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in a complicated way in the exponential function. A
preliminary examination of the variational problem
using the two-body potential discussed in Sec. III and
using one and two parameter variational functions was
not found to yield reasonable binding. The extremely
singular potentials of the meson theory render a simple
variational calculation rather inadequate. It is further
felt that the procedures of the Sec. III are simpler and
more accurate.

XLk k'c2 zs —tr, kXk'g, g2Xgs]e'ts'»+t "»&

+ (2 cyclic permutations on 1, 2, 3). (A17)

In taking the expectation value of the potential in an
uncorrelated medium, we need consider only the con-
tributions which arise from averaging over the angles of
r1&, r23, and rl2. This gives

APPENDIX B. THREE-BODY FORCES

The three-body potential can be obtained by evalu-

ating the matrix elements of the operator' (f2 ) 2 1
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where the operators h+, h act to create or annihilate
mesons respectively. The interaction term h we take to
be (neglecting the pair terms of the pseudoscalar
theory)

+ (all permutations of 1, 2, 3), (A18)

3

h= P —tr,"V~,"9 (r;).
where s= p1'13, s =pFq3.

(A16) The expectation value of this three-body potential has
i=i p been evaluated using the approximate methods of Drell

and Huang' and found to give only about —,', Mev of
The evaluation of the expression for V is simple and repulsion. The effect hence is negligible.
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With a partial wave analysis of the photomeson cross sections are combined the principle of charge inde-

pendence, the hypothesis of time reversibility, and the unitarity of the scattering matrix. This leads to a
natural starting point for the study of the photo cross sections. It also leads to some close relations between
the photoproduction and scattering of pions in that the complex phases of the matrix elements for photo-
production are explicitly given in terms of the scattering phase shifts. One consequence of this is that there
must be an 5-wave contribution to the m photoproduction on whose amplitude a lower limit can be given in
terms of the 5-wave pion-nucleon scattering. A second, independent lower limit on the S-wave term for the
m' cross sections can be expressed in terms of the n /7r+ ratio. Several other nontrivial conditions are imposed
on the cross sections.

I. INTRODUCTION

'HE purpose of the present note is to discuss cer-
tain general relations between photomeson pro-

duction and meson-nucleon scattering. These follow

from the restrictions imposed by the principle of charge
independence and by the usual symmetry conditions

on the scattering matrix )for example, its unitarity and

detailed reversibility j.
These arguments (the results of which are given in

Sec. II) are purely formal. They do, however, lead to a
number of spec@.c relations to be satisfied by the photo
cross sections, including two independent lower limits

on the S-wave term for neutral photomeson production.

One of these is a function of the S-wave meson-nucleon
scattering phase shifts. The S- and P-wave interference
terms for the photomeson cross sections are also ob-
tained as explicit functions of the scattering phase
shifts.

Some of the formal restrictions given here have re-
cently been obtained also by Ross. ' His analysis was
based on a rather specific model, however, whereas we

emphasize their very general nature. The present re-
sults have also been obtained independently by Fermi'

' M. Ross, Phys. Rev. 94, 454 (19S4l. I am indebted to Dr.
Ross for sending me his results prior to publication.

2 E. Fermi (unpublished), I am indebted to Professor Fermi for
informing me of his work.
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and by Aizu. ' We observe finally that our arguments
could be more simply made following the S-matrix
approach of Nakano and Nishijima. ' We have chosen a
different means of discussion t given in the Appendix]
for the sake of physical clarity. BrieRy stated, we argue
that the multipole matrix elements for photoproduction
are essentially rea/ quantities (in an appropriate repre-
sentation). Because of the meson-nucleon interaction
in the final state, the phases of the various meson partial
waves are shifted relative to each other by t;he amount
of the scattering phase shifts. The interference of these
waves in the photo cross section is thus dependent on
the scattering phase shifts.

Since the photoproduction of x mesons from free
neutrons cannot be easily done, this reaction would
seem to be most easily studied using deuterium. For
this reason it is necessary to say something about the
role played by the deuteron binding on the cross sec-
tions. In Sec. IV we shall show that on the basis of
some rather general assumptions the observed s. /s+
ratio from deuterium should be the same as from free
neutrons and protons as long as the cross sections are
being studied near the energetic threshold.

II. THE FORMAL REQUIREMENTS ON THE
CROSS SECTIONS

We shall suppose the p-ray energy to be low enough
that only final S and P waves for the meson with
respect to the nucleon need be considered. ' ' We denote
the momentum vectors of the photon and meson by x
and q, respectively. By e we denote the polarization
vector of the photon. Then, following the notation of
reference 5 we may write the scattering matrix for
photoproduction as

T=Ao e B[ irr (vX—e)X—q+(xXe) q]z 'q '

Cfi rr (v.X e) Xq+—2 (xX e) q]z 'q—'

+-,'&)~ ~' q+~ e~ q]z-'q-', (1)

where e is the nucleon spin operator. The coefficients

A, 8, C, and E are complex numbers which are func-
tions of q and represent the strength of the various
multipole moments for the interaction of the p ray.
The electric dipole absorption strength to produce an
S-state meson is given by A. The 8 and C terms de-
scribe magnetic dipole absorption of the p ray with
emission of the meson into a P state, the total angular
momentum being j= ~ and j=-,', respectively. The
electric quadrupole absorption to produce a P-state
meson in the j=—,

' state is represented by the E term.
There is some theoretical reason' for feeling that the
electric quadrupole term can be neglected.

s K. Aizu (unpublished). I am indebted to Professor C. N. Yang
for informing me of Aizu's analysis, which was presented at the
Japanese Conference on High Energy Physics in the Fall of 1953
(unpublished).

4 T. Nakano and K. Nishijima, Progr. Theoret. Phys. (Japan)
8, 53 (1952).' K. Brueckner and K. Watson, Phys. Rev. 86, 923 (1952).' B.T. Feld, Phys. Rev. 89, 330 (1953).

The four basic photomeson reactions are:

7+~++I
y+e-+n. +p,
v+p~'+ p,

y+ ri~e+rs

(2)

We shall use the superscripts "+," "—," or "0" to
indicate the first three processes, respectively. The
fourth will be designated by (rs~').

For each of these four processes we may expect a
different matrix T of the form of Eq. (1). If we make
use of the charge independence hypothesis, these T's
are not independent, but satisfy the relationships'

T+= L~2t,+ (1/~2) t,]—v2S

T-=
t v2ts+(1/&2)ti]+&2S

T'= (2ts —-', ti]+S
T(res) = L2t,—-', t,,]—S.

(3)

Thus the four scattering matrices T depend upon the
three quantities t3, t~, and S, which themselves are
undetermined by the symmetry principle alone. The
term S arises from nucleon recoil and leads to final
meson-nucleon states of isotopic spin I= —,', only. t3 and
t~ describe the pure isotopic spin states I=—', and I=-'„
respectively, for the final state containing the meson
and nucleon.

Evidently, if we combine Eqs. (1) and (3), the latter
equations will represent conditions on the coeKcients
A, B, C, and E of Eq. (1) on introducing the appro-
priate notation for the t's and S. Thus let

describe the amplitude for producing a final I=—,
' state

with angular momentum j and orbital angular mo-
mentum l. Similarly, ts(j, l,@) is the amplitude for a
final I=ss state with the same total (and orbital)
angular momentum. In these expressions P represents
the p-ray multipole transition and for Eq. (1) may be:

P = ei —electric dipole,
= vs~ —magnetic dipole,
= e2—electric quadrupole.

With this notation, Eqs. (3) imply that the A of
Eq. (1) may be written as

A+=
t v2ts(s, O,ei)+ (1/v2)ti(-'„O, ei)]—%2S(-'„O,et),

A'= $2ts(-,',O, ei) ——,'tt(z', O,ei)]+S(-', ,O,ei);

A is obtained from A+ and A(n~') from A by
changing the sign of S t see Eqs. (3)].B, C, and E have
the same structure but involve (j=z, l=1, p=mi),
(j=z, l=1, y=mi), and (j=s, 1=1, y=es), re-
spectively.

r K. M. Watson, Phys. Rev. 85, 852 (1952).
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A+=i v2e'~ad +e'~& —v2gD

1
E"=i v2e' »Ea'+e' » E* vg—)E,i-.@2e'&X

The t's and S's represent twelve complex functions in detail the coefficients A, B, C, and E of Eq. (1):
of q which are completely undetermined by the sym-
metry principles used thus far. The importance of
introducing these quantities is, however, that their v2
complex phases can be calculated explicitly in terms of
the phase shift for meson-nucleon scattering in the
appropriate final state. This is done in the Appendix )1
and depends upon the assumed unitarity of the scatter-
ing matrix fS=1+27riTj and the principle of time
reversibility for dynamical systems. C+=%2e' »M3&+e' "—Mi&—v25Mi&,

From the results in the Appendix each 3 and S in

Eqs. (4) can be written as

t, (-;,1,m, ) =e'.»M, ~,

ti(-'„1,mi) =e' "cVi&,

S(2,1,mi) = e' »83IIi'*)

t3( 21,e )2=ie'~»E3t,

S(-'„1,em) = ie' »8Ei'*.

t3(~,1,mi) = e' 3'3ll3'*

ti(-'„1,mi) =e' »3li'

S(-'„1,m,) = e' »5Mi-: (6)

ti (3~,1,e~) =ie f~»Ei&,

These n's are the P-wave phase shifts used by Fermi
et al. (The first subscript is twice the isotopic spin,
the second is twice the total angular momentum. )
These terms correspond to magnetic dipole absorption
of the p ray. The M's Bf's, E's, and 8E»' are real
functions of q, which vary linearly with g near the
energetic threshold but are otherwise undetermined (as
are d3, di, and 8D) by our symmetry arguments (pre-
sumably a dynamical theory is required to determine
these).

We may now use Eqs. (3), (5), and (6) to write out

'Anderson, Fermi, Martin, and Nasle, Phys. Rev. 91, 155
(1953}.

where p and S are real and p is determined by the phase
shifts for meson-nucleon scattering. (Of course, all the
I,'s and S's are undetermined to within a common,
irrelevant phase factor. ) Thus

t~(-', ,O, ei) = ie' Sd3,

t, (-'„O,ei) =ie™d,
S(~i,O, ei) =ie™bD

where o.3 and o.» are the phase shifts used by Anderson,

Fermi, Martin, and Nagle' to describe the S-wave

pion scattering in the I=
& and I=—,

' states, respectively.
The d», d3, and bD are real functions of q, and near the
energetic threshold they are constant. These refer to
electric dipole absorption of the p ray. The phase
shifts n» and 0,3 are to be evaluated at the energy of the
meson and nucleon (referred to the center-of-mass

system) in the final state.
The remaining 3's and S's, as obtained in the Ap-

pendix, are

and
A'=i{2e' 'd3 —e' '(-,'di —8D) }
Bo= 2ei~»i}Iran —e&~»(1~ —' Qf -')

C'= 2e". M, —:—e'- (-'cV, '*—aV,—:)

Eo= j{2e&»Ess—ei~l&(—Eis —gEif) }

(8)

(1+v/M)'
(12)

to the usual density of states factor.
Making use of the energy dependence, four e's in

Eq. (11) can in principle be determined for each of the
four basic photo cross sections. This gives a total of
16 coeKcients which are expressed. ig, terms of the 12 d's,
3f's, C's, bD, 6E»&, and SM's.

The matrix elements A, 8, C, and 8 for the e~
reaction are obtained from those of Eqs. (7) by chang-
ing the signs of 6D, 53EI»&, 835»:, and 8E»:. To obtain
A (e~'), B(it—+m'), C(e~'), and E(n~') we again
change the sign of 8D, e3fi', 8Mi', and 8Ei'* in Eqs. (8).

The diGerential cross section, as obtained from Eq.
(1) is (t} is the angle between q and x)

0 (tt) = (q/pc) 0 0{[ A
)
'+

~

B j
'+P C

~

'(5 —3 cos't})

+2 ImLA*(C —B)j cos8—ReLB*C)(3 cos'lt —1)
+Re[A*Ej cosH ,' ImL—E*—(B—C) j(3 cos't}—1)

+—'
i
E

i
'(1+cos't})} (9)

Here "Im" means "imaginary part of" and "Re"
means "real part of." The factor before the bracket is
chosen to make A, 8, C, and E dimensionless and of
order unity. For this purpose we arbitrarily take

oo=1.1(10) ', cm'/sterad. (10)

An alternate form for Eq. (9) is

0 (&)= (q/pc)0'o{eo+e2'+e2 cos'0+ei coso}, (11)

where eo is defined to be ~A ~' and thus represents the
5-state term, which is constant near the energetic
threshold. e2' and e2 vary as (q/pc)' and ei as (q/tic)
near threshold.

For energies not near threshold it may be desirable
to include in 0-0 the kinematical "recoil correction, "
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As in Eq. (9) we shall continue to denote differential
cross sections by o(8). Total cross sections will be
indicated by o. We shall use +, —,0, and ri—+sr' to
designate the four reactions of expressions (2).

In Sec. IV we shall give some discussion of the photo-
production of mesons from deuterons, which may give
some information concerning these reactions.

(R(8) =o-(8)/o+(8) or (jl= o-/o+, (13)

near threshold, and the other depends upon the S-wave
pion-nucleon scattering amplitudes. The first depends
upon the fact that R(8) can diBer from unity only if
one or more of the "nucleon recoil" terms bD, Sly', or
SM~' is different from zero. These quantities are also
present, however, in the so amplitudes of Eqs. (8). The
second lower limit depends upon the observation that
it is imPossible to make a choice of the "parameters"
d~, dt, and 5D in such a manner that I see Eqs. (7)
and (8)]

A+/0 and A'= 0

(unless ni= as, which is certainly not the case,"'except
at some specif'ic energies).

Returning to Eq. (13) we note that if

8D=O,

then R can dier from unity only when P-wave con-
tributions are important and we must have

(jl= 1+(g/lic) s times a constant

near threshold. Such a striking energy dependence
should not be dificult to detect. It seems more reason-
able, however, to assume that 6D/0, so we suppose

(jl= 1+a,

where e is a constant (near threshold). Let us now define
[see Eqs. (7) and (8)$

D=%2ds+ (1/v2) di, —
Do= 283—

~ ly.

These are real quantities which are constant near
threshold. The smallness of the S-wave term in 0'

' A. Silverman and M. Stearns, Phys. Rev. 88, 1225 (1952).' Goldschmidt-Clermont, Osborne, and Scott, Phys. Rev. 89,
329 (1953).

"G. Bernardini, Phys. Rev. 93, 930 (1954).
'~ Bodansky, Sachs, and Steinberger, Phys. Rev. 93, 1367

(1954);J. Tinlot and A. Roberts, Phys. Rev. 90, 951 (1953).

III. DISCUSSION OF THE CROSS SECTIONS

Among the implications of the analysis just given
two of the most interesting have to do with the S-wave
contribution to the x' cross sections. It is known that
this is much smaller, ' " near threshold than is the S-
wave term for the x+ cross sections. "Nevertheless, we
shall be able to establish two, independent lower limits
on the S-wave amplitudes for producing x' mesons.
One results from the m /m+ ratio,

implies that
Dp&(D) (16)

(close to threshold) so to a 6rst approximation

li= 483)
(17)

8D™(e/4~2D. (20)

Since e is probably appreciably less than unity, "
Eq. (20) leads us to expect that 5D&(D, and that per-
haps 8D and Dp are of about the same magnitude.
Knowledge of bD would also permit us to put a lower
limit on the average of the ws cross sections Lsee Eqs.
(19)j:
', f~'+~(-n +n')]&—(g/pc)o. sbD' o+(e'/32) (1+-',e). (21)

(A more specific discussion is given as "Model I"
below. )

Returning to the general equations (7) and (8), it is
instructive to put a lower limit on

I
As I' by treating dt,

ds, and bD as adjustable parameters. We minimize
subject to the condition that IA+I' is held constant.
This leads to the mieimgm value, "

I
A'I'/I A+ I'& s —3 cos'(~i —~s) (Li+8 cos'(~t —~s)1'

+1+2 cos'(ar —ns) } '. (22)

Expression (22) increases from a zero lower limit at
Gy —Q3= 0 to

IA'I'/IA+I' &-:,

at
I
ni —ns I

= s./2. The right-hand side of (22) is
plotted in Fig. 1. Remembering that (22) represents
only a lower limit, we must be prepared to expect that
IA'I' will not be at all negligible for a considerable
range of &-ray energies. Indeed, when (ni —mrs) is not
small, Eq. (22) implies that IA'I' and IA+I' are of

"Equation (22) also represents a lower limit on (jA'j'
+ jA( &'I)s' /j(}[A+ +jjAj'}, subject to the condition that
the denominator is held constant.

ds= (1/342)D.

Then, in the energy range for which o.~ and n3 are small

A+= ie' '(D —V28D+-s'DL —i(crt —ns

CX]
—

CX3

Ao=is'- (D,+ 8D+(vr/3)DI —i(,—,)
(18)

CXy
—A3 ~

The matrix elements of A and A(n~') are obtained
by changing the sign of 6D. From this we obtain the
cross sections very near threshold:

o+(8) = (g/lic) o sj D—428DP',

o.—(8) = (g/pc) «I D+V25D)'

a'(8) = (g/IJc)oe/De+bDj',
(19).(8) (n~ ) = (g/l c)«(D. 8D)', —

which are independent of 0.
Comparison with Eq. (14) shows that
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The justification for this model is that one might expect
a much smaller electric dipole moment for the (n~')
process than for the (p~s) process. As we expect Ds
and 8D to be comparable in magnitude we may hope
that Eq. (24) is in any case qualitatively correct.

Using Eq. (24) and Eqs. (19) and (20) we would
conclude that

~'= o+(e'/8) (1+-'e) (25)
0.2

0
0' 30'

Q -Q
60 90'

Fxo. 1. The solid curve represents the square root of the expres-
sion (22). This is a lower limit on the ratio of the i

' to the s.+
S-wave amplitudes for photoproduction. The dotted curve is the
square root of the same ratio obtained from Eq. (23). These
curves permit an indication of the S-wave-I'-wave interference.

and
IA+I yIAoI =D,

I
A'I'= (4/9)D'I 1—cos(n, —n,)]. (23)

Using these equations we again calculate IA'I/I A+I.
This result is also plotted in I'"ig. 1. We note that for

I ni —crs
I
(60' this does not difFer very much from that

value obtained from the inequality (22).
An upper bound may also easily be obtained for

IA'I/IA+I. This is just the reciprocal of the expres-
sion (22). Thus both upper and lower limits for this
ratio are determined by the phase shifts ei and n3. Not
only does this hold for the electric dipole amplitudes,
but all the other multipole transition terms are like-
wise restricted by the expression (22) and its reciprocal
if we replace e~ and n3 by the appropriate scattering
phase shifts.

As mentioned above it is reasonable to expect Dp
and 0D to have comparable magnitudes. Since it is
sometimes helpful to try definite models, we shall
introduce'4 (to avoid confusion we shall explicitly
mention it when using a model hereafter):

Model I:Dp=8D. (24)
'4 This model was suggested to the author by G. Sernardini.

about the same size. This has a simple physical origin—
when charge-exchange scattering (which depends upon
rrt —ns) is important, a meson which originally was
produced with a charge may lose this via charge-
exchange scattering before being emitted. Thus, even if
there were no mechanism for directly producing x
mesons, they would still be emitted as a result of charge-
exchange interactions.

Another estimate of
I

A'
I

can be obtained. by taking
D constant and Ds=8D=O for all energies tsee Eq.
(15)].This neglects any contribution from expression
(21) to the 5 wave in o', so it also may very well under-
estimate IA'I. We now obtain

as long as only S waves need be considered and (crt —ns)
~0.Thus the value of o' could be obtained from (o /o.+)
and o-+.

The S wave for x' production will probably be most
easily detected through its interference with the I'-
wave term. The interference term may be readily
calculated from Eqs. (7), (8), and (9). These expres-
sions are particularly simple if we were to assume:

Model II: The predominant P-wave term is' M3&.

Then

ImI A+*(C+—8+)]= —&2(cos (crs —nss)&2ds

+ cos(crt — )I (d /K2) —V28D])Ms','
(26)ImLA'*(O' —8')]= —2 (cos (ns —nss) 2ds

—cos(ar —ass) (-,'dr —8D))Ms*'.

I For the corresponding case with electric quadrupole
radiation, Ms i should be replaced by (3Es' —-', Es')—Eqs.
(7), (8), and (9).] If the phase shift nss goes through
90', we may expect a change in the sign of these inter-
ference terms. Since the experimental o+(8) shows con-
structive interference in the backward direction near
threshold, we conclude that ImLA+*(C+ —8+)] is
negative in this energy range. If Model I is valid,
Im[A'*(O' —8')] is also negative. Indeed, if we com-
bine Models I and II, we can give an explicit expression
for the p—&x' cross section:

'(8) = (V/f ) ( o+ l(q/f )'
X I

0.14]I 5—3 cos'8]+et cos8), (27)

I.O

0.8

0.6-

0.4-

0.2-

0.0 I s I

I 05 I 80 2IO 240 270 300 3307- RAY ENERGY (MEV)
IN LABORATORY

Pro. 2. The square root of the ratio of S- to I'-wave contribu-
tions to the total s-' cross section. The expression (28) is that
plotted Curves (A), (.B), and (C) refer, respectively, to the value
of expression (28) for the Fermi-Metropolis, the Glicksman, and
the Martin scattering phase shifts, respectively, (see reference
15). These curves are essentially the ratio of 5- to I'-wave ampli-
tudes.
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where

es='s e'(1+-', e)+ [4/9 —-,'e][1—cos(o i—ns) ],
ei —(q/IIc) [0.37]((e/V2) cos(ns n—ss)

—s&2[cos(ni —nss) —cos(ns —nss)]}.
Equation (27) represents a combination of our two
lower limits on

~

A
~

. That is, the approximate equality
of expressions (22) and (23) (see Fig. 1) suggests that
we may reasonably take D, Do, and 8D constant, since
the dependence on ~ni —ns

~

seems to be so important.
These three parameters are then Axed by 0+ and the
w /s.+ ratio, R=1+e, at threshold if we use Model I
[which is not unlikely to be at least qualitatively
correct). When ~ni —ns~ is not small, expression (22)
determines the value of es factually, Eq. (23), to which
es essentially reduces when the e terms are negligible]
and is not dependent on our use of Model I. We shall
discuss below the sensitivity of Eq. (27) to our use of
Model II.

The numerical coefficients in Eq. (27) were obtained
using Eq. (25) and the experimental" value of o+ for
the S-wave amplitude and the 0' cross sections' " at
somewhat higher energies for the E-wave amplitude.

For an indication of the order of magnitude of the
various terms in Eq. (27), we have plotted in Fig. 2
the quantity

[es(0.28(q!Irc)'} ')'*, (28)

which is the ratio of 5- to E-wave amplitudes, for the
Fermi-Metropolis, Glicksman, and Martin" scattering
phase shifts. The S-wave term is evidently not negligible.

In Fig. 3 we have plotted the angular asymmetry
ratio (i.e., the ratio of the number of mesons produced
in the forward hemisphere to those in the backward
hemisphere), as deduced from Eq. (27) for the above
three sets of scattering phase shifts.

We should now like to argue that, with the possible
exception of the [5—3 cos'0) angular depe~de~ce, Eq.
(27) may very well give us a reasonable description of
the cross section o'(0). The value of ee is independent of
our assumption that only M3& leads to E'-wave produc-
tion and so are Eq. (28) and the resulting curves of
Fig. (2) [to the extent that the total cross section o' is
known experimentally].

On the other hand, the value of e~ is dependent on
our assumption that only M3: is of importance —how-
ever, not as much so as might appear. Had we included
the other possible multipole terms, e~ would be replaced
by a sum of terms of the form given in Eq. (27), one
for each multipole and meson partial wave state. Each
of these terms would be obtained by replacing o.» in
Eq. (27) by the appropriate phase shift and modifying
the coefficient [0.37) to correspond to the actual multi-
pole strength.

At low energies, for which the phase shifts are small,
"E Fermi and N. . Metropolis (unpublished). R. L. Martin,

Phys. Rev. 94, 765 (1954). M. Glickmsan, reported by H. Bethe
at the 1954 Rochester Conference on High Energy Physics (to
be included in the proceedings of the conference).
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FLG. 3. The ratio of the number of ~' mesons produced in the
forward hemisphere to that in the backward hemisphere (in the
center-of-mass system) is given as a function of the p-ray energy
in the laboratory system. The curves (A), (B), and (C) refer to
the same sets of phase shifts as the corresponding curves of Fig. 2.
This ratio was obtained from Eq. (27).

these terms will add together to give an expression of
the form

(V/Ii~) [0.37)(e/K2),

except for an uncertainty in the actual value of the
coefficient [0.37]. e& will deviate from this value only
when some of the phase shifts become large. To the
extent that o,» is the important P-wave phase shift we
can expect the M3& term to determine then the be-
havior of ei, at least qualitatively [the coefficient (0.37)
may of course be modified somewhat). The degree to
which this argument is valid depends, naturally, on
the actual values of the phase shifts.

We may now summarize our arguments by stating
that we feel Eq. (27) to be a reasonable estimate for
the actual x cross section as long as higher partial
waves are not important. It seems likely that the
term

~

A'
~

is not much greater than its lower limit since
it has not shown up experimentally. Figures 1 and 2
indicate that

~

A'~ is large enough to be detected rather
easily via its interference with the I' wave. Figure 3
implies that this interference is smaller between 220
and 280 Mev than might have been thought from Fig. 2.
This results from the special form of ei in Eq. (27).
The absence of any reported asymmetry about 90' in
the experimental cross sections obtained to date is
probably not inconsistent with Eq. (27), but may very
well prove to be incompatible with some of the sug-
gested sets of phase shifts (see Fig. 3).

The x+ cross sections can evidently be analyzed in
the same manner. Since this has been done by Ross, '
we shall not repeat the arguments. We do emphasize
again, however, that the photo cross sections are sensi-
tive as to the choice of scattering phase shifts and may
help in making a choice between alternate sets of these.

A third model may prove useful in the analysis of
the cross sections. This model would imply that we
replace Eqs. (5) and (6) by [at least for positive phase
shifts):
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Model III: We then write the transition matrix for producing a
meson from a free nucleon )either nucleon "1" or
nucleon "2"]as

(29) T+=D"f(q){r&"+e& e expt i(x—q) zi)
+r &'&+n's e expLi(x —q) zs]}. (30)

etc., where d~', 3f3",etc., are constant, real numbers. The
arguments for Model III have been discussed in some
detail previously. " Equations (29) evidently give the
correct energy dependence near threshold. Also, if o.33

describes simple resonant scattering, then ts(ss, 1,$) has
the form expected from the theory of resonance re-
actions. "It is not easy to justify Model III on general
grounds over an extended energy range. However, it
may provide a useful hypothesis for studying the cross
sections in certain energy ranges. "

We may obviously apply our general framework for
analyzing the cross sections to other models. For in-
stance, one might try using one of the approximations
to meson theory to deduce certain additional relations
among our parameters.

IV. THE PRODUCTION OF CHARGED MESONS
FROM DEUTERONS

It seems that the study of the (z /z. +) ratio, (R(8)
can be most easily done with a deuterium target. To
interpret such results it is necessary to study the eGect
of the deuteron binding on (R. We shall conclude that
near threshold the observed (R(e) from deuterium should
be the same as that from free protons and neutrons if
certain general conditions are met. These conditions are
subject to an experimental test.

We shall assume: (1) The electromagnetic inter-
action which produces a meson is the same for a
nucleon bound in a deuteron as for a free nucleon. This
is essentially the "impulse approximation. '"' Once
produced, the meson may undergo a complicated
interaction with the two nucleons, however.

(2) The energy range studied can be taken low
enough that only mesons produced into 5 states t with
respect to the nucleon from which they were produced)
need be considered. We further assume that direct +
production with exchange scattering to produce a
charged meson is negligible )partly because of the small-
ness of the S-wave term in m' production and partly
because of the estimated smallness of such an exchange
process at low energies]. We finally assume that the
S-wave matrix element is essentially constant for the
energy range involved.

(3) Coulomb forces are neglected, which means that
the meson energy must be at least a few Mev.

"K.Watson, Phys. Rev. 88, 1163 (1952).
"G. Bernardini (private communication), has suggested that

on the basis of this model the v /s+ ratio should reQect any
marked energy dependence in the phase shift e&."G. Chew and M. Goldberger, Phys. Rev. 87, 778 (1952).

The superscripts "+"or "—"refer, as usual, to the
charge of the meson produced, the r's are the appro-
priate isotopic spin operators, and z~ and z2 are the
coordinates of the two nucleons. We have used assump-
tion (2) above to express the dependence of T on charge
by the real, dimensionless constants D and D, which
are of order unity.

Thus the ratio (R of Eq. (13) is in this notation

(R(8) = (R= (D-/D+) s.

We now define a modified operator, To, by

Ts= T+/D+.

(31)

(32)

This, in turn, implies that the observed z. /s.+ ratio

'~ N. M. Kroll and L. L. Foldy, Phys. Rev. 88, 1177 (1952).
-"'There is an approximation involved at this point. That is,

it is assumed that double charge exchange scattering is negligible.
This would permit a m meson to become a x+ meson after two
charge exchanges, for instance. Estimates indicate that this type
of process gives only about a 1 percent contribution near
threshold.

With an appropriate choice of phases, we can write

Ts= f(q)(r, o&o& e expr i(te q) —si]
+r, "&os e expri(r. q) —ss]), (33)

which describes the production of mesons of either
charge. We shall now consider the production of pions
from deuterons using To as the basis mechanism for
their production. We suppose that all other inter-
actions involved are charge independent Lactually, we
need require only charge symmetry].

Let Tp(d) be the resulting transition matrix for
producing charged mesons in deuterium. Tp(d) is Lsee
Eq. (33)] invariant with respect to the charge-sym-
metry operator E which represents a rotation through
an angle of 180' about the x axis in charge space:

Tp(d) =E, 'Tp(d)R, .

But E interchanges neutrons and protons and positive
and negative mesons. "Thus,

(34)

to within a phase factor.
Since the electromagnetic interaction is weak, Ts(d)

is linear in To. Therefore, the actual matrix elements
in deuterium, T(d), can be obtained from Ts(d) by
multiplying by the appropriate constants D+ )see
Eq. (32)]":
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from deuterium should be

.+~--(8)

„,.g) &D+)
(36)

which is what we set out to demonstrate.
The model implied by assumptions (1) and (2)

permits detailed calculations of the cross sections
o~+d -(8) and o~+q +(()) The formal method has been
developed previously. " This involves a calculation of
the multiple scattering of the meson before it "leaves"
the nucleons. Estimates of the importance of this
multiple scattering indicate that it may give corrections
of only about 10 percent to the calculation of Chew
and Lewis" and Lax and Feshbach, "who neglected it.
It is thus reasonable to use the calculation of these
authors to check the validity of the model. A simple
consequence of this model is that o.~+q -(8)/o.~~q, +(8)
should be irbdeperbderbt of angle near threshold, as is
implied by Eq. (36).

The author is indebted to Professor G. Bernardini
for several discussions of his experimental program,
which provided much of the stimulus for this investiga-
tion. He is indebted to Professor R. G. Sachs for several
stimulating discussions of the problems treated. He is
also indebted to Professor M. Gell-Mann for pointing
out a diferent derivation than that given here as well
as some additional consequences of the arguments. $

T,b= (O', V+b), (A-1)

since V is a (weak) electromagnetic interaction. No
approximation is implied concerning the states 4 and
%b. Since +, can be factored into a "nucleon wave

"K.Watson, Phys. Rev. 89, 575 (1953).
ss G. Chew and H. Lewis, Phys. Rev. 84, 7'79 (1951).
s' M. Lax and II. Feshbach, Phys. Rev. 88, 509 (1952).
t In particular, I should like to thank Professor Gell-Mann for

noting a numerical error in one of the coe%cients of Eq. (9) in the
original manuscript /which was also in reference 5j.

APPENDIX. DISCUSSION OF THE PHASES

To derive Eqs. (5), (6), and (12), we shall suppose
that photomeson production can be developed within
the general framework of quantum mechanics. We
suppose the system to be described by a Hamiltonian
H+ V, where V represents the interaction of the electro-
magnetic field with the pertinent particles and B' repre-
sents the -remainder of the Hamiltonian. Evidently,
photomeson production may be described as a transi-
tion between two eigenstates of B', say "a" and "b,"
which represent, respectively, the physical states con-
taining a nucleon and a y ray and a nucleon and a m,eson.
Let 'the respective eigenvectors be + and %b, which
are expected to be extremely complex at small dis-
tances (possibly containing virtual heavy mesons, V
particles, etc.), but upon which physical requirements
impose known asymptotic forms at large distances.

We then have for the transition matrix for radiative
absorption,

function" and a "photon wave function, " we can ab-
sorb the photon wave function in the definition of V
in Eq. (A-1). This will permit us to consider 4 as
describing only a (physical) nucleon, which will simplify
our subsequent discussion.

The transition matrix for photoproduction, Tb„ is'4

Tb. (+b t———l, V%.), (A-2)

where +b& & is related to 0'b by the Wigner" time re-
versal operator E:

i &~eh& ) =Z+( b). (A-3)

Here M is the azimuthal component of the nucleon spin
wave function h~ when referred to the direction q of
the meson as the axis of quantization. The state "(—b)"
is obtained from "b" by reversing the direction of all
momenta and angular momenta. The choice (A-3) of
phases is particularly convenient, since it implies that
when +b is a plane wave,

—&iq xgllII
)

we have
+bC ) —Qb

(using the customary representation for E).
We shall calculate Tb, $Eq. (A-2)j by breaking the

state %b into partial wave eigenstates of the angular
momentum / and the total angular momentum j of the
meson-nucleon system. Equations (A-1) and (A-2) evi-
dently remain valid whether% b (and%'bt &) refer to inci-
dent plane waves or to separate eigenstates of j and l.
As a matter of fact, for pure eigenstates of (j,l) which have
no accidental degeneracies (which seems forbidden by
physical requirements) the state +b is unique This.
means that Nb& ', which is also a solution of the
Schrodinger equation with the same eigenvalues can
diGer from 0 b only by a constant phase factor, which
can evidently be calculated from just the asymptotic
form of %b. (That we can calculate this phase from just
the asymptotic form of 0 b is perhaps the most crucial
point in our analysis. )

To calculate these phases, we suppose +b to repre-
sent a pure isotopic spin state and write its explicit
form for an incident plane wave (when the meson and
nucleon are far apart)

@b(r~~)=fs&(qr) 8~+3f~'(qr)Aisle

+3f,&(gr)A;~+ . (A-4)

Here r is the relative coordinate of the meson and
nucleon and fq&'(qr) is the radial wave function for
scattering in the state (j,l). The h.;~'s are eigenstates
of j and may be written

At~=-', ( r/r) ( q/q) B~
(A-5)

A;~= (q/g) [r/r ——', (u r/r)rrjB~.
2'The state +f,& ) contains incomieg scattered waves for the

meson, whereas 4& has outgoing scattered waves. The necessity
for the use of 4'b& & in Eq. (A-2) was demonstrated in reference
16 and also by Gell-Mann and Goldberger, Phys. Rev. 91, 398
(&953).

s' E. P. Wigner, Gottinger Nachr. 31, 546 (1953).
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sinLqr —'pr-i+8, t]
fi& =ii'exp(i8, i) (A-6)

We are neglecting states with l&1. The fi"s in Eq.
(A-4) are

where the Ã and 3E are nucleon spin components.
The quantity (p~i, S~p) is a complex number which
determines the amplitude of the transition —it is one
of the quantities ti( —,',O, ei), ts(-', ,O, ei) or S(s,O,ei).

Combining Eqs. (A-9) and (A-14), we have

where b,.~ is the appropriate scattering phase shift.
Quite evidently, we have t see Eq. (A-3)]

Efi&=(—1')' exp( —2i8, i)fi', (A-7)

which along with Eqs. (A-4) and (A-5) permits us to
write down +b& ' in terms of 4'b for a pure (j,l) state.

Let us 6rst consider only S waves, from which we
can derive Eqs. (5). Then %b=fp'*(qr) B~ and

(cubi, Sap) = exp(2ib;o) (coo, %~i)*.

Making use of Eqs. (A-12) and (A-13), we have

(p)i, 50Mp) = ( pi,iE $1EMp)

= (Ecoi, %trop)

(cpi, Stcpo)

(opo,

Scapi)

.

(A-15)

(A-16)

+b& ~=exp( 2ib—;o)qb

Thus Eq. (A-2) becomes
Comparison with Eq. (A-15) shows thatA-8

(cop, 5)cubi) = exp (2$8&p) (cdp, Scapi)

T,.=exp(2ic;, ) (q „Vq.)
= exp (2ib; p) (+,Vq b)

*

=exp(2';p) (T.b)*,

or

(a)i, Scop) = (&pp, Xkpi) =i exp(ib;p)
times a real number. (A-17)

since V is Hermitean.
Now, still restricting ourselves to S waves, let us

write T in operator form as in Eq. (1):
T=Se e. (A-10)

Here S is essentially the 2 of Eq. (1) except that it
has a creation (or absorption) operator for one meson
as a factor and it now refers to a pure isotopic spin
state for the meson-nucleon system.

The postulated time-reversal invariance for our sys-
tem implies" that

EYE '=Tt.

Applied to Eq. (A-10) this gives

EX)E '=X)t',

(A-11)

(A-12)

(since EeE '= —a and EeE '= —e).
We designate the eigenvectors of the occupation

number operators by cop and co& where cop describes the
"existence of one nucleon" and co~ describes the existence
of one nucleon and one meson. If we choose

E+a= (A-13)

because of the pseudoscalar nature of the pion 6eld. 26

Referring to Eq. (A-10), we have

Tb. (cubi, neap) (B~,e eh——~.),
T.b ((po,Kepi) (h~.,o eh~), —— (A-14)

2' For instance, if Er. VQ is to remain invariant then E@E '= —p
since 7Co'E' '= —O'. R. G. Sachs, Phys. Rev. 87, 1100 (1952) has
explicitly constructed E for this case.

COp = EQ7p&

it follows that (if pi results from applying the creation
operator to pop)

then

-'A. '
b Jl

q b& '= exp( —2ib,*,)%'b

(A-18)

This relation is formally the same as (A-8), so (A-9)
holds also for the j=-,', i=1 state. Equation (A-10) is
modified in that c t".' is replaced by the appropriate
operator from Eq. (1):
T= $.[ia (xXe) Xq/q+(xXe). q/q]s

—'

+S„[ ie (sp—Xe)Xq/q+(xXe) q/q]s '. (A-19)

Here X), absorbs and 5)„produces the meson. Since
the coefhcients of S, and S„above change sign under
time reversal, Eqs. (A-12) are modified to read

X),= —E—'S„tE,
S„=—E '5), tE. (A-20)

The minus sign in these equations changes the sign of
Eq. (A-16) so we now have

(pii S Mo) = (cop S cp ).
This modifies Eq. (A-17) in that the factor of i does

not appear and Eqs. (6) follow immediately. Equations
(12) are obtained in just the same manner as was Eq.
(A-17).

We mention again, that all the terms in T are un-
determined, of course, to within a commoe irrelevant
phase factor. This has not appeared above because we
have always made a specific choice of phases.

Since this holds for either of the pure isotopic spin
states for the meson nucleon system, Eqs. (5) follow
immediately on identifying 8;p with the appropriate o,.

Only a slight modification is required to obtain the
relations (6) and (12). Referring to Eq. (A-8), let us
take, for instance,


