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contradiction to calculations based on the Fermi-gas
model which predict that the greatest possible excita-
tion energy is 40 Mev. '

The 3.0 percent yield of 110-day Te"' (spin 11/2)"
relative to 5.2 percent for 9.3-hr Te"r (spin 3/2) is
plausible when compared to slow-neutron capture
by Te"' to form these isomers. In the latter case the
spin of the target nucleus is 0 and the formation of
low-spin states is thus favored. A ratio of 10 to 1 for
the cross section of 9.3-hr Te"' relative to that of
110-day Te" is actually found. ' On the other hand,
the target nucleus in the muon reaction is I"' with a

"Seren, Friedlander, and Turkel, Phys. Rev. 72, 888 (1947).
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spin of 5/2 and, furthermore, the neutrino can escape
with orbital angular momentum. Hence, it seems
reasonable that the yields of the Te"' isomers should
be more nearly equal.
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If the ideas about the pion-nucleon interaction discussed by Chew are taken seriously, it is important to
know the accuracy of his calculation of the phase shifts for pion-nucleon scattering resulting from the second-
order Tamm-Dancotf approximation. In this paper, exact solutions (found by numerical methods) of the
integral equations for the scattering amplitudes resulting from the second-order Tamm-DancoB approxima-
tion are compared with his approximate results.

Aitken, Mahmoud, and Watson have shown that a similar integral equation occurs in a theory (based on
the same ideas as those discussed by Chew) of pion production in nucleon collisions. The accuracy of their
approximate solution of this integral equation is discussed.

I. INTRODUCTION

A S Chew' has stated, a theory of the pion-nucleon
interaction in which the region of interaction is

spread out (or in which a cutoff is introduced in mo-

mentum space) makes possible an evaluation of higher-
order effects in the scattering. Even when the coupling
is weak, the second-order perturbation results may be

* This work was supported by the U. S. Atomic Energy Com-
mission.

' GeotIrey F. Chew, Phys. Rev. 89, 591 (1953).

seriously in error because reactive effects in the scatter-
ing Inay be important.

The scattering amplitudes (k'
~

K
~
ko) satisfy an

integral equation of the form'

(k'IZik, ) = (k'I Vlk, )

+,
COIt;

—
GOp

2 Throughout this paper, all masses are expressed in units of p,
all momenta in units of yc, and all energies in units of yc . y is the
mass of the pion (about 280 electron masses).
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where kp is the initial momentum of the meson in the
center-of-mass system and &op = (kp'+ 1)& its initial
energy. The phase shifts for pion nucleon scattering are
related to (k'lElkp) as follows:

tanh = (kp
l
E

l
kp).

X'COpkp

(2)

The construction of the potential (k'
l
V

l kp) from quan-
tum field theory has been discussed by Brueckner and
tA'atson. ' For pseudoscalar symmetric coupling, the
terms in (k'l Vlk) proportional to f' are'

1 k'k
(k'l Vl k) =—fs) — (3)

(ops'id') * ops'+nod —
aop

where X=4, —2, and —2 for the spin and isotopic spin
states (s,z), (z,s), and (z, ss), resPectively. ' Also, f' is

'K. Brueckner and K. Watson, Phys. Rev. 90, 699 (1953).
The existence of an integral equation like Eq. (1) depends on the
possibility of constructing this potential. Equation (24) of refer-
ence 3 is

(klfllko)= —,s(k —ko)+ f(kl vlk")(k" lnlkp)k'"dk".
kp M}c—Mp

Since

(k'I &
I ko) =f(k'I v

I k) (k
I
f1

I
ko)k'"dk",

we need only multiply Eq. (24), reference 3, by k'(k', Vlk) and
integrate over k to get our Eq. (1).

o K. Brueckner and K. Watson, Phys. Rev. 92, 1023 (1953).
Using an expansion of the potential (O'I Vlk) in powers of fp in
Eq. (1) falls into the general category known as the Tamm-
Danco8 approximation. Thus in this paper we are dealing with
the second order Tamm-Dancoff approximation.

P For the (p, p) state, the potential has to be renormalized. See
G. F. Chew, this issue I Phys. Rev. 95, 285 (1953}g.This state is
not considered in this paper. In working our Fq. (3},only the term

EP= (g/2M}pr Vg p
in the nonrelativistic limit (for the nucleon) of the pseudoscalar
symmetric coupling is retained. As is well known, it leads only to
P-state interactions. The term

H'= (g'/2M)$ 4i

leads to an 5-wave interaction, for which the potential (k I
V

I k) is

(k'I vlk)=},

With this expression for (k'I V
I k}, which separates into a product

of two functions, one a function of k' only and the other a function
of k only, Eq. (1) may be solved exactly as follows: Let

A(k, )=f '
(k'IKIk, )

This is an as yet undetermined function of ko. Equation (1) is

(klXlkp)= + A.

Substituting this into the previous equation gives

V'opo opp(pop ooo) oo p(op p ooo)

k'dk—3f=
~p(~p —~o)'

the previous equation is

A.= —(X/goop)M X3IA, —
which is easily solved for A. Substituting this into the expression
for (k I

E
I kp) above gives

(kplElko)=— 1

related to g' as follows:

f'= (1/4pr) g'(fi/2N)'

Perturbation theory takes

(kol&lkp) = (kpl &lkp) (5)

That is, Eq. (1) is solved in the Born approximation
only. The reactive terms, which from the point of view
of perturbation theory are terms of higher order than
the second in f, are included in the integral in Eq. (1).

Chew showed that correcting the second-order per-
turbation theory by allowing for the reactive eGects
removes the most serious discrepancy between pertur-
bation theory and what is supposed about the phase
shifts from experimental evidence. That is, the reactive
effects make the (-,', s) phase shift much larger in mag-
nitude than the others occurring in the pion-nucleon
scattering.

However, his treatment of Eq. (1) is approximate, and
if his suggestions are to be taken seriously, it is impor-
tant to know the accuracy of his results.

It ought not be claimed that the need for other than
moderately accurate solutions (as Chew's are) is really
very great, since Kq. (1) with the potential Eq. (3)
diverges, so that it is necessary to cut oG the integral
in Eq. (1) at its upper limit or to use a source function
in the integrand (we use a cutoff). Therefore Eq. (1)
with Kq. (3) could not represent a final theory of the
pion-nucleon scattering even if it were known that
terms arising from the fourth- and higher-order Tamm-
Dancoff approximations were negligible. However, be-
cause Chew's suggestions do seem to lead to results in
reasonable agreement with experimental evidence, and
because equations like Eq. (1) have not been studied
without approximation to see what sort of approxima-
tions do give accurate results, it was decided to carry
out these calculations.

Aitken, Mahmoud, and Watson' found that an
integral equation very similar to Kq. (1) occurs in a
theory of pion production in nucleon-nucleon collisions
based. on the same ideas as those discussed by Chew. '
This equation has also been solved numerically in order
to test the accuracy of their approximate solutions.

II. RANGE OF PARAMETERS

Four values of the upper limit for the integral in
Eq. (1) are studied. This cutoff should be something
like the ratio of the nucleon mass to the pion mass
(1836/280=6.557), and this is one of the values used.
Chew suggested that lower values might be better, and
in fact in his original paper, he used very low values.
Other values used here are E=3.5, E=4.25, and
E=5.0.

Values of kp ranging from 0.5375 to 2.0 are used (pion
energy in the laboratory system from 25.48 to 272.5
(Mev). Values of f' from 0 to 0.6 are used.

' Aitken, Mahmoud, and Watson, Phys. Rev. 93, 1349 (1954).
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III. METHOD OF SOLUTION Eq. (6) becomes

= (k,
~
V~k,)+P ~,G+(k, ,k;)Z(k;)-,'a,

+P w,G—
(k, ,k, ) Y(k;)-p'Lki

j'=0

First, the range of integration in the integral in iZ(k)+i[k kp )]V(k)Eq. (1) is broken into two parts: (0,2kp) and (2kp, E).
This required 2k0&~ E, so that at the high energies the n/2

low cutouts could not be used.
Equation (1) is then replaced by a system of twenty-

6ve linear equations as follows [replacing (k'~E~kp)
by E (k')]:

E(k,)=(k,
~
V~k,)+P w, G(k, ,k,)E(k,)-,'~,

j=0

+g m, G(k;,k;)E(k;)-',6&. (6)

In this equation,

&,=2k,/n, a, = (E—2k,)/(24 —n); (7)

n is chosen to make 6& and 62 as nearly equal as possible.
Also

k;= id', i&a;
k;= 2kp+ (i—n)hp, n~(i~& 24.

The z; are weight factors corresponding to the method
of numerical integration (we use Simpson's rule:

happ=

1,
8/i=4, Wp= 2, ' ' ', 'l8 = 1, 'N pi=4, ' ' ', Blp4= 1). Tile
kernel G(k, ,k;) is

G(k, ,k,) =— —(k, ~ V~k, ).
(u (k,)—(o (kp)

It would be a straightforward matter to solve Eq. (6)
(it takes only one minute to solve a system of twenty-
five linear equation on the Los Alamos MANIAC), but
a singularity occurs in the kernel Eq. (9) for j= ipn.

The following method was used to avoid this singu-
larity. E(kp) through E(k„) are replaced by new
unknowns:

Z(k, ) =E(k,)+E(k„;),

+-,'G[k;,k (-',n)){Z[k(-', n))

+k(pn) V[k(pn))) p~2

24

+ Q G(k, ,k,)E(k;)-',a„ i&n; (13)

E(k,) = same thing,

V(-,'n) = V[-',n —1). (14)

IV. RESULTS OF THE PHASE-SHIFT CALCULATION

According to Eq. (3), the result of the calculation
depends on the product f9,, and the result also depends
on the cutoG E.

Table I presents the phase shifts as a function of f9,
the cuto6 E, and the energy E&,b in the laboratory
system.

0.4

Since E is a regular function, so are Z and I'. It
can be seen that 6+ and G are regular, so that the
system Eq. (6) with the singular kernel Kq. (9) has
been replaced by the system Eq. (13) in which every-
thing is finite.

However, we have repla, ced the n+1 unknowns
E(k,) by n+2 unknowns Z(k;) and V(k~). Therefore
we need an additional requirement. For this we have
chosen to require that V(k,) be continuous. We actually
required that

Y (k,) = [E(k;)—E(k;)), j& —',n. (10)
k;—k (-,'n)

This requires e to be an even integer.
The first sum in Eq. (6) is replaced by

p.5
'K-" 3,5

Q m, G(k;k, )E(k;)
jM

n/2
=-', P w, [G( k;, k;)+G( k, , k„,))Z( k)-'pd i

j=0

n/2

+-,' Q w, [G(k;,k, )—G(k, ,k„;)]

0,2

P, l

~K'5,0
K"-6.557

K=6.557

j=0

X[k,—k(-,'n))F'(k;)ipAi. (11)
EXACT

QHE'g

~ ~ ~ FRKQHOLM

If new kernels are defined as

G+(k;,k,) = —',[G(k,,k;)+G(k, ,k„;)),
G (k;,k;) =-,'[k;—k(n/2))[G(k, ,k,)—G(k;,k;)),

OO IOO

~s~M

FIG. 1. The value of f' for which 833—90' at the
energy shown on the abscissa.
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TABLE I. Phase shifts in degrees as a function of the coupling constant f9, the cutoff E, and the energy E~,b.

3.5

Blab =25.48 Mev

4.25 5.0 6.577 3.5

Flab =25.48 Mev

5.0 6.577

—0.6—0.45—0.3—0.225—0.15—0.075
+0.075
+0.15
+0.225
+0.3
+0.45
+0.6

3.316
2.760
2.089
1.695
1.236
0.6837—0.9079—2.225—4.416—9,112

37.88
9.218

3.191
2.640
1.996
1.624
1.187
0.6673—0.9517—2.580—6.643—52.60
5.562
2.482

3.104
2.558
1.930
1.564
1.154
0.6509—1,006—3.256—26.14
6.319
1.433—0.03172

3.066
2.504
1.870
1.509
1.105
0;6290—1.181—32.87

+1.466
0.08861—1.356—2.645

—0.6—0.45—0.3—0.225—0.15—0.075
+0.075
+0.15
+0.225
+0.3
+0.45
+0.6

28.54
24.79
19.96
16.85
12.94
7.689—12.68—35,75—72.28

75.67
47.31
36.19

26.43
22.53
17.81
14.98
11.59
7.093—16.00—79.12

39.94
24.23
12.42
5.521

&lab =151.7 Mev

26.96
23.19
18.54
15.67
12,12
7.358—14.19—50.76

70.51
43.44
25.70
17.93

26.25
21.95
17.18
14.27
10.96
6.740—23.10

28.72
10.62
3.828—5.587—13.93

—0.6—0.45—0.3—0.225—0.15—0.075
+0.075
+0.15
+0.225
+0.3
+0.45
+0.6

6.678
5.615
4.314
3.535
2.606
1.469—2.046—5.232—11.23—27.16

33.06
14.68

&lab =43.96 Mev

6.413
5.365
4.117
3.370
2.503
1.430—2.163—6.272—19.51

51.48
9.473
4.832

6.288
5.224
3.991
3.268
2.424
1.398—2.306—8,316

71.03
10.32
2.937
0.1999

6.102
5.114
3.858
3.141
2.330
1.343—2.763

43.29
6.280
0.3145—2.598—5.294

—0.6—0.45—0.3—0,225—0.15—0.075
+0.075
+0.15
+0.225
+0.3
+0.45
+0.6

43.10
37.57
30.60
26.22
20.49
.12.46—24.67—54.59—86.94

+72.98

I-'lab =223.5 Mev

41.3
35.66
28.79
24.56
j.9.27
11.93—23.63—68.75
72.37
53.69
37,36
28.86

39.97
34.12
26.67
22.35
18.03
11.30—28.38
79.41
40.16
26.96
14.79
7.393

39.78
33.20
25.96
21.72
16.83
10.57—45.46
31.56
14.92
7.101—3.810—13.00

—0.6—0.45—0.3—0.225—0.15—0.075
+0.075
+0.15
+0.225
+0.3
+0.45
+0.6

16.23
13.86
10.94
9.122
6.878
3.993—6.124—17.14—40.97—88.02

38.72
25.46

15.08
12.72
9.933
8.266
6.292
3.740—7.253—35.58

38.54
17.39
7.100
1.893

L"lab =88.26 Mev

15.44
13.17
10.36
8.626
6.543
3.866—6.613—22.39—80.93

40.48
17.91
10.96

14.89
12.45
9.590
7.920
5.985
3.585—9.412

27.05

14.98—4.962—'f 1.07

—0.6—0.45—0.3—0.225—0.15—0.075
+0.075
+0.15
+0.225
+0.3
+0.45
+0.6

L'lab =272.5 Mev

49.73
41.97
33.44
28.44
22.44
14.23—36.67
76.52
47.25
35.01
22.58
14.68

49.39
41.06
31.96
26.77
20.81
13.20—59.49
34.11
17.84
9.570—1.927—11.21

In Fig. 1, the coupling constant f' required to make
the (s,s) phase shift 90' at the energy shown on the
abscissa is plotted as a function of that energy for the
four cutoGs considered. This graph is useful in choosing
an f' which will give a fit to the experimental data for
a prescribed cutoff.

The off diagonal scattering amplitudes (k ~K~ks),
k~ko, are of interest in some calculations, for example,
the photomeson production and the nucleon Compton
eBect. Two examples of these are shown in Fig. 2.'

An accurate approximation to our scattering results
exists, as will be discussed now.

V. APPROXIMATIONS TO THE EXACT
SCATTERING RESULTS

Suppose we have an integral equation

y(x) =f(x)+X ~K( , )yx(x)d x'. x

The author will be glad to supply tables of these to workers
interested in special values of the cuto6 and coupling constants.

The integral Eq. (1) is of this form. For Eq. (1) there

exists a value of X for which y= 0o. LMore precisely,
for a given cutoff E there exists a value of f9, for which

(k~K~ks)= ~, or for which the phase shift is 90'.
We may find this value of f9from Fig. 1, if we re-

member that X=4 for the (s,—,') state. ) Let us call this

value of ), )„.
The iteration solution of Eq. (15),

y(x) = f(x)+X) E (x,x') f(x')dx

+As K(x,x')K(x', x")f(x")dx"+X', (16)

could not converge for X))„.
There is another (perhaps well-known) expression for

y(x) which is related to the Fredholm theory of integral
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equations; namely,

f(x)+lt K(x x') f(x')dx —Af(x) K(x' x')dx'+

1—X t K(x,x)dx+

(17)

which is formally identical with Eq. (16) provided X(X„.However, Eq. (17) can still represent y(x) for X)X„,
and probably represents it for all ) & ~.

The point we want to make is that retaining terms to the first order in ) in the numerator and denominator in
Eq. (1/) provides an accurate approximation to the solutions of Eq. (1) which we have found by numerical
integration.

We may write Eq. (17) as follows:

1
f(x) 11 'A K(x,x') f(x')dx' X—K(x',x')dx'

f(x) "

1—X K(x',x)dx'

f(x)(1+Xhr(x) —XEI)
(18)

y(xp) = f(xp)/L1 —Xar(xp)$. (19)

He has not given an expression for the off diagonal
elements.

Table 11 presents /AI and AI(xp), for which we have
the following expressions:

2 1 2 p"' k'
ar (xp) = ~—p- —

Rjt f 3' ~ t pIjR (CpjR Cop)

(20)

AI(x) is so labeled because it results from iterating the
solution in the numerator, and Ap is so labeled because
Eq. (17) is related to the Fredholm theory of integral
equations.

The value of y at only one value of x=xp Lor the
value of (k

~
K~ kp) at only k= kp, according to Eq. (2)j

is needed to 6nd the phase shifts. Chew's approxirna-
tion for the phase shift, Eq. (1') of reference 1, results
if one takes

2 1 2 k3
——5@=— dQ)

lt f' 3K "r (»s—pIp)(jos —ppp)

(21)

The zeros of the denominators of Eqs. (18) and (19)
should reproduce Fig. 1. It is seen that Eq. (18) is very
accurate in this respect, while Eq. (19) fails badly,
especially for larger cutoffs.

Figure 3 compares the extent to which the two ap-
proximations reproduce the exact results for the

($,s) phase shift as a function of energy for various
coupling constants and cutoffs.

To calculate the off-diagonal scattering amplitudes,
it is necessary to know AI(k) for kWkp. This quantity
is tabulated in Table III for the same cutoffs and ener-
gies used in the exact calculations.

Approximate values of (k~K~kp) calculated from
Eq. (18) are compared to our exact results for several

(k fK( Ito)
Q20

O.I6

0.12

0.08

2
It

K = 5.5
E~=88 Mev

(55 state)
KXACT

~ ~ FREOHOLM

—f =O.I5

~EXACT

RIR——
/ IRRRIRRR~

0' K =3.5

/ / fa022S

/1(/

~- FREOHOLMPr
OCW

00

EXAGTI
K= 6+57

j RRDIRRM

I
III

I EXACT

(. /
i/

/I
, '/

// /
/ / K ~ SSS7

/
I j' I ~O,II25

/
t' /

0 l00 200 MO
KLAS(MeV)

Fro. 2. (k'
~

E
~
kp) as a function of k' according to the

approximations described in the text.
FIG. 3. 533 as a function of energy for several cutouts and coupling
constants according to the approximations described in the text.
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TABLE II. 2d, r(kn)/f% and 2ds'// X Lsee Eqs. (20) and (21)g as a function of the energy Eq,b and the cutoff E;

EIab (MeV)
K =3.5

2d p/fg) 241/fO,
K =4.25

2 b P/f2' 2 61/f 2'Pb

K =5.0
2d p/f2' 2d I/f9

K =6.557
2~&/fe 2~I/fn

25.48
43.96
88.26

151.7
223.5
272.5

1.373
1.630
1.807

0.9134
1.058
1.359
1.600
1.704
1.666

1.698
1.850
2.171
2.442

1.135
1.306
1.683
2.033
2.292
2.379

2.212
2.383
2.760
3.109

1.351
1.547
1.991
2.435
2.817
2.996

3,464
3.623
4.151
4.637

1.789
2.031
2.600
3.209
3.799
4.127

TABLE III. 2nr(k)/f'X as a function of the momentum k,
the energy E&,b, and the cuto6 E.

QElab
kg (Mev)

25.48 43.96 88.26 151.7 223.5 272,5

0.0
0.7
1.4
2.1
2.8
3.5

0.8622
0.9433
1.083
1.202
1.293
1.363

0.9671
1.055
1.205
1.331
1.426
1.499

K =3.5
1.150
i.261
1.442
1.588
1.696
1.777

1.202 0.9397
1.357 1.233
1.592 1.568
1.769 1.794
1.895 1.945
1.987 2.052

K =4.25

0.4454
0.9617
1.428
1.697
1.870
1.988

0.00
0.85
1.70
2.55
3.40
4.25

1.064 1.181 1.400 1.507 1.335 1.198
1.218 1.347 1.602 1.776 1.776 1.636
1.456 1.599 1.897 2.139 2.254 2.233
1.645 1.796 2.120 2.399 2.568 2.591
1.786 1.943 2.281 2.582 2.780 2.824
1.892 2.053 2.401 2.715 2.929 2.986

K =5.0
1.634 1.780
1.958 2.195
2.388 2.708
2.701 3.063
2.925 3.311
3.090 3.491

1.260 1.387
1.516 1.660 2.292 2.240
1.875 2.037 2.932 2.996
2.147 2.319 3.346 3.456
2.346 2.525 3.624 3.757
2.496 2.679 3.823 3.969

0.000 1.655
1.311 2.220
2.'623 2.897
3.934 3.379
5.245 3.726
6.557 3.987

1.797
2.391
3.094
3,591
3.947
4.213

K =6.557

2.085 2.289
2.767 3.116
3.544 3.999
4.080 4.587
4.458 4.995
4.738 5.293

2.261
3.369
4.401
5.057
5.501
5.821

1.563
3.447
4.599
5.303
5.773
6.108

cutoffs and coupling constants in Fig. 3. Of course
Eq. (18) fails quite badly near the values of f' and E
for which either the exact or approximate E is infinite.
Even in this case, the approximation Eq. (18) may be
looked upon as accurate in the sense that it reproduces
the exact results for a very slightly different value of f'.

VI. PION PRODUCTION IN NUCLEON-NUCLEON
COLLISIONS

Aitken, Mahmoud, and watson' have discussed the
three reactions

p+ p—+n-++I,

p+~++&+p, (22)

e+~++ri+ ri

In the initial state for these processes, one of the
nucleons has a momentum p and the other a momentum

—p (center-of-mass system). The connection between
the total energy available in the center-of-mass system
and p is

E =2[(ps+M')' —M7. (23)

The threshold for pion production occurs at E =1, or
294 Mev in the laboratory system. The threshold for
production of two pions occurs at E =2, or at 613 Mev
in the laboratory system. In this calculation we cover
the range of energies for which only a single meson
may be produced.

In the intermediate state, the nucleon of momentum
p emits a pion of momentum ko. Now the reactions
may proceed in two ways, which are coherent with each
other, so that the final expression for the cross sections
should contain the sum of two terms squared. In the
first way, the nucleons scatter to their final state
momenta. In the second way, the pion emitted by the
first nucleon is scattered by the second nucleon, and
its momentum in the Final state is k'. Since we are going
to assume that a pion and nucleon interact only in a
(s,—,') state, the second way cannot occur for the third
reaction, since the total charge (T,= s) is not sufFicient
to lead to a T=ss state (the neutron cannot emit a
s+ particle, and the proton cannot emit a m particle).
This means that the first two reactions should have
larger cross sections than the third (this is essentially
the point of the paper of Aitken, Mahmoud, and
Watson).

For either way, for the first reaction, a final state
interaction' between the nucleons leads to the forma-
tion of a deuteron. Conservation of energy and momen-
tum demands for this reaction that

Lk"+ (2M)']1—2M+ (k"+1):=Z~ Ed, (24)-—
where E& is the binding energy of the deuteron.

This integral equation which describes the pion
scattering in the intermediate state is (in the notation
of reference 6)

k'ko
(k'I' (-'-') lk

(cos coo)' +o ~x ioo—
k'k k'dk

(cob ~os) +a cob' ~os +a—oob

X(k
~

&, (-'„-;)
~
k,), (25)

s K. M. Watson, Phys. Rev. 88, 1163 (1952).
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TABLB IV. n Lace Eq. (29)$ calculated by various methods as a function of the coupling constant p
and the energy E&,b for X=6.557.

f2

0.0375
0.075
0.1125,
0.15
0.1875
0.225

1.10
1.55
2.71

13.8—4.16—1.87

1.10
1.58
3.05—299—2.71—1.30

Elab =410 Mev

E»b =320 Mev
&exact &Fred

1.05
1.55
3.05—216—2.84—1.39

1.07
1.63
3.68—10.0—1.99—1.06

Elab =500 Mev

Elab =350 Mev
inexact AFred

1.03
1.57
3.40—16.1—2.31
1022

1.06
1.66
4.28—6.145—1.691—0.95

Elab =600 Mev

Elab =370 Mev
Aexact +Fred +A MW

1.37
2.15
5.04—14.5—2.98—1.66

0.0375
0.075
0.1125
0.15
0.1875
0.225

0.99
1.63
5.17—5.34—1.66—0.97

1.04
1.75
7.25—3.46—1.31—0.78

0.93
1.82

36.6—2.00—0.96—0.63

1.00
1.99—58.3—1.79—0.89—0.58

0.89
2.27
4.28—1.09—0.87—9.43

0.96
2.33—5.06—1.18—0.67—0.46

1.37
2.15
5.04—14.5—2.98—1.66

where )I =4f'/3w. This is Eq. (33) of reference 6. The
only difference between it and our Eq. (1) is that the
sign of E and t are opposite, and the connection be-
tween E and kp is diferent. For pion-nucleon scatter-
ing, E,=cop, whereas for pion production in nucleon-
nucleon collisions there is no strict connection between
the two.

Aitken, Mahmoud, and Watson wrote the solution
of Kq. (25) in the form

Aitken, Mahm, oud, and Watson then found the fol-
lowing approximate value of 6, namely:

2, = (1 4f'M—fK/3w) ' (30)

where E, is the momentum-space cuto6 used in the
calculation. With Eqs. (29) and (30) they evaluated
the cross sections for the three reactions Eq. (22). The
results are given in their Eqs. (46), which we reproduce
for convenience,

Zk'up o [p+p~++8]
(26)

v/M
(k'Ift(s s) Iko)=

(G)piMp)' E~ Ms' Qlp
qg. g'[1+ (4/9) M-&A]s,= 0'p

i—Vrp
That is, they took the inhomogeneous term (or Born's
approximation) and multiplied it by a'numerical factor
6 which is supposed to allow for the reactive eGects.
Then they made further approximations based on the
following observations about the magnitudes of the
quantities k and k& which are especially appropriate
near threshold (E,= 1).

Since both nucleons are brought nearly to rest in
these reactions, the erst nucleon must emit a pion of
momentum nearly equal to p, coming nearly to rest in
so doing. Thus,

a[p+ p—us++I+ p]
3

o pTosM &[1+(4/9)M iA]' (31)
8

3
o[e+p~s++&+&]= o.oTo'M '*,

16

kp= p.

From Eq. (23), we see that p= M& for E,= 1. Assuming
M))1, we have then p=~~, or kp=~p=M&. The second
nucleon scatters this pion into a 6nal momentum state
k', the second nucleon having a momentum —k' in the
6nal state. Energy has to be conserved in the over-all
process, so that

TABLE V. Quantities useful in calculating ff t see the equation
following Eq. (32)j.

where o.p= 2w[4f']'[M'"]. The value of qa, „o appearing
in the first of these being the value of k' resulting from
our Eq. (24). v= (ME&) & and r p is the oS effective range
for low-energy n —p scattering. As we expected, Eqs.
(31) contain the sum of two terms squared for the first
two reactions, the first term representing a nucleon-
nucleon scattering in the intermediate state, and the

(k"+M') '—M+ (k"+1)'=E,.

Of course, for the first reaction, k' is strictly connected
with E, through Eq. (24). Near threshold (E =1)k'
will be small, so that cd I, =1=E .

With these assumptions, Eq. (26) becomes

(29)

Elab
(Mev)

p
q
qdeut,

Qp
nr(a)
TQ

320

1.082
2.718
0.3835
0.3558
3.344
2.822
0.07621

350

1.179
2.843
0.5764
0.5701
3.565
3.085
0.1658

370

1.244
2.923
0.6793
0.6818
3.705
3.254
0.2249

410

1.372
3.077
0.8561
0.8724
3.97.0
3.575
0.3416

500

1.656
3.398
1.184
1.227
4.493
4.228
0.5972

600

1.966
3.722
1.494
1.565
4.961
4.780
0.8973
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second (which contains 6) representing a pion-nucleon
scattering in the intermediate state. As we further ex-
pected, the possibility of a pion-nucleon scattering is
absent for the third reaction (there is no term contain-
ing d). Their work leading to Eq. (31) involved integra-
tion over the momentum k', since they allowed for the
fact that Eq. (28) does not really hold for the second
reactions, but a spectrum of values of k' is possible,
the upper limit of the spectrum of pion kinetic energies
being given by

To+1+2([4(To'+2To)+M'j'* —M) =E,. (32)

I6

I2

l
. f' = O.II25

K *6557
1

as a function of energy. As mentioned before, it was the
point of the work of Aitken, Mahmoud, and Watson

25

20

l5

lo

f =Off25
&= 6.55?

In a sense our calculation provides a value of their D.
Our exact solutions of Eq. (25) will not be of the form
of Eq. (29) with Eq. (30). However, in order to avoid
repeating the work of Aitken, Mahmoud, and Watson,
we have evaluated 6 using Eq. (29) and our exact
solutions for k' given by Eq. (28) and ko given by
Eq. (27).

The values of 6 found in this way are shown in
Table IV, and compared with the values found in a
similar way from the Fredholm, approximation and the
values found from the approximation of Aitken, Mah-
moud, and Watson. A table of quantities useful in

calculating the Fredholm approximation and the cross
sections is given in Table V.

With these values of 6, we may calculate

o [p+p—+s.++2j+o [p+p~++n+ pjE=-
e ~+ e B

0 50 IOO 150 200 250 300
E (Mev)

FIG. 5. The ~+—p total cross section as a function of energy.

that this should be much greater than one. The results
of this calculation are shown in Fig. 4 for f'=0.1125.

VII. CONCLUDING REMARKS

Whether or not Chew's ideas correspond in any way
to reality cannot be decided until the fourth-order
Tamm-DancofF corrections have been calculated. It
will be necessary also to calculate the eGects of nucleon
recoil and the efFects of other terms in the nonrelativistic
lim, it of the pseudoscalar symmetric coupling.

However, this calculation has several encouraging
features. The erst is that according to Fig. 1, less
coupling constant is required than would have been
supposed from Chew's approximate calculation to make
the (2,&) phase shift 90' at a given energy. Secondly,
with Chew's approximation, it is difficult to make the
7r+ —p total cross section decrease suKciently rapidly
beyond its peak to fit the experiments.

In Fig. 5, a graph of the s+—p total cross section is
shown which indicates this difhculty may not be
present with the exact solutions.

0
300 320 340 360 380 400 420

Eiob«ev~

Fro. 4. The ratio E. as a function of energy.

VIII. ACKNOW EDGMENTS

The author is deeply indebted to Professor Kenneth
Watson for valuable advice about the calculation and
his encouragement while it was being carried out and
to Mr. Robert Bivins for coding the calculations of the
exact solutions for the Los Alamos MANIAC.


