasing range in the

pair distribution Gg reQects itself in an increasing
amount of coherent scattering characterized by small

momentum and energy transfers. Using for the latter
our customary notations hv. , h~, we obtain by Fourier
transformation of Eq. (41) over space and time Lthe
Fourier transform over space gives the product of Eq.
(39) by the Fourier transform of Eq. (36); one has then
to make a Fourier transformation over timej the fol-

lowing expression,

fd'&cow'l

dQde

4(a)AscV k 1 iYpK

7l 5 kp Fp (K +Kp~) Ap K + 16GP

Application of Eq. (46) at the critical point itself,
where ao and Ao vanish, would lead to an infinite value
for the total cross section (47). As was shown by Placzek
for the case of light scattering, ~ the occurrence of this
spurious conclusion is due to the fact that our entire
treatment of scattering assumes the range of the pair
correlations to be small compared to the dimensions of
the vessel containing the system. We indeed have always
assumed the system large enough to make surface
effects negligible. Application of Eqs. (46) and (47)
therefore requires I~0

' to be small compared to the
dimensions of the vessel. Practically this condition is
violated only in a temperature interval of ~10 "degree
around T„ in which the scattering would depend on the
size and shape of the vessel.

We will not in the present paper consider the case
of rarefied gases. The natural way of treating it is by an

~' This dependence on incident wavelength follows directly from
the presence of the denominator kp in Eq. (28).

Ps G. Placzek, Physik. Z. 31, 1052 (1930).

for the part of the differential cross section originating
from long-range correlations. ¹arthe critical point
(Kprp 0.1), it is the main part of the cross section in
the region K((rp . From Eq. (46) this critical scattering
is seen to have momentum and energy transfers of
order K Kp, tp ApKp /4, respectively. Their relative mag-
nitude compared to average momentum and energy
transfers in noncritical scattering is easily estimated to
be, very crudely, "

RpKp (pkBTgr)

sTpApKp ~(RpKp) ~(pkBTxr)

The most important feature revealed by this estimate
is that in critical scattering, the energy transfers
decrease very much faster than the momentum transfers
when the critical point is approached, thus restoring the
validity of the static approximation and causing the
scattering to be not only more abundant than under
normal conditions but also completely diferent in all
its properties. The total cross section, for example,
which under normal conditions is proportional to the
incident neutron wavelength 2pr/kp as soon as the in-
cident energy is small compared to k/Tp, s' has a com-
pletely diferent wavelength dependence in the immedi-
ate neighborhood of the critical point. Its main con-
tribution comes then from the critical scattering repre-
sented by Eq. (46), which has to be integrated over
outgoing energies and angles, with the result:

pr(a)A, sS (4kps
o.,a, log) +1 ~.

(rpkp)' ( Kps )
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expansion of G,, and G& in powers of the density, entirely
similar to the familiar expansion of the g(r) function.
The ideal Bose-Einstein and Fermi-Dirac gases will be
considered in Sec. VI.

From Eq. (8),

G= Q&i G&~, G.=Go (48)

G&i(r, t) = (2z) ' dx exp( —i', (r—R)}

V. CRYSTALS

For crystals, the harmonic nature of the forces
permits explicit calculations of the scattering cross
sections and pair distributions. Such calculations have
often been made for scattering. "We will here briefly
derive the expressions for the G(r, t) function, describing
the correlations in position between any two particles
of the crystal, and the G, (r,t) function, describing the
correlation of a particle with itself. The calculation is
most easily done by starting from Eq. (8), a fact
generally valid for systems which have plane waves as
independent modes of motion.

We restrict ourselves to a single crystal of infinite
extension, with Bravais lattice (one atom per cell).
The lattice vectors are denoted by R, and the position
vector of the particle with equilibrium position at R is
written R+u&i. ss Defining for each R, including the
origin R=O of the lattice, the pair distribution G&i for
particles of equilibrium positions 0 and R, we have

Replacing the commutator in the second factor by its
average, we get

(exp( —ist us(0)) exp{ix u&r(t)})r
= exp( —P[Mp, (0,0)—Mp„(R, t)fop&r, }, (51)

Pv

where P,&=@,y, s and

Mp, (R,t) =M„p(R,t) = (stsP(0)N&t&(t))r.

Inserting into (49), we get

(52)

G, (r,t) = ($(R,t)/8ws}-*

Xexp{——,'P imp~(R, t) (rp —Rp) (r~ Rv))—, (53)

Mp, (R,t) = (At&s/(16wsM) )

with the 3X3 matrix gp, (R,t) defined as the inverse of

2{Mp (0,0) Mp (R—,t)),
and with

X(R,t) =det(Spy(R, t)).

Equation (53) is a Gaussian distribution around the equi-
libriurn position R. For t &0 it has complex coefficients,
the imaginary parts of which are of quantum origin. '~

The correlation equation (52) between displacements
is easily calculated using the functions o&;(q), e;(q) which
express the frequency and unit vector of polarization
of a plane-wave vibration (phonon) in terms of the
wave vector q and the polarization index j=1, 2, 3.
One Gnds

~ (exp( ix sts(—0)) exp{ix un(t)))s. (49) Xg dq(e, P(q)e&'r(q)/o&, (q)) (1—exp( —IttPo&;(q)} '

The Heisenberg operators are de6ned as usual. The
subscript T indicates that the thermal distribution
must be used in the definition (9) of the average.

We have first, since the commutator is a c number,

(exp{ iv. us(—0)) exp(ix u&i(t)))r

=(exp(ix [u&r(t) —us(0) j))r.
exp{-',[sc us(0), x u&t(t) j). (50)

Next, in view of the fact that

x (u&i(t) —up(0))

is a linear combination of coordinates of independent
harmonic oscillators and has thus a Gaussian prob-
ability distribution, ' the 6rst factor in the right-hand
side of Eq. (50) has the value

e p{——,'([ (u (t) —uo(0))]') }.
~ A. fairly complete list of references is given in G. Placzek and

L. Van Hove, Phys. Rev. 93, 1207 (1954). The unpublished work
of R.J. Glauber (reference 10),which makes use of the correlations
(52) below, must also be mentioned.' When in subscript, R stands for the vector R.

"This theorem is due to F. Bloch, Z. Physik 74, 295 (1932),
especially footnote on p. 309.

{exp[—i(R q —to&, (q))j+exp[—Ape&;(q)]

Xexp[i(R q —to&;(q))]), (54)

where M is the atomic mass of the crystal, ~0 the volume
of the cell, P ' the quantity k»2' and where the integra-
tion is extended over a cell of the reciprocal lattice. "As
functions of q, or;, and e; have the periodicity of the
reciprocal lattice.

Equation (54) shows that Mp„(R, t) approaches zero
when R or

~
t

~
increase indefinitely. Xp, (R,t) approaches

then the inverse Xpr&"& of the real matrix 2Mp~(0, 0).
Hence, asymptotically, for large

~

t
~

or for large R but
finite ~r—R~,

G&i(r, t) Gp&"&(r) = {W"&/8s')'*

Xe p( —-', Q iV „'"&(r —R ) (r —R,)}.
Pv

"The above method for the calculation of scattering cross
sections or pair distributions is applicable quite generally to
systems with harmonic forces. Its main advantage is the very brief
derivation of Eq. (51) based on Bloch's theorem. Alternative
methods found in the literature are less general or more laborious:
they have to rederive Sloch's theorem in disguised form.

» +le defIne here the reciprocal lattice vectors as the vectors
whose inner products with the vectors R of the crystal lattice are
integral multiples of 2~.
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This equation expresses the asymptotic vanishing of
correlations between particles with widely separated
equilibrium positions, and between neighboring par-
ticles considered at widely separated times.

For t= &~, the limiting values of the pair distribu-
tions Eq. (48) are thus

G, (r, ~ ) =Go&"& (r). (56)

The elastic part of coherent and incoherent neutron
scattering follows immediately by insertion into Eqs.
(28) and (29):

]d'o„hy (2~)'X
I

= (&)A'
~dQdo ~ ei - is~o

Xexp{—P Me, (0,0)i&e«„}8(oo)gh(x —e),

gradho;(q) =0. (57)

It has been shown that such points always exist for
general values of the force constants of the crystal. "
Their existence is implied by the periodicity of &o;(q)
in q. In suitable local coordinates preserving the volume
element dq, the expansion of &o~,(q) near q. can be
written

crystal. "Applying the result thus obtained to G„we
will then establish in an indirect way the existence,
asserted before without proof, '4 of singularities in the
energy distribution of incoherently scattered neutrons.

The convergence of Gz to Gz(") is determined by the
convergence of Me~(R, t) to 0 for

l
t

l
+~—, which accord-

ing to Eq. (54) is to be discussed by the method of
stationary phases. For large l

t l, the main contribution
to the integral in (54) comes from the neighborhood of
the points g, where for some j=j„

(d o'inaoh~
a Ay

—8 Ay

& dade ).i 5

Xexp{—g Me~(0,0)KpK&}6 (&o)

It contains the familiar Debye-Wailer factor and, in
the coherent case, the interference condition x= e,
where e denotes the vectors of the reciprocal lattice. "
The cross sections for inelastic scattering can be derived
from the diGerence between G, G, and their asymptotic
values (55), (56); one obtains then immediately ex-
pressions previously derived by Glauber. "

It is of some interest to study the nature of the con-
vergence of G and G, toward their asymptotic limits.
G is found to approach (55) both for

l tl ~Do, r
fixed and for r—&~, t axed, the convergence being in

s&' in the former case, in r ' in the latter. G, ap-
proaches (56) for

l
t

l
—+oo, with a convergence in

l
1

l

s"
The convergence is very slow in all cases. As seen from
Eqs. (28) and (29), this fact is closely related to the
occurrence of singularities in the angular and energy
distribution of neutrons scattered inelastically by a
single crystal; these singularities have been studied in
detail elsewhere. '4 The convergence of the pair distri-
butions for large

l
t

l
has also another important physical

significance: it implies that the crystal, despite its
over-all lack of ergodicity, exhibits locally a type of
ergodic behavior, the return toward local equilibrium
being in ltl

Ke will here restrict ourselves to establishing the law
of asymptotic convergence of pair distributions for
ill~~. This law is entirely determined by certain
special crystal vibrations, already met before in con-
nection with the frequency distribution function of the

'4 See G. Placzek and L. Van Hove, reference 29.
"Properties of local ergodicity have been studied for a one-

dimensional system of particles with harmonic interaction between
nearest neighbors by G. Klein and I. Prigogine, Physica j.9, 1053
(1953).

».(q) =~.+~. Z sp'ke'+, (=»—q.,
P=l, 2,3

with &o, =&o~', (q,), ep'=&1, a,)0. Inserting in (54) and
carrying out the integration over (, one gets for
Me~(R, 1) the asymptotic form:

Mp, (R,t) {i&os/(16~~M
l tl ')}p,{eg,e(q,)eg,&(q.)/

(a, l&o,)}{1—exp( —AP&o,)} '{exp(—sR q,)B,(t)
+exp( —AP&o,+sR q,) h,*(t)}, (58)

with
h, (t) = exp[itoo, +s(7r/4) (// l

t
l )Pe op'$.

h,* is the complex conjugate of 8,, The sum P, extends
over all solutions of Eq. (57). The decrease of Me~ for
large ltl is seen to be in ltl s&s. From (58) it is now an
elementary matter to find the following asymptotic
formula for Gg.

Gg(r, t) —Gg&"'(r) G~&"'(r)
l tl "

Xg,{P,(r) b, (t)+E,'(r) 8,*(t)}. (59)

P, and P,' denote polynomials of second degree in the
components of r. Their explicit expression is not needed
for our purpose. The asymptotic convergence of G&,
and thus of G and G„ is again in

l
t

l

Through the Fourier transform over 1 in Eq. (29),
each term of the expression (59), taken for R=O, con-
tributes a singularity to the energy distribution of
incoherently scattered neutrons. The analytic nature of
the singularity is best obtained by Fourier transforma-
tion of simple functions of t with asymptotic behavior
ltl sl'h, (t) or ill s&'B,*(t) for large ltl. We take for
example the function,

f.(~) = I1I "'@.(&)(1~s~/&) '",

where n) 0 and the upper (lower) sign is taken when
e,= Pe oe' ——3 or —1 (—3 or 1). It has the following

"L.Van Hove, Phys. Rev. 89, 1189 (1953).
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Fourier transform 3~ de6ned by

f.(~) =

with

f(oi o—i,) for e,=3
—f(to,—o&) for e,=1

e ' 'f, (t)dt=-
f—(a (o—,) for e,= —1

f(to. , (o—) for e,= —3

0 for co&0
(~)=

4(m'c0) & exp( —o.co) for co)0.

f(r&t) = (2m) sp exp{—s(k ~ r —+zt)}dk

I
expI—

pE t ) &4~5ItIJ ( 2Itt)

m~(r, t) = (2s.) 'p '~ exp{—s(k r cost—)}
~ {8exp(SPtos)W1} dk. (61)

Hence, in the energy distribution of neutrons scattered
in an arbitrary direction, the term in 8, (t) of (59)
produces a singularity at ~=or, .'near rv =co„ the energy
distribution has the form A f, (oi)+F(oi), where A is a
constant and F(co) a continuous function, the first
derivative of which has at most a finite discontinuity
at so=co,. Both A and F depend on the scattering direc-
tion. One can easily show that the scattering processes
responsible for this singularity involve excitation by the
neutron of one phonon of wave vector g, and polariza-
tion j,.ss Similarly, the term in b,*(t) produces a singu-
larity at or= —co„with an energy distribution of form
A'f. (—to)+F'(&o), where A' and F' have meanings
similar to A and Ii. This singularity is due to anni-
hilation by the neutron of one phonon again character-
izedby q, and j,.

VI. IDEAL QUANTUM GASES

To illustrate the effect of Bose-Einstein and Fermi-
Dirac statistics on pair correlations we treat very brieQy
the case of ideal quantum gases. It is instructive to
consider particles with nonvanishing spin and to study
simultaneously the correlations imposed by the statistics
on particle positions and on spin orientations. This is
done by calculating the spin-dependent pair distribution
function I' defined in Eq. (24); a; is an arbitrary function
of the jth particle spin, the same function for each
particle.

The expressions of 1 for the Fermi gas and for the
Bose gas without condensed phase are very similar and
their derivation, to be based on the analog of Eq. (8)
for F, is quite straightforward. Only the final result will

be given here:

M is the mass of the particles, P is (keT) ', and
stands for kk'/2M. The constant 8 &~ —', (1+1) is deter-
mined by ts+(0,0) =1.

According to Eq. (60), the range of the pair corre-
lations in space and time is determined by the con-
vergence of ep to zero for r or t—+~. This convergence
can be discussed in all cases from Eq. (61).We consider
here only the case 8)1, for which expansion in powers
of 8 ' gives

t' M y
* (+1)'-'

I+(r,t)=p 'I
(2s-A) &=i 8'(ltd —st):

Mr'
Xexp —

I, (62)
25(ltr —st)

where tr =hP=k/(knT) is a measure of the relevant
relaxation time. For 8 not too close to one, an estimate
of the spatial range of the pair correlations is obtained
from the 6rst term of the series. It gives

r-(k/M)-:(t, '+ts)f

and for t & t&, reduces essentially to the mean de Broglie
wavelength (k'P/2M)

'*=Xe. The expansion Eq. (62)
becomes impractical when 8 is close to one, in particular
for the Bose gas. For the latter and for 0&8—1(&1 a
more convenient expression has been obtained by
Placzek" for n (r,0); it can be used for rt (r, t) by
introducing it into the identity,

ep(r, t) =p I Np(r', 0)f(Ir r'I, t)d—r',

I'(r, t) =p(a' )s,{f(r, t)& (2ss+ I) 'N~(r, t)}
.{ +( t)}*+( )"' (6o)

The upper and lower signs refer to Bose and Fermi par-
ticles, respectively. The averages (a')A„and (a)A„' have
the same meaning as in Eq. (25). ss is the spin of the
particles in units of k. The functions f and rs~ are

"The various cases correspond to the possible signatures of
the stationary point of cd. (q) at q, :minimum, saddle point of one
of two types, maximum, respectively.

'8 This is shown for cubic crystals in reference 34.

and shows that the correlation range becomes of order
(8 1) 't9.e, thus increasin—g indefinitely as conden. sa-
tion is approached.

From Eq. (60) the difference between I" and its
asymptotic value p(a)A, s is seen to depend on the spin
through (a')A, only. This fact is obviously due to the
absence of spatial correlation between particles in dif-
ferent spin states. Applied to neutron scattering by

"G. Placzek, Proceedings of the Second Berkeley Symposium
on Mathematical Statistics and Probability (University of Cali-
fornia Press, Berkeley, 1951), pp. 581—588, especially Eq. (36).
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ti(r, t) = (2pr)
—'p '

~ exp( —i(k r—cost)}

~ (exp(APppp) —1} 'dk,

ep ——1—N(0,0) = 1—(p,/p),

where p, is the condensation density at temperature T.
The quantity p

—p, = happ, supposed to be positive, is the
density of the condensed phase. The asymptotic be-
havior of e is easily shown to be in Xr/r for r—+~ and
in (»/~i~)-: for i

In the derivation of Eq. (63), the only point which
is not quite elementary is the calculation of the thermal
average (1V Xp), where 1V, gs denote the number of
particles of momentum zero in spin states n, p (n, p= 1,

~ .2$p+1). With the help of generating functions for
the distribution of values of the Ã„'s, one easily shows
that

2$p+ 1 1
(&-&s)= (&.)'— (&-» («p)

2$p+ 2 2$p+ 1

2$p+ 1
(X ')=2 (1p')'+ (X ).

2$p+ 2 2$p+ 2

~ This remark holds of course also for isotope disorder. Other
terminologies, introduced by G. C. Wick, Physik. Z. 38, 689
(1937), and J. M. Cassels, Progr. Nuclear Phys. 1, 185 (1950),
have the same limitation.

2$p

nuclei with spin-dependent scattering length a, it
illustrates how little sense is made by the conventional
terminology of calling coherent (or incoherent) the
part of the scattering containing (a)A,' (or (u')A„—(a)A„'),
as soon as some correlation exists between spins, result-
ing either from symmetry requirements of the wave
function or from spin interactions. It is only for systems
of Boltzmann particles with free nuclear spins that this
terminology is physically reasonable. "

For a Bose gas in the condensation region, the pair
distribution F has the following expression:

I'(r, t) =p(a')p„[(f(r, i)+ (2$p+1) '(n(r, i)+ep)}
(N(r, t)+np)* —(2$p+1) Np j+p((a')A„—(u)A„')

X (2$p+2) 'np'+p(a)p, '. (63)

The function f is the same as above; ri and ep are
defined by

In the right-hand sides, the second terms can be
neglected in comparison with the first ones in the limit
of an infinite number of particles.

In the special case t=0, a;=1, Eqs. (60) and (63)
reduce to the instantaneous pair distributions derived
for ideal quantum gases by London. "

VII. CONCLUDING REMARKS

Our aims have been to introduce the time-dependent
generalization of the familiar pair distribution function,
to indicate its interest from the standpoint of statistical
mechanics, and to establish its role in scattering theory,
showing at the same time how slow neutron scattering
makes it experimentally accessible.

The use of scattering experiments for the study of the
pair distribution in space and time seems to us to be
of real interest for systems of nontrivial and poorly
known dynamical properties, mainly liquids and dense
gases. It is our hope that increasingly complete and
accurate data on such systems will become available.
The case of liquid helium, with its marked quantum
properties and its complex-valued pair distribution,
undoubtedly deserves special attention. 4'

From the theoretical standpoint, the determination
of the g (r) function in terms of the intermolecular forces
is well known to be a dificult and challenging problem
for liquids and dense gases. Both the difficulty and the
theoretical interest of a determination of the time-
dependent pair distribution are likely to be greater, in
view of the fact that the relaxation properties of the
system are involved. On a more modest scale, approxi-
mate discussions of the time dependence of G, based on
suitable models, would probably be instructive and
might provide considerable help in the analysis of scat-
tering experiments, since for some time to come, com-
plete angular and energy distributions will not be readily
measurable.

The author wishes to express his gratitude to Dr. G.
Placzek for many stimulating discussions and sug-
gestions on the various aspects of the present work.
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