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A prescription for constructing well-defined field operators from a single particle operator is given in a form
in which electrons and positrons appear in a symmetric way. Such a prescription removes certain trivial
infinities arising from the conventional “hole” theory approach. The canonical transformation derived in a
previous paper is used to calculate the vacuum expectation values of various operators to the second order in
electron charge. It is shown that, despite the fact that the scattering operator does not exist when the
electromagnetic field is constant in time, one obtains the usual results for current and charge densities. In
addition, the striking result is proved that for certain purely electrostatic fields the expectation values of the
number operator are finite but that when a magnetostatic field is also present the expectation values are

infinite.

1. INTRODUCTION

N a previous paper! we obtained an integro-difference
equation for the canonical transformation for an
electron-positron field, coupled to a time-independent
electromagnetic field in terms of single-particle trans-
formations or eigenfunctions. The canonical transforma-
tion for the field was solved to the second order in the
electron charge by means of a perturbation procedure.
The usual treatment of field problems is weighted with
implicit assumptions on the character of the operators
involved. It was the objective to present more explicitly
than is usually done the various assumptions made on
the spectra of the operators involved. That is, the
canonical transformation was found under the assump-
tion that the spectrum of the single-particle Hamiltonian
interacting with the electromagnetic field was the same
as that for the field-free Hamiltonian, and that the
electron-positron field interacting with the electro-
magnetic field could be described with the aid of

annihilation and creation operators of the same charac-

ter as those of the free electron-positron field.

This paper is to be regarded as a direct extension of
reference 1. We shall calculate the vacuum expectation
values of various operators to the second order. It will be
shown that, despite the fact that the scattering operator
does not exist, the expectation value of the charge and
current operators is the same as that obtained from a
scattering operator formalism, for example, that of
Schwinger.? In addition, we shall prove the surprising
result, mentioned in reference 1, that for electromagnetic
fields which consists of suitable electrostatic fields only,
the vacuum expectation of the number operator is finite
and the canonical transformation exists rigorously. It
will be shown, however, that when a magnetic field is
also present the vacuum expectation of the number
operator is infinite. A form of this proof is also given by
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Friedrichs® who treats the same problem from a different
point of view. :
2. FIELD OPERATORS

We shall now obtain expressions for field operators in
terms of the annihilation and creation operators A4%(s)
and B*(v). The field operators which we want can be
obtained from operators which occur in the single-
particle theory.

Let us introduce matrices L*(s; s’) for single-particle
operators L as given in the H© representation, i.e.,

Li(s; )= f O (X, u; $)LX O (X, w3 )dX, (1)
“

where LX'# is the single particle operator L in the X-
representation.

In the case of a simple fermion field a well-defined
field operator [L]4 can be constructed from single
particle operators L by means of the formula,

[L]A=ffL~*(s;s’)A+(s)A‘(s’)dsds'; 2)

(see, e.g., Friedrichs?).

It is essential that the creation and annihilation
operators appear in the order shown in (2) for operators
such as [L]4 to be defined. This fact motivates the
following definition for field operators which was sug-
gested by Friedrichs® for the case of the electron-
positron field.

[L]a= f f Lo(s; ) LA A=< () Jodsds’, (3)
where
[4(s)A=(s")]e=A(s)A~<(s") for €>0

=A47¢(s")A<(s) for €<0. (4)
#XK. O. Friedrichs, Mathematical Aspects of the Quantum Theory
gf Fields (Interscience Publishers, Inc., New York, 1953), Part V,
ec. 28.
4 K. O. Friedrichs, reference 3, Part II.
8 K. O. Friedrichs (private communication).
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The symmetric way in which electrons and positrons
were introduced and this prescription for obtaining field
operators makes it unnecessary to consider a positron as
being a “hole” in a ‘“sea” of electrons. Furthermore,
field operators obtained in this way have the desirable
property that the expectation value in a vacuum of any
such field operator [L]4 is given by

(Wo,[ L]4¥0)=0,

where V¥, is the vacuum state with respect to the
operator N, i.e., N¥,=0. It should be mentioned that
Snyder® has a similar prescription for obtaining well-
defined field operators, and Belinfante? has a similar
procedure for avoiding the ‘“hole” theory of the
positron.

One can also construct field operators using the
annihilation and creation operators B=®. The field
operator [ L]g is defined by

[L]s= f f Lo(0; o) [B(0) B~ (v)) Judode!, (5)

where L?(;9") is the matrix element of the single-
particle operator L in the H representation, i.e.,

Lo(o; ) =% f (X, 3 ) LXox (X, w3 o). (6)

We shall now give expressions for several field
operators, though we shall not use all of them. (See
earlier report by the author® for details of the deri-
vations.)

1. The unperturbed Hamiltonian 3C© of the electron-
positron field is obtained by using Eq. (3), where L is
taken to be the unperturbed single-particle Hamiltonian
H®, That is,

5O = [HOT,= f |E(s) | A+()A-()ds,  (7)

where E(s) is the eigenvalue of H©® correspondIng to the

case where the complete set of variables introduced in

reference 1 have the values collectively denoted by s. It

isuseful to note that for any state ® <> {¥,(s),}, we have
N

0 o 2 |E(s) [Wa(s)},

as is required in the more conventional treatment of the
problem.

2. The number operator N is obtained from Eq. (3)
by taking L to be EI, where I is the identity operator
and E is the operator H©/| H®|, whose eigenvalue is e.

8 H. S. Snyder, Phys. Rev. 78, 98 (1950).

" F. J. Belinfante, preprint “A’Positon Theory Without Holes”
(1953). The author is grateful to Professor Belinfante for making
thls preprint available to him. See also Phys. Rev. 93, 935 (1954).

8H. E. Moses, Report No. IMM-NYU No. 179, "Institute of
Mathematical Sc1ences, New York University, New York, 1952
(unpublished).

H. E. MOSES

Thus,
N=[EI 4= fA*’(s)A“ (s)ds, (8)

as required.

3. The charge operator Q is obtained from Eq. (3) by
taking L to be the single-particle operator el, where ¢ is
the electron charge. Then,

Q=[6I]A=fA*(S)A“(s)Se,#Zs

— fA‘L(s)A—(s)m, _ds

=e[N,—N_], ©

as required.
4. The current operator J; is obtained from Eq. (3)
where L is taken as L=eca;:

Ji=[eai]a= ef f a;i#(s; s)A(s)A=(s")8e, 1 dsds’

—e f f i (s; ) AH(S) A“(s)6w _dsds’,  (10)

where

as(s;s)=2 fi(")(X,u;s)ai"x“”(X,u;S’)dX- (11
»

In Eq. (11), @+ is the Dirac operator as expressed in the
familiar matrix form.

5. The field charge density operator p(X,) for the
charge density at X, is obtained by using for L the
single-particle charge density at X, namely, L%
=ed(X—Xo). That L¥#=e§(X—X,) is the single-
particle charge density is clear from the fact that if we
have the single-particle state ¥ (X, u), the expectation
value of L is

¥ f VX, ) LXRY (X, 1)dX = ¥ (Xo, w)¥(Xo, ),

which is just the charge density at X, usually assumed
in the single-particle theory.

From Eq. (3), and Egs. (15) and (15a) of reference 1,
we have

p(Xo)=e[6(Xop—
=e3 ff;‘c“”(Xo, ;5 9)xO(Xo, p; 57)
Xe[A(s)A~¢ (s") Jerdsds’
=3¢ [ET(Xo, 0)E~(Xo, u) —E~(Xo, )E+(Xo, 1) ]

X())]A

+%e[z 50 G0 159X 0,5 98,1

I

% [20 00 15 9% (o, s>ae,_ds]. (12)
u
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The first expression for p(X) can be used to show

[rxax=e,

asrequired. The second expression shows that the charge
density is substantially the Heisenberg charge density,
except that here the usually troublesome constant term
has been eliminated.

6. The field current density operator at X, which we
denote by 7:(Xo) is similarly obtained by choosing L as
LX#=eq;*§(X—X,). An expression analogous to that
for p(X) is obtained.

7. The total energy 3C is defined using expression (5)
with L equal to the single-particle Hamiltonian H. One
obtains

se=CHl= [ 1E0)| B+ @B-0)ds
We have

(13)

2 {g | E@)]£a(2)a),

where

N (Jl_l) {g‘n(‘v)n}

THE SCATTERING OPERATOR

In the scattering problems the total Hamiltonian is
split up into the sum of two parts one of which is the
unperturbed Hamiltonian and the other is the pertur-
bation. In terms of the field Hamiltonians this splitting
up is written

=3O+0. (14)

If there exists a class of solutions ® () of the Schrodinger
equation

¢E<I> ) =32 () (15)
at
such that the limits ®, exist where
o, = thm exp (#3C©@)d (¥), (16)
then the scattering operator .S is defined by
=S5P_. an

When the scattering operator exists one usually
formulates an initial value problem by prescribing ®_,
the state of the system in the infinite past, in the N
representation and by finding ®,, the state in the
infinite future, also usually in the V representation.

We shall show, however, that in our problem the
limits ®, do not exist and, therefore, that the scattering
operator cannot be defined. We proceed as follows: The
solution of Eq. (15) is

® () =exp(—1i150)®(0), (18)
or in terms of the M representation of the field,
$n(@)a()=exp[—it 3] IE(‘vi)I]g‘n(”)m (18a)
=1
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where
(0) (ﬁ_l) $n(0)ne

From Eq. (35) of reference 1, together with the
orthogonality relations (36), we can find ®(f) in the N
representation, namely,

\I’n(s) n (t) = Z; an’:n (7)) n's (S) ng‘n’ (‘U) n’ (t) (d‘v) n’e (19)

Hence, exp (it3¢@)®(f) as given in the NV representation
is, on using Eq. (18a),

exp(itic®)® (1) < explit 3 | B(s) | 1a(5)a ()

=% [T 9 explit(Z | 2650

—ZIE(v DD IXEw (2) (V) wr.

=1

(20)

If we let {— 4= in expression (20), the exponential
factor under the integral sign merely oscillates for terms
of the sum in which #»’ does not equal #. Such terms
arise because particles are being created or destroyed.
Hence the limits of exp (#3C@)®(¢) as t— o do not
exist, and thus the scattering does not exist in a true
sense. Generally speaking, scattering operators will not
exist in field-theoretical problems where the perturba-
tion is independent of the time. In order to have
scattering operators, the perturbation must be functions
of time which die out sufficiently rapidly as {— +=o.
This is the reason adiabatic switching on and off of the
perturbations is usually assumed.

Since the scattering operator does not exist in a
rigorous sense, we must resort to formulations of the
initial value problem other than that used when the
scattering operator exists. The most obvious formulation
is to prescribe ®(0) is the NV representation and to obtain
®(?) also in the N representation. For this purpose we
can use the canonical transformation of reference 1. If,
then, we have

2(0) > {¥n($)n},

where the functions ¥,(s), are prescribed, we have from
Eq. (35) of reference 1 and Egs. (18a) and (19) of the
present paper:

S ROROES > f B (") e (d5")
XZ] Tn':n(v,)n’: (S) nTn’:n"(v/)n’: (S") n'’

X exp{—it ; |E@)]} (@), (1)
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A second type of initial value problem is based on the
assumption of the validity of the adiabatic theorem for
quantized fields. If the theorem were valid, it would
state that if we prescribe an arbitrary state ® in the
infinite past as being given in the N representation by

(I) (;) {\I,"(s)n})

then at any finite time, i.e., after the electromagnetic
field has been switched on infinitely slowly, the solution
of the Schrodinger equation ®(¢) is given in the M
representation by

2(0)  {exp[—it | B0 ] (0.},

where the functions ¥,,(v) , are the same as those used to
describe ® in the IV representation.

The validity of the adiabatic theorem for fields has
not been discussed very much, though its validity is
often implicitly assumed. Friedrichs® has proved the
validity of the theorem for the case of a neutral meson
field coupled to a source.

If we assume the validity of the adiabatic theorem,
then we prescribe the state in the infinite past as given
above. Then, at any finite time, ®(¢) is given in the N
representation by

\I,”(s)"(t) = Z/ an’:n(v)n’ : (S) i, (‘U)":
Xexp[ —it mgll E(@)|]dv)n. (22)

The solutions of the Schrédinger equation given by
(21) or (22) will be described as belonging to the first
and second initial conditions respectively. That is, the
first and second initial conditions correspond to the
prescription of the state at {=0 and {=—c, re-
spectively.

4. VACUUM EXPECTATION OF VALUES OF
OPERATORS

We shall restrict ourselves to the case in which we
have a vacuum initially. That is, in (21) or (22)
(corresponding to the first or second initial conditions)
we shall set

\I/0= 1,
(23)
¥,.(s),=0 for n30.

We shall then indicate the results for the expectation
values for various operators to the second order in
electron charge e¢ when ¢— o. Such a calculation
simulates the results one would obtain if a scattering
operator existed. At finite time #, we have for the

9 K. O. Friedrichs, reference 3, Part III.
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expectation value of NV using the first initial condition

W= =42 [ [ 06555

X [cost(| E(s) |+ | E(s") | )— 11dsds".  (24)

If the interaction potentials are sufficiently smooth, the
oscillatory term will vanish by the Riemann-Lebesgue
theorem as ¢{— . Hence, for /= the expectation
value is given by

(N)py=4e? f f [u_ O (s; s")|2dsds’. (25)

Using the second boundary condition, we have for any
time ¢,

(N)e= 262ff lu_ @ (s; s")|2%dsds’. (26)

Since this expression is independent of the time, it will
also hold when ¢= o . It is to be noted that the expecta-
tion value obtained using the second initial condition is
just one-half that obtained using the first initial condi-
tion. Such factors also occur in a similar calculation of
Friedrichs in his treatment of the neutral meson field.?
This factor of one-half presumably occurs in many
problems in field theory.

It is to be further noted that the expressions for (V).
is within a factor just that for 7%.,®, which to the
second order is the only matrix element of the trans-
formation that might not be finite. Hence if (V) is
finite, the canonical transformation will exist to the
second order.

For the unperturbed Hamiltonian 3C©® corresponding
to the kinetic energy of the electron-positron field one
obtains, using the first initial condition, the result

we.=2¢ [ [ 1601

XLIE@) |+ E(s)] Jdsds’. - (27)

Using the second initial condition, one obtains just
one-half of the above result.

The expectation value of the charge density operator,
using either initial condition is given by

((X))o=2¢R Y f f 1O (53 O (X, 15 5)

XxO(X, u; s )dsds’, (28)
where R stands for the real part of what follows.
For the current density one obtains
({(X))u=2¢R S f D (s )
“
XxO(X, u;s)@x@ (X, u; s")dsds’. (29)



ELECTRON-POSITRON FIELD

5. EXPRESSIONS FOR THE EXPECTATION VALUES

We shall use the expressions for #® and x© to obtain
the expectation values as ordinary integrals instead of
the symbolic integrals used above.

From Egs. (32), (31), and (30) of reference 1 we find

U0 (55 = =BG |+ B T
XS [ K00, 43 90T e (0)

+¢(X)]X(O)(X1 .u;sl)dX'aé,—-ae’.-F'

We shall first calculate (p(X)),. Since it can be shown
that the vector potential contributes nothing, let us
assume 4 ;(X)=0. Substituting into (28) we have

(30)

()=~ 2R [ X6 (X)E &

dsds’

<JJ ST
CIEG) |+ [E(D]]

XxO X, 1’5 )X O (X, 5 5)

XX(O) (X) M3 S,)Be,——ae’,-i—-

OX, 5 9)

1)

To simplify this expression we shall use some properties
of the single-particle eigenfunctions x©@. First of all, we
now explicitly use the fact that the variable s consists of
the triple set of eigenvalues consisting of the momentum
vector P, the sign of the energy ¢, and spin component
in the direction of the momentum 7. Integrals over s are
to be replaced by summations and integrations as

follows:
fds=z > f dpP,

where dP is integration over the vector space P.
Furthermore, we note

E(s)= e(m*+PY)i= e (P), (32)
where
w(P)= (m?+P?)3. (32a)
We use
[E(s) | = (m*+P)i=w(P). (32b)
Hence, | E(s)| depends only on the vector P.
The eigenfunctions x@ (X, u; s) can be written
X (X, u; )=xO(X, u; P, 7, ¢)
=xO(u; P, 7, 9t X/(2m)},  (33)

where P-X is the inner product of the vectors P and X.
The coefficients x© (u; P, 7, €) are independent of X.
These are the usual “spinor coefficients” of the plane
wave.
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Equation (31) becomes

(p(X))o= b(X')

f j dPdp’
Lo (P)+w(P)]
XZZZZ[x“”(u P, 7, =)xO (u; P, 7, =)

ez(P——P’) (X—X')

XxO W' Py 7', )% (us Py 7, +) 1.

It can be shown that spinor coefficients satisfy the
following identity

2 X0 (u; Py 7, OO W, Py 7, €)

T

(34)

1
= (P)[c—w (P)o(w', u)

2ew

3
—Zl Pia(uy ) —mp', w) 1. (35)
P
In Eq. (35), P;(j=1,2,3) are the Cartesian compo-
nents of the momentum P. The quantities a#(u, p’) and
B*(u, u') are the elements of the usual Dirac matrices.
After substituting Eq. (35) into (34), we get traces of
products of the matrices e and 8*. Using the well-
known values of the traces of products of the Dirac
operators such as tra;=0, tra?=4, etc., we obtain the

result.
4R .
j f dPdP’

. 2e
(P(X))o= (2m

[—w(P)(P)+P-P'+m?]
o(P)w(P)w(P)+w(P)]
Xe & =0-XpF(P'—P), (36)

where ¢¥(P) is the Fourier transform of ¢(X), the
electrostatic potential.

o"(P)=

f ¢ X (X)dX. @37)

(2m)}

It should be noted that the integrand is almost an
invariant in four-dimensional space. It is convenient to
introduce new variables in the integrand, namely the
vector Py=P'— P and the vector P.

Then we have

2¢eR
(2mr)or2 ffdPldP

[—w(P)w(P+Pi)+w?*(P)+ P, -P]
w(P)w(P+Pi)[w(P)+w(P+P1)]
X e~ iPrXGF (Py).

(p(X))=

(36a)
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The result (36a) can be shown to be the same as the
usual one, for if one expands [—w(P)w(P+P1)+w(P)
+P1- P/ {w(P+P)[w(P)+w(P+P)]} in a series
about P1=0, one can evaluate the integral as a series,
each nonvanishing term of which, (aside from the first
nonvanishing term) corresponds to a term of the series
obtained by Schwinger [Eq. (2.47), reference 2] for the
time independent external charge. The first term of the
series obtained from (36a) is the usual logarithmically-
divergent charge renormalization. Hence, {(o(X))., as
obtained above is the usual result for polarization of the
vacuum.

If the vector potential 4 .;(X) is not identically zero,
one similarly obtains the usual result for (§;(X))e.

For the expectation value of ()., using, say, the first
initial condition (the second initial condition differs only
by a factor one-half) one finds in a manner similar to
that for {(p(X))., when the vector potential 4,;=0, the
following result:

(V)= —de? f f dPdP,

[6(P1) | —w(P)w(P+Py)+w*(P)4P;-P]
w(P)o(P+P)[w(P+P)+w(P)]

38)

As in the case of the integral for (p(X)),, one may
evaluate the integral by expanding [—w(P)w(P+P;)
+w?(P)+P-P)/{w(P+P)[w(P)+w(P+P:) T} as a
power series in P;. In contrast to the case of the integral
for {p(X)), the first, as well as all other, nonvanishing
terms arising after the integrations are finite for suitable
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electrostatic potentials ¢ (X). Hence (N),, is finite to the
second order. From this result Friedrichs (reference 3)
concludes {V),, is finite and the canonical transformation
exists to all orders. This result is true despite the fact
that (3C),, is infinite.

If the vector potential 4,(X) is not identically zero,
one obtains for (N), in addition to the term on the
right-hand side of (38) the terms

43272:_‘,1‘[‘[

dPdPy| A F (P) | [+ (P)w(P+P;)+w*(P)+ P, - P]
@(P)eo(P+P)[w(P)+w(P+P) T

where A;F(P;) is the Fourier transform of 4;(X). In
obtaining these terms we have used Lorentz condition
divA4 ;(X)=0. Otherwise the derivation is similar to that
used to obtain Eq. (38). On expanding [ +w (P)w(P+P;)
+w?(P)+Pi- P/ {w(P+P) o(P)+w(P+P)} in a
power series in P, and integrating with respect to P, one
obtains a divergent term for any nonzero functions
A ;(P1). Hence, when the vector potential is not zero,
(N), is infinite unless one uses a renormalization
procedure.

Since the number operator N is invariant under a
Lorentz transformation, we can generalize our result
and say that for a class of time-dependent potentials
¢(X,t), A:(X,?) which can be transformed by a
Lorentz transformation to a suitable electrostatic po-
tential, the expectation value (V) is finite, even though
the expectation values of other operators may be infinite.
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