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F16. 5. Possible yield curves of antimony isotopes from
reaction of y~ mesons with iodine.

contradiction to calculations based on the Fermi-gas
model which predict that the greatest possible excita-
tion energy is 40 Mev.!

The 3.0 percent yield of 110-day Te!*”” (spin 11/2)%
relative to 5.2 percent for 9.3-hr Te'*” (spin 3/2) is
plausible when compared to slow-neutron capture
by Te'?® to form these isomers. In the latter case the
spin of the target nucleus is 0 and the formation of
low-spin states is thus favored. A ratio of 10 to 1 for
the cross section of 9.3-hr Te'?” relative to that of
110-day Te!?™™ is actually found.’® On the other hand,
the target nucleus in the muon reaction is I'” with a

13 Seren, Friedlander, and Turkel, Phys. Rev. 72, 888 (1947).
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TaBLE III. Yields of 4~ reactions from iodine as
read off Figs. 4 and 5.

Number of neutrons (#) and Yield,
protons (p) emitted percent
0 8.2
1n 43
2n 34
3n 11
an 2-3
1p2n 0.23
1p3n 0.4
1p4n 0.16
Rest <1

spin of 5/2 and, furthermore, the neutrino can escape
with orbital angular momentum. Hence, it seems
reasonable that the yields of the Te!?” isomers should
be more nearly equal.
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If the ideas about the pion-nucleon interaction discussed by Chew are taken seriously, it is important to
know the accuracy of his calculation of the phase shifts for pion-nucleon scattering resulting from the second-
order Tamm-Dancoff approximation. In this paper, exact solutions (found by numerical methods) of the
integral equations for the scattering amplitudes resulting from the second-order Tamm-Dancoff approxima-

tion are compared with his approximate results.

Aitken, Mahmoud, and Watson have shown that a similar 1ntegra1 equation occurs in a theory (based on
the same ideas as those discussed by Chew) of pion production in nucleon collisions. The accuracy of their
approximate solution of this integral equation is discussed.

I. INTRODUCTION

S Chew! has stated, a theory of the pion-nucleon
interaction in which the region of interaction is
spread out (or in which a cutoff is introduced in mo-
mentum space) makes possible an evaluation of higher-
order effects in the scattering. Even when the coupling
is weak, the second-order perturbation results may be

* This work was supported by the U. S. Atomic Energy Com-
mission.
! Geoffrey F. Chew, Phys. Rev. 89, 591 (1953).

seriously in error because reactive effects in the scatter-
ing may be important.

The scattering amplitudes (#'|K|ko) satisfy an
integral equation of the form?

(k| K | ko)= (| V'| ko)

1
+f — VIR GIK |k, (1)

2 Throughout this paper, all masses are expressed in units of u,
all momenta in units of uc, and all energies in units of uc?. u is the
mass of the pion (about 280 electron masses).



210

where ko is the initial momentum of the meson in the
center-of-mass system and wo= (ko>+1)} its initial
energy. The phase shifts for pion nucleon scattering are
related to (k| K |ko) as follows:

tand= (ko | K [ ko). (2)
TWoro
The construction of the potential (k'| V| ko) from quan-
tum field theory has been discussed by Brueckner and
Watson.? For pseudoscalar symmetric coupling, the
terms in (k'|V|k) proportional to f2 are*
1 k'k 1
&'V k) =3_f2>\ ) )

7w (wrwr)? oprtwr—wo

where A=4, —2, and —2 for the spin and isotopic spin
states (3,3), (3,3), and (},3), respectively.® Also, f? is

3 K. Brueckner and K. Watson, Phys. Rev. 90, 699 (1953).
The existence of an integral equation like Eq. (1) depends on the

possibility of constructing this potential. Equation (24) of refer-
ence 3 is
1

1
(k |Q l ko) = E)Ea(k— k0)+wk"‘wo
Since

f(kl V!k“)(k”}ﬁlko)k”zdk”.

¥ | K | ko)= f #| V| E)(R|Q| ko)E2dk",

we need only multiply Eq. (24), reference 3, by 22(¥’|V'|k) and
integrate over k to get our Eq. (1).

*K. Brueckner and K. Watson, Phys. Rev. 92, 1023 (1953).
Using an expansion of the potential (£’|V|k) in powers of f2 in
Eq. (1) falls into the general category known as the Tamm-
Dancoff approximation. Thus in this paper we are dealing with
the second order Tamm-Dancoff approximation.

5 For the (3,3) state, the potential has to be renormalized. See
G. F. Chew, this issue [Phys. Rev. 95, 285 (1953)]. This state is
not considered in this paper. In working our Eq. (3), only the term

H'=(¢/2M)o-Vz- ¢
in the nonrelativistic limit (for the nucleon) of the pseudoscalar
symmetric coupling is retained. As is well known, it leads only to
P-state interactions. The term

H'=(g*/2M )¢ -0
leads to an S-wave interaction, for which the potential (¢'|V|k) is
1
FV|E)=A—
( | I ) (wkwk')%

With this expression for ('] V'|%), which separates into a product
of two functions, one a function of %’ only and the other a function
of % only, Eq. (1) may be solved exactly as follows: Let

_ rRFE 1 ,
Ako)= [t e (# | K| ),
This is an as yet undetermined function of k9. Equation (1) is

A A
(% | K| ko)=\—/w—kwo'+m1\.
Substituting this into the previous equation gives
. k2dk j* kxdk
Vo) wr(wr—wo) wr(wr—wo)’

If
» k%k
—M—jwk(wk—wa)’
the previous equation is
=—(A/Vwo)M—AMA,

which is easily solved for A. Substituting this into the expression
for (k| K| ko) above gives

A1
(el Klko)=_ Trar

JOHN L. GAMMEL

related to g% as follows:

Jr=(1/4m)g*(u/2M ). 4
Perturbation theory takes
(ko| K | ko) = (ko| V| ko). ®)

That is, Eq. (1) is solved in the Born approximation
only. The reactive terms, which from the point of view
of perturbation theory are terms of higher order than
the second in f2, are included in the integral in Eq. (1).

Chew showed that correcting the second-order per-
turbation theory by allowing for the reactive effects
removes the most serious discrepancy between pertur-
bation theory and what is supposed about the phase
shifts from experimental evidence. That is, the reactive
effects make the (3,%) phase shift much larger in mag-
nitude than the others occurring in the pion-nucleon
scattering.

However, his treatment of Eq. (1) is approximate, and
if his suggestions are to be taken seriously, it is impor-
tant to know the accuracy of his results.

It ought not be claimed that the need for other than
moderately accurate solutions (as Chew’s are) is really
very great, since Eq. (1) with the potential Eq. (3)
diverges, so that it is necessary to cut off the integral
in Eq. (1) at its upper limit or to use a source function
in the integrand (we use a cutoff). Therefore Eq. (1)
with Eq. (3) could not represent a final theory of the
pion-nucleon scattering even if it were known that
terms arising from the fourth- and higher-order Tamm-
Dancoff approximations were negligible. However, be-
cause Chew’s suggestions do seem to lead to results in
reasonable agreement with experimental evidence, and
because equations like Eq. (1) have not been studied
without approximation to see what sort of approxima-
tions do give accurate results, it was decided to carry
out these calculations.

Aitken, Mahmoud, and Watson® found that an
integral equation very similar to Eq. (1) occurs in a
theory of pion production in nucleon-nucleon collisions
based on the same ideas as those discussed by Chew.!
This equation has also been solved numerically in order
to test the accuracy of their approximate solutions.

II. RANGE OF PARAMETERS

Four values of the upper limit for the integral in
Eq. (1) are studied. This cutoff should be something
like the ratio of the nucleon mass to the pion mass
(1836/280=06.557), and this is one of the values used.
Chew suggested that lower values might be better, and
in fact in his original paper,' he used very low values.
Other values used here are K=3.5, K=4.25, and
K=35.0.

Values of & ranging from 0.5375 to 2.0 are used (pion
energy in the laboratory system from 25.48 to 272.5
(Mev). Values of f2 from 0 to 0.6 are used.

¢ Aitken, Mahmoud, and Watson, Phys. Rev. 93, 1349 (1954).
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III. METHOD OF SOLUTION

First, the range of integration in the integral in
Eq. (1) is broken into two parts: (0,2ko) and (2ko,K).
This required 2k¢< K, so that at the high energies the
low cutoffs could not be used.

Equation (1) is then replaced by a system of twenty-
five linear equations as follows [replacing (%'| K| ko)
by K(¥)]:

mw=wwmwéwmmmmm¢l

+3 wGEEIKENA (6

=n

In this equation,
Ar=2ko/n, Ay=(K—2k¢)/(24—n); @)

n is chosen to make A; and A, as nearly equal as possible.
Also
k¢= 1A 1y

ko= 2kot+ (i—n)As,

The w; are weight factors corresponding to the method
of numerical integration (we use Simpson’s rule: wo=1,
w1=47 7.U2=2, Crty, WaT 1; wn+1=4’, . '7w24=1)- The
kernel G(k;,k;) is

Glhik)=— — (k| V| E)).
et

It would be a straightforward matter to solve Eq. (6)
(it takes only one minute to solve a system of twenty-
five linear equation on the Los Alamos MANIAC), but
a singularity occurs in the kernel Eq. (9) for j=13nx.

The following method was used to avoid this singu-
larity. K(ko) through K(k,) are replaced by new
unknowns:

Z(kj)=K (k;j)+K (knj),

i<n;

8
n<1<24. ®)

©)

1
Y (k) =k——l—)[K(kf)“K(kn—f)], j<sn. (10

i—kGn

This requires # to be an even integer.
The first sum in Eq. (6) is replaced by

S w,G(REIK (k)
=
n/2
=3 2 w;[G(kik;)+G (kikni) 1Z (k;)3A4
=0

n/2
+3 X wilGkik)—Gkikai) ]

i X[kj—kGm) Y (k)5A1  (11)

If new kernels are defined as

Gt (kik;) =3[G (kirk;)+G (kiskns) ],

(12)
G (kik;) = 5[k~ k(n/2) J[G(kik;)—G (ki) ],
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Eq. (6) becomes
3Z (k) +-3[ki—k(Gn) Y (k:)

nf/2
= (k| V] ko)+ 2 w,G* (ki k;)Z (k;)3A1
=0

n/2
+2 w,G(kik;) Y (k)34

+3GLkok () K Z[ R (5n) ]
+EGn) YTk (Gn) 1334,

24
+ X G(kik)K (k)34 i<n; (13)

j=n+1

K (k;)=same thing, i>n.

Since K is a regular function, so are Z and V. It
can be seen that Gt and G~ are regular, so that the
system Eq. (6) with the singular kernel Eq. (9) has
been replaced by the system Eq. (13) in which every-
thing is finite.

However, we have replaced the #-41 unknowns
K(k;) by n+2 unknowns Z(k;) and YV (k;). Therefore
we need an additional requirement. For this we have
chosen to require that ¥ (k;) be continuous. We actually
required that

(14)

1IV. RESULTS OF THE PHASE-SHIFT CALCULATION

V() =Y[5n—1].

According to Eq. (3), the result of the calculation
depends on the product f2\, and the result also depends
on the cutoff K.

Table I presents the phase shifts as a function of f2\,
the cutoff K, and the energy Ei., in the laboratory

system.
04
NN
N,
\ ~
N,
~N
O, \ J \\
3 N e E—
\ K=3.5
'2 o \ d
-\ \ [—~=38
02 N \.\
N 425
\\
TS \ S50
T K-6857
ol
K=6.557
EXACT
| ————— CHEW
e e, e FREDHOLM
% 100 200
Eag{Mev)

F16. 1. The value of 2 for which 833=90° at the
energy shown on the abscissa.
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TaBLE 1. Phase shifts in degrees as a function of the coupling constant f2\, the cutoff K, and the energy Ej.

Eab =25.48 Mev

NK
AN

E1p =25.48 Mev

K
N

3.5 4.25 5.0 6.577 3.5 4.25 5.0 6.577
—0.6 3.316 3.191 3.104 3.066 Erab=151.7 Mev
—0.45 2.760 2.640 2.558 2.504 —0.6 28.54 26.96 26.43 26.25
—03 2.089 1.996 1.930 1.870 —0.45 24.79 23.19 22.53 21.95
—0.225 1.695 1.624 1.564 1.509 —0.3 19.96 18.54 17.81 17.18
—0.15 1.236 1.187 1.154 1.105 —0.225 16.85 15.67 14.98 14.27
—0.075 0.6837 0.6673 0.6509 0.6290 —~0.15 12.94 12.12 11.59 10.96
40.075 —0.9079 —0.9517 —1.006 —1.181 —0.075 7.689 7.358 7.093 6.740
+0.15 —2.225 —2.580 —3.256  —32.87 40075 —12.68 —14.19 —16.00 —23.10
-+0.225 —4.416 —6.643 —26.14 +1.466 +0.15 —35.75 —50.76 —79.12 28.72
+0.3 —9.112  —52.60 6.319 0.08861 40225 —72.28 70.51 39.94 10.62
+0.45 37.88 5.562 1.433 —1.356 +0.3 75.67 43.44 24.23 3.828
+0.6 9.218 2.482 —0.03172 —2.645 +0.45 47.31 25.70 12.42 —5.587
+0.6 36.19 17.93 5.521 —13.93
Eiap =43.96 Mev
—0.6 6.678 6.413 6.288 6.102 [ =223.5 Mev
—0.45 5.615 5.365 5.224 5.114 —0.6 43.10 41.3 39.97 39.78
—0.3 4.314 4.117 3.991 3.858 —0.45 37.57 35.66 34.12 33.20
—0.225 3.535 3.370 3.268 3.141 —0.3 30.60 28.79 26.67 25.96
—0.15 2.606 2.503 2.424 2.330 —0.225 26.22 24.56 22.35 21.72
—0.075 1.469 1.430 1.398 1.343 —0.15 20.49 19.27 18.03 16.83
40075  —2.046 —2.163 —2.306 ~2.763 —0.075 12.46 11.93 11.30 10.57
+0.15 —5.232 —6.272 —8.316 43.29 +0.075 —24.67 —23.63 —28.38 —45.46
+0.225 —11.23 —19.51 71.03 6.280 +0.15  —54.59 —68.75 79.41 31.56
10.3 —27.16 51.48 10.32 0.3145 +0.225 —86.94 72.37 40.16 14.92
_ +0.3 +72.98 53.69 26.96 7.101
+0.45 33.06 9.473 2.937 2.598
’ ’ ’ ’ ’ +0.6 28.86 7.393 —13.00
Eap =88.26 Mev Fiay =272.5 Mev
—0.6 16.23 15.44 15.08 14.89
—0.45 13.86 13.17 12.72 12.45 _8'25 i?;;% ﬁjgz
—-0.3 10.94 10.36 9.933 9.590 —03 3344 31.96
—0.225 9.122 8.626 8.266 7.920 —0.225 28.44 26.77
—0.15 6.878 6.543 6.292 5.985 —0.15 22.44 20.81
—0.075 3.993 3.866 3.740 3.585 —0.075 14.23 13.20
+0.075 —6.124 —6.613 —7.253 —9.412 +0.075 —36.67 —59.49
+0.15 —17.14 —22.39 —35.58 27.05 +0.15 76.52 34.11
40225  —40.97 —80.93 38.54 +0.225 47.25 17.84
+0.3 —88.02 40.48 17.39 14.98 +0.3 35.01 9.570
+0.45 38.72 17.91 7.100 —4.962 +0.45 22.58 —1.927
-+0.6 25.46 10.96 1.893 —11.07 +0.6 14.68 —11.21

In Fig. 1, the coupling constant f2 required to make
the (4,3) phase shift 90° at the energy shown on the
abscissa is plotted as a function of that energy for the
four cutoffs considered. This graph is useful in choosing
an f? which will give a fit to the experimental data for
a prescribed cutoff.

The off diagonal scattering amplitudes (k| K|ko),
k#k,, are of interest in some calculations, for example,
the photomeson production and the nucleon Compton
effect. Two examples of these are shown in Fig. 2.7

An accurate approximation to our scattering results
exists, as will be discussed now.

V. APPROXIMATIONS TO THE EXACT
SCATTERING RESULTS

Suppose we have an integral equation

Y@ =F @)+ f Ka)y@)ds.  (15)

7 The author will be glad to supply tables of these to workers
interested in special values of the cutoff and coupling constants.

The integral Eq. (1) is of this form. For Eq. (1) there
exists a value of N\ for which y= . [More precisely,
for a given cutoff K there exists a value of f2\ for which
(k| K|kog)=c0, or for which the phase shift is 90°.
We may find this value of f\ from Fig. 1 if we re-
member that A=4 for the (£,3) state.] Let us call this
value of A, \,.
The iteration solution of Eq. (15),

$(®) = f@)+N f K (o) f ()

¢ [K @)K @) a3, (16)

could not converge for A>A,.
There is another (perhaps well-known) expression for
y(x) which is related to the Fredholm theory of integral
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equations; namely,
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F@ f K(a) {@)da=2f @) [ K )+

y(x)=

) an

1—~)\fK(x,x)dx+ e

which is formally identical with Eq. (16) provided N <\,. However, Eq. (17) can still represent y(x) for A>X,,

and probably represents it for all A< .

The point we want to make is that retaining terms to the first order in A in the numerator and denominator in
Eq. (17) provides an accurate approximation to the solutions of Eq. (1) which we have found by numerical

integration.
We may write Eq. (17) as follows:

1
f(x)[1+%)\fK(x,x’)f(x’)dx’—)\fK(x’,x')dx']

y(x)=

1— )\fK (&' x)dx'

Ar(x) is so labeled because it results from iterating the
solution in the numerator, and Ar is so labeled because
Eq. (17) is related to the Fredholm theory of integral
equations.

The value of y at only one value of x=x, [or the
value of (k| K|ko) at only k= k,, according to Eq. (2)]
is needed to find the phase shifts. Chew’s approxima-
tion for the phase shift, Eq. (1’) of reference 1, results
if one takes

¥ (o) = f(%0)/[1—NA1(x0) . (19

He has not given an expression for the off diagonal
elements.

Table IT presents Ar and Ar(x,), for which we have
the following expressions:

21 2 ok K
——Ar(%0) =—wo f doy——s, (20)
A S? 3r J, i (wr—wo)
ol S
s LR M S )
o6 /
/‘ K=3.5

Evse=88 Mev

0.2 (33 state)

oo
/

aonl .
/

=05

(o}

0 [ 2, 2
K

F16. 2. (k'| K| ko) as a function of %’ according to the
approximations described in the text.

@A)
B 1—\Ap '

(18)

and
21 2 ek B
——Ap=—

A f2 37T 1

The zeros of the denominators of Egs. (18) and (19)
should reproduce Fig. 1. It is seen that Eq. (18) is very
accurate in this respect, while Eq. (19) fails badly,
especially for larger cutoffs.

Figure 3 compares the extent to which the two ap-
proximations reproduce the exact results for the
(3,3) phase shift as a function of energy for various
coupling constants and cutoffs.

To calculate the off-diagonal scattering amplitudes,
it is necessary to know Az(k) for k#k,. This quantity
is tabulated in Table III for the same cutoffs and ener-
gies used in the exact calculations.

Approximate values of (k|K|ko) calculated from
Eq. (18) are compared to our exact results for several

21

(2wk——wo) (wk—wo) '

EXACT |
80"
. :
FREOHOM__— |
4 EXACT,

K=6557
120,075

K =35

b 1*:0.225
8y /

JFREDHOLM
]

[ —f—exacr 7
i
Hfexacr

G

/ T X35 1
o J ?:03 /

K6.557
1204128

)

/] /

-/

| 2]

° 100 200 00 200 30
EpaolMer)

F16. 3. 833 as a function of energy for several cutoffs and coupling
constants according to the approximations described in the text.
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TABLE II. 2A;(k0)/f?A and 2Ar/f?\ [see Egs. (20) and (21)] as a function of the energy Eiap and the cutoff K.

K =3.5 K =4.25 K=5.0 K =6.557

Eiap (Mev) 2AF/f2N 2A1/f2\ 2AF/f2\ 241/ 2AF /A 2A1/f2\ 2AF/f2\ 2A1/f\
25.48 0.9134 1.698 1.135 2.212 1.351 3.464 1.789
43.96 1.373 1.058 1.850 1.306 2.383 1.547 3.623 2.031
88.26 1.630 1.359 2.171 1.683 2.760 1.991 4.151 2.600
151.7 1.807 1.600 2.442 2.033 3.109 2.435 4.637 3.209
223.5 1.704 2.292 2.817 3.799
272.5 1.666 2.379 2.996 4.127

cutoffs and coupling constants in Fig. 3. Of course
Eq. (18) fails quite badly near the values of f%and K
for which either the exact or approximate K is infinite.
Even in this case, the approximation Eq. (18) may be
looked upon as accurate in the sense that it reproduces
the exact results for a very slightly different value of f2

VI. PION PRODUCTION IN NUCLEON-NUCLEON
COLLISIONS

Aitken, Mahmoud, and Watson® have discussed the
three reactions

pt+p—ont+d,
p+p—orttntp,
n+p—ortd-nitn.

In the initial state for these processes, one of the
nucleons has a momentum p and the other a momentum

(22)

TaBcLe II1. 2A;(k)/f?\ as a function of the momentum £,
the energy Eiap, and the cutoff K.

AN
Elal

\k\l (tl)VIev)

25.48 43.96 88.26 151.7 223.5 272.5

K =3.5
0.0 0.8622 0.9671 1.150 1.202 0.9397 0.4454
0.7 0.9433 1.055 1.261  1.357 1.233 0.9617
14 1.083 1.205 1442 1.592 1.568 1.428
2.1 1.202 1.331 1.588 1.769 1.794 1.697
2.8 1.293 1.426 1.696 1.895 1.945 1.870
3.5 1.363 1.499 1.777 1987 2.052 1.988
K =4.25
0.00 1.064 1.181 1400 1.507 1.335 1.198
0.85 1.218 1.347 1.602 1.776 1.776 1.636
1.70 1.456 1.599 1.897 2139 2.254 2.233
2.55 1.645 1.796 2.120 2399 2.568 2.591
3.40 1.786 1.943 2281 2.582 2780 2.824
4.25 1.892 2.053 2401 2715 2929 2.986
K=5.0
0 1.260 1.387 1.634 1.780
1 1.516 1.660 1958 2.195 2.292 2.240
2 1.875 2.037 2.388 2.708 2.932 2.996 °
3 2.147 2.319 2.701  3.063 3.346 3.456
4 2.346 2.525 2925 3.311 3.624 3.757
5 2.496 2.679 3.090 3.491 3.823 3.969
K =6.557

0.000 1.655 1.797 2.085 2.289 2261 1.563
1.311  2.220 2.391 2.767  3.116  3.369 3.447
2.623  2.897 3.094 3.544 3999 4.401 4.599
3.934 3.379 3.591 4.080 4.587 5.057 5.303
5.245 3.726 3.947 4.458 4995 5.501 5.773
6.557 3.987 4.213 4.738 5.293 5.821 6.108

—p (center-of-mass system). The connection between
the total energy available in the center-of-mass system
and p is

E.=2[(p*+M?)}—M]. (23)

The threshold for pion production occurs at E,=1, or
294 Mev in the laboratory system. The threshold for
production of two pions occurs at E,=2, or at 613 Mev
in the laboratory system. In this calculation we cover
the range of energies for which only a single meson
may be produced.

In the intermediate state, the nucleon of momentum
p emits a pion of momentum k. Now the reactions
may proceed in two ways, which are coherent with each
other, so that the final expression for the cross sections
should contain the sum of two terms squared. In the
first way, the nucleons scatter to their final state
momenta. In the second way, the pion emitted by the
first nucleon is scattered by the second nucleon, and
its momentum in the final state is k’. Since we are going
to assume that a pion and nucleon interact only in a
(3,%) state, the second way cannot occur for the third
reaction, since the total charge (7°,=%) is not sufficient
to lead to a T'=3 state (the neutron cannot emit a
' particle, and the proton cannot emit a 7~ particle).
This means that the first two reactions should have
larger cross sections than the third (this is essentially
the point of the paper of Aitken, Mahmoud, and
Watson).

For either way, for the first reaction, a final state
interaction® between the nucleons leads to the forma-
tion of a deuteron. Conservation of energy and momen-
tum demands for this reaction that

(k24 (2M)*J—2M+ (k4 1)t= E,— E,,

where E, is the binding energy of the deuteron.

This integral equation which describes the pion
scattering in the intermediate state is (in the notation
of reference 6)

(24)

k'ko 1

(%' [6(3,3) | ko) =

wirwo)? Eg—wir—wo
E'k kxdk 1
A f
(wk»wk)‘} Ea"‘wk'—'&)k Ea—‘wk

X(k|t:(3,3) | ko), (25)
8 K. M. Watson, Phys. Rev. 88, 1163 (1952). ’
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TasLe IV. A [see Eq. (29)] calculated by various methods as a function of the coupling constant f?
and the energy Ei.p, for K=6.557.

E1ab =320 Mev E1ab =350 Mev E1ab =370 Mev
12 Aexact AFred Aexact AFred Aexact AFred Aamw
0.0375 1.10 1.10 1.05 1.07 1.03 1.06 1.37
0.075 1.55 1.58 1.55 1.63 1.57 1.66 2.15
0.1125. 2.71 3.05 3.05 3.68 3.40 4.28 5.04
0.15 13.8 —299 —216 —10.0 —16.1 —6.145 —14.5
0.1875 —4.16 —-2.71 —2.84 —1.99 —2.31 —1.691 —2.98
0.225 —1.87 —1.30 —1.39 —1.06 —1.22 —0.95 —1.66
E1ab =410 Mev Elab =500 Mev E1ab =600 Mev
0.0375 0.99 1.04 0.93 1.00 0.89 0.96 1.37
0.075 1.63 1.75 1.82 1.99 2.27 2.33 2.15
0.1125 5.17 7.25 36.6 —58.3 —4.28 —5.06 5.04
0.15 —5.34 —3.46 —2.00 —1.79 —1.09 —1.18 —14.5
0.1875 —1.66 —1.31 —0.96 —0.89 —0.87 —0.67 —2.98
0.225 —0.97 —0.78 —0.63 —0.58 —9.43 —0.46 —1.66

where A=412/3r. This is Eq. (33) of reference 6. The
only difference between it and our Eq. (1) is that the
sign of K and ¢ are opposite, and the connection be-
tween E, and &, is different. For pion-nucleon scatter-
ing, E,=w,, whereas for pion production in nucleon-
nucleon collisions there is no strict connection between
the two.

Aitken, Mahmoud, and Watson wrote the solution
of Eq. (25) in the form

NE'E 1
63,3 | ko)= A.

(wrwo)t Eq—wpr—wo

(26)

That is, they took the inhomogeneous term (or Born’s
approximation) and multiplied it by a numerical factor
A which is supposed to allow for the reactive effects.
Then they made further approximations based on the
following observations about the magnitudes of the
quantities &’ and ko which are especially appropriate
near threshold (E,=1).

Since both nucleons are brought nearly to rest in

these reactions, the first nucleon must emit a pion of
momentum nearly equal to p, coming nearly to rest in
so doing. Thus,
From Eq. (23), we see that p=~M? for E,~ 1. Assuming
M>>1, we have then p=~w,, or ko=wo=~ M?. The second
nucleon scatters this pion into a final momentum state
k', the second nucleon having a momentum —k’ in the
final state. Energy has to be conserved in the over-all
process, so that

B2+ M2 — M+ (F?4-1)=E,. (28)
Of course, for the first reaction, &’ is strictly connected
with E, through Eq. (24). Near threshold (E,=1)F
will be small, so that wx =1~ E,.

With these assumptions, Eq. (26) becomes

(#'|t:(3,3) [ ko= —\E' M A, (29)

Aitken, Mahmoud, and Watson then found the fol-
lowing approximate value of A, namely:

A= (1—42MK /37), (30)

where K, is the momentum-space cutoff used in the
calculation. With Egs. (29) and (30) they evaluated
the cross sections for the three reactions Eq. (22). The
results are given in their Egs. (46), which we reproduce
for convenience,

o[ p+pomt+d]
v/M
="°[ ]qdeuf[1+(4/9)M-%AJ2,
1— 1240

o[ p+p—mttntp]

3V2
= —8-00T02M_%[1+ (4/99M— AR, (31)

3v2
oln+porttntn]= —lgaoT02M —,

where oo=2n[4f2 ][ M5*]. The value of gaeut appearing
in the first of these being the value of %’ resulting from
our Eq. (24). v=(ME,;)* and r, is the 3S effective range
for low-energy n—p scattering. As we expected, Egs.
(31) contain the sum of two terms squared for the first
two reactions, the first term representing a nucleon-
nucleon scattering in the intermediate state, and the

TasiE V. Quantities useful in calculating R [see the equation
following Eq. (32)].

(I\E/Ilg:’/) 320 350 370 410 500 600
E, 1082 1179 1244 1372 1.656 1.966
) 2718  2.843 2923 3.077 3.398 3.722
q 0.3835 0.5764 0.6793 0.8561 1.184 1.494
gews  0.3558  0.5701 0.6818 0.8724 1.227 1.565
Ar 3.344  3.565 3.705 3970 4.493 4.961
Ar(g) 2.822  3.085 3.254 3.575 4.228 4.780
Ty 0.07621 0.1658 0.2249 0.3416 0.5972 0.8973
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second (which contains A) representing a pion-nucleon
scattering in the intermediate state. As we further ex-
pected, the possibility of a pion-nucleon scattering is
absent for the third reaction (there is no term contain-
ing A). Their work leading to Eq. (31) involved integra-
tion over the momentum £, since they allowed for the
fact that Eq. (28) does not really hold for the second
reactions, but a spectrum of values of &’ is possible,
the upper limit of the spectrum of pion kinetic energies
being given by

To+1+2{[;(T*+2T)+M*Ji:—~M}=E,. (32)

In a sense our calculation provides a value of their A.
Our exact solutions of Eq. (25) will not be of the form
of Eq. (29) with Eq. (30). However, in order to avoid
repeating the work of Aitken, Mahmoud, and Watson,
we have evaluated A using Eq. (29) and our exact
solutions for %' given by Eq. (28) and ko given by
Eq. (27).

The values of A found in this way are shown in
Table IV, and compared with the values found in a
similar way from the Fredholm approximation and the
values found from the approximation of Aitken, Mah-
moud, and Watson. A table of quantities useful in
calculating the Fredholm approximation and the cross
sections is given in Table V.

With these values of A, we may calculate

P o[ p+p—rt+d o[ p+-p—rttntp]
[n+ p—rt+ntn]

as a function of energy. As mentioned before, it was the
point of the work of Aitken, Mahmoud, and Watson
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that this should be much greater than one. The results
of this calculation are shown in Fig. 4 for f2=0.1125.

VII. CONCLUDING REMARKS

Whether or not Chew’s ideas correspond in any way
to reality cannot be decided until the fourth-order
Tamm-Dancoff corrections have been calculated. It
will be necessary also to calculate the effects of nucleon
recoil and the effects of other terms in the nonrelativistic
limit of the pseudoscalar symmetric coupling.

However, this calculation has several encouraging
features. The first is that according to Fig. 1, less
coupling constant is required than would have been
supposed from Chew’s approximate calculation to make
the (3,3) phase shift 90° at a given energy. Secondly,
with Chew’s approximation, it is difficult to make the
7t —p total cross section decrease sufficiently rapidly
beyond its peak to fit the experiments.

In Fig. 5, a graph of the 7t—p total cross section is
shown which indicates this difficulty may not be
present with the exact solutions.
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