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Compton Scattering*
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The canonical transformation of Bloch and Nordsieck is used to examine the infrared divergences present
in double Compton scattering and radiative corrections to single Compton scattering.

INTRODUCTION

SCHAFROTH' and subsequent authors" have dem-
onstrated that the infrared catastrophes which

exist in double Compton scattering and in the radiative
correction to single Compton scattering (to order e')
cancel each other identically. The divergence in the
former case results from real photons and that in the
latter from virtual photons. A quasi-philosophical
argument based on the inability of a photon detector
of finite resolution to distinguish between real and vir-
tual photons of extremely low energy has been sug-

gested. ' It is the purpose of this note to point out that
it is possible to find a canonical transformation which
will remove those terms in the interaction Hamiltonian
(nonrelativistic) between charged particles and the
photon field which cause the individual divergences.
The canonical transformation employed is a generaliza-
tion of that discussed by Block and Nordsieck this
transformation has been used successfully in dipole
approximation to discuss such diversified phenomena

as, for example, radiative corrections in electron scat-
tering' and radiative eGects in x-y decay. It seems

reasonable to discuss such low-energy divergences

using nonrelativistic theory; the high-energy diver-

gences which result in such a treatment are both ex-

pected and unavoidable.

REMOVAL OF THE INFRARED CATASTROPHES

It is well-known that the Bloch-Nordsieck trans-
formation when applied to the nonrelativistic Hamil-
tonian of nonbound charged particles interacting with a
photon field removes all terms linear in both (p/mpc)
and e; it produces, as a by-product, a nonrelativistic
analog of mass-renormalization of the charged par-
ticle. ' (We adopt the notation, mp= observable mass of
the charged particle. ) The proof of the above contention

is straightforward and is discussed elsewhere~ in some
detail; it is only sketched below.

The Hamiltonian for the system is chosen to be:
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The transformation when applied to II„aof Eq. (1)
yields:

The quantity bm/mp is the mass renormalization pa-
rameter which is proportional, in first approximation,
to e'. LThe remaining symbols in Eq. (1) have their
conventional meaning. ] A canonical transformation is
now performed on the Hamiltonian of Eq. (1) in the
following manner:
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Equation (4) is exact. The following commutation rela-

tionships are used in the derivation of Eq. (4) and
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subsequent expressions:
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The Hamiltonian of Eq. (9) contains no terms which will

lead to the long wavelength divergences in Compton
scattering mentioned above.

To demonstrate the appearance of the separate long-
wavelength divergences in the Compton processes in
the more usual perturbation treatment, it is necessary

(6) to return to Eq. (7) and expand exp(Rig) in a power
series in g.
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It is not possible to calculate the transformed term in

(p A) exactly since the commutator
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cannot be expressed in any convenient closed form. A
power series expansion in (e'/hc) is required and results
in Eq. (6). Finally, we evaluate
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The first-order (in a perturbation sense) matrix element
of the second term in Eq. (7c) yields a nonvanishing
result in the double Compton process. The cross section
calculated for the double process from this matrix
element contains a term which is logarithmically diver-
gent at long wavelengths:

where
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The first three terms in Eq. (7) lead to
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The last term in Eq. (7) is evaluated in a straight
forward manner and yields
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the value of the constant 8 depending on the cut-oG
value, k ' . We see that this term is interpretable as a
mass renormalization proportional to e4 and will be

where kp= wave number of incident photon, 0= angle of
scattering, and k ' —&0. The first-order matrix element
of the third term in Eq. (7c) yields a nonvanishing
result in the radiative correction to the single Compton
process; this matrix element is of fourth order in e and
when combined with the 6rst-order matrix element of
the first term in Eq. (7c) yields the cross section of
Eq. (10) with opposite sign. ' '

The author wishes to acknowledge many informative
discussions with Dr. H. Primakoff on the applicability
of the Bloch-Nordsieck transformation to a variety of
physical processes.


