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Born-Type Rigid Motion in Relativity
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Rigid motions of collections of particles as defined by Born, Herglotz, and Noether are studied in special
and general relativity. An approximate method for solving the Geld equations of general relativity, the
equations of motion of a perfect Quid undergoing a rigid motion, and the boundary condition p=0 is
described and the erst-order solution for the first two sets of equations is obtained. It is shown that in the
classical limit the boundary conditions may be satisfied to this order.

1. INTRODUCTION

0 generalize the classical concept of rigid motion,
Born' introduced a definition consistent with

special and general relativity. As formulated by
Herglotz' it states: For each pair of nearby particles
of the body the orthogonal interval between the corre-
sponding pair of worM lines is constant during the
motion. The orthogonal interval is the distance between
the two world lines, measured along an infinitesimal
hyperplane orthogonal to both lines in the sense of four
dimensions, and calculated with the line element of the
space time. It is shown in Fig. 1 in a Minkowski-type
diagram, with one of the spatial dimensions suppressed.

Herglotz and Noether' then proved that in special
relativity every Born-type rigid motion belongs to at
least one of two classes. The world lines are either the
orthogonal trajectories of a continuous one-parameter
family of space-like hyperplanes, or segments of path
curves of a continuous one-parameter family of Lorentz
transformations of the four-dimensional Minkowski
space-time R4 into itself. We label these classes p/arte
motions and group motions Some .motions belong to
both classes. Any time-like curve determines one plane
motion, but in order to determine a group motion the
curve must be restricted.

2. NOTATION, DEFINITIONS, AND ASSUMPTIONS

A point (or event) is specified by four numbers x,
the coordinate values of that point in the x -coordinate
system. Lower case Greek indices have the range 1,2,
3, 4; Latin ones 1, 2, 3.The usual summation convention
is used. The motion of each particle is described by
parametric equations,

-=a-(e0)
where P are parameters which label the particles and 0
is any convenient time-like parameter, e.g., the time x
in the x -coordinate system. The points on a world line
are obtained from (1) by holding P fixed and allowing
8 to run through its range of values. For any P it is
assumed that 8 and P(P,0) are monotone increasing
functions of each other. Let 0~ be the smallest value that

' M. Born, Ann. Physik 30, 1 (1909).' G. Herglotz, Ann. Physik 31, 393 (1909—1910),
s F. Noether, Ann. Physik Bl, 919 (1909—1910).

8 assumes; call it the initial value. The parameters P
are chosen to satisfy the equations

e-(e,0.) = &-

The particle located at P when 0=0t is labeled by $',
the ieitia/ values of its spatial coordinates x'. To each
particle $' corresponds the irtitia/ value P of x4 for that
particle, i.e.,

v= (s')

Substituting (3) into (1), we get

* =0 (V,~(8') 0)
or simply,

x-=x-(P'0)

There is thus a three-parameter family {Ct'} of
world lines for a motion of a system of particles. The
initial hypersurface from which the world lines start,
which we call the O-hypersurface.

x4 0- x

is assumed to be spacelike. All necessary diGerentia-
bility of the functions x ($',0) and a($') is assumed.
Also, Eqs. (4) are assumed to define a nonsingular
transformation between the coordinates x and the
coordinates $',0. The x -coordinate system has a metric
tensor g s(x"), however, in special relativity the coor-
dinates will, unless otherwise specified, be chosen so as

FUTURE

-Orthogonal
interval
~

~ ~ ~

I Infinitesimal
orthogonal
hyperplane

-World- lines
FIG. 1. The orthogonal interval between nearby particles. One of
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to have the metric tensor g p
——q p, where

$11 $22 $33 $44

if nAP, (6)

NrxQ = —1. (9)

u (x") is the normalized four-velocity vector field.
U (x") is an unnormalized four-velocity vector field.
From Eq. (9) and from the fact that the g p's behave
as constants with respect to covariant differentiation,
we get

i.e., they will be Galilean coordinates. The signature
will always be taken as (+ + + —), i.e., space-like
intervals will be positive.

For a family {C~'}of world lines let s' be the totality
of those points of the space time that lie on world lines.
At each point x of E, a time like vector is defined by

U-= ax-(P' 8)/88 =x-(P 8),
Because of the monotone relationship between x'(P', 8)
and 0, U points towards the future, i.e., U4)0. Cor-
responding to this four-velocity vector field U (x")
de6ned over v', and to the choice of signature, is the
unit vector field u (x") defined by

u =(—UpUP) '*U

where Up= g pU . It follows from the definition that

Note the identity
(g p+u up)U =0. (14)

Substituting for dxa from (12) into (13), and taking
account of (14), we get for the square of the orthogonal
interval

dP= (g p+u up)x „xP,;dP'dP . (15)

If we regard the functions g„i„u„, and x",i in (15) as
functions of P and 8, the statement that the motion is
a Born-type rigid motion means that for all points $',8
in 9" and for all infinitesimal d$, d/ is independent of 8,
or equivalently,

L(g.p+u.up)x, ,xp, ,7, 8= 0.

Theorem: Equation (16) is equivalent to the cova-
riant equation

up;p+up;p+up, ;iu up+u„;iu up=0 (17)

in which the functions g„i (which enter in the covariant
differentiation), and u„are regarded as functions of xa.

Proof: From (11) it follows, since UpUP&0, that Eq.
(16) is equivalent to

Cp~+p&' at x ($',8) is dx —(—dx pup) u . Its length squared
ls

dP=g p[d*+d*" )Ld p+d "

=g pdx dxP+u, dx"uidx"= (g.p+u.up)dx dxP. (13)

Q~;pl =0) (10)
L (g.p+u. up) x, ,xP, ;j,,=0. (18)

where u ,
.p is the covariant derivative of u (x") with

respect to xp.
It is convenient to introduce a proper time s, which

is defined by specifying its value on any hypersurface
which intersects each of the world lines exactly once and
by the equation

ds/d8= (—Up UP)'. (11)

It is assumed that a nonsingular transformation exists
between the coordinates $',8 and the coordinates $',s.
Equations (7), (8), and (11) imply that

If some dummy indices are changed, Eq. (18)
becomes

~(g u+u ul)u" p+ (gpj+. upu~)u"

+ (gaP, II+ua puP+uauP, y)up]xa ~xP i =0.

Replacing ua, „by gai „u"+g iu" „; g p ~ by g„p{
+g „{p~&},where {p~ } are the Christoffel symbols of
the second kind; changing dummies, collecting terms,
using the fact that the covariant derivatives of g p

vanish, and taking account of (10) we get

Bx /8s=x „=u .

3. DERIVATION OF THE DIFFERENTIAL EQUATIONS
OF BORN-TYPE RIGID MOTION

where
D px"„xP,,=O,

D p=ua;p+up;a+u;iu up+up;yu ua.'A

(19)

The discussion in this section is the same for Qat
and nonfat space times, and g p is used for the metric
tensor to represent both cases. The infinitesimal dis-
placement vector from the point x ($',8) on the world
line C~* to the point x (P+dp', 8+d8) on the nearby
world line C~'+~~' is

ax-(g, 8)
d$'+x ($'8)g)d8 (12)

xa dP+Uad8

The component of dxa parallel to u" ($',8) is (—dx pup) u .
Therefore the orthogonal displacement from C~' to

Note the identities
D pl+= 0

D pip=0.

(20a)

(20b)

D pJ )JP,=O. (21)

But by assumption ~~J' z~~ is a nonsingular matrix.
Therefore D p 0, i.e., (16) implies (17). ——The reversi-
bility of the steps in the proof insures that (17) implies
(16), and therefore the two equations are equivalent.

The Jacobian of the transformation from the coor-
dinates x to the coordinates $',s is the determinant of
the matrix [[J i[[, where J;=x,; and J 4=x,=ua.
Equations (19), (20a), and (20b) imply that
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I .pP I'p=0.

(22) is also equivalent to

(23)

(U.,p+Up. , ) (8 „+u u„)(8P„+ueu„) 0. (24)

This can be seen as follows. Let

e'&= —U U~

define P. Note that e&AO. Then

I =e U.
Differentiation of Eq. (25) gives

Pp= —e &U,pu .

(25)

(26)

(27)

Differentiating Eq. (26) and using (26) and (27), we
get

u ,p=e &U» ,p(o.» +u»u )..

Using the relation

(8'„+u u„) (5».+u»u ) = (8' +u'u. ),
we obtain from (28)

(u ,
.p+up, . )(8 „+u u»)(8P„+ueu„)

=e-&(U.,p+Up, .) (8 „+u u„) (bP„+ueu„). (29)

Since e &00, either (22) and (24) are each satisfied or
they are each not satisGed by any given vector Geld
U (x"). They are thus equivalent.

4. THE RESULTS OF HERGLOTZ AND NOETHER

As already mentioned, Herglotz and Noether proved
that in special relativity every Born-type rigid motion
is either a plane Inotion or a group motion, or both.

A four-velocity Geld of a plane motion in special
relativity can be characterized as follows. Let Co be a
world line of the motion. Co is given by equations

There are only six independent equations contained
in (17).This follows from the symmetry in tt and» and
from the fact that the equation obtained by multi-
plying (17) by u" is satisfied identically.

Equation (17) may be written in the equivalent form

(u„.,p+up. , )(8 „+u u„)(8P„+ueu„)=0, (22)

where 6 „ is the Kronecker delta. If we deGne

P =(8 +uu)V
where V& is an arbitrary vector, then I' is an arbitrary
vector orthogonal to u~. (22) may then be written in
the equivalent form

a»= 2 ( g)—4» Pru~up „=., 0, (34)

at all x" in v', where g is the determinant of the matrix
~~g p~~, and e» P& is the contravariant Levi-Civita tensor
density, which equals +1 or —1 according as lieth is
an even or odd permutation of the natural order 1, 2, 3,
4, and zero otherwise. Godel showed4 that a& represents
the local angular velocity of matter relative to the
compass of inertia, i.e, relative to the direction of the
local proper time.

A four-velocity vector Geld of a group motion can be
written

U~(x") F~„x"+A~ (35)

where P =P g~ F ~= —P~ g p=P and P~p=P.
We now verify that any vector field defined by (33)

or by (35) satisfies (24). Differentiation of Eq. (32)
gives

U„(8),,8, pLx —* (8)g+ U„(8)P;—U (8)8,pq= 0;

or, solving for O, p,

8,p= —{U (8), 3*"—*"(8)3—U (8)U"(8)& 'Up(8) (36)

Differentiation of Eq. (33) and use of (36) gives

U, p
= U (8)g{U„(8),tx"s(8) , x"5—

+U„(8)U" (8)) 'Up(8). (37)

It follows from (14) that the U, p given by (37) satisfies

U, p(8P„+ueu„) =0.

From this equation and the fact that U ,.p= U, p in a
Galilean coordinate system it follows that the U given
by (33) satisfies (24). For a group motion we have, from
(35) and from the antisymmetry of F p,

U, p+ Up, F.p+Fp 0. ——

Thus the U given by (35) satisfies (24).
For group motions the world lines are given by

(38)

Equation (32) can be regarded as assigning a value of
8 to each point x" of W, i.e., it defines a function 8(x').
The vector Geld defined by

U~(x") = U»L8(x") g, (33)

where 8(x") is defined by Eq. (32), is a four-velocity
vector Geld for the plane motion.

An important property of plane motions is that the
local angular velocity four-vector al" vanishes identically,
i.e.)

x =x (8).

A four-velocity is determined along Co, namely,

(30) x-=I;p(8)PP+
~

I.;p(8)de ~AP,
)0»,

(39)

U-(8) =x-(8), (31)

The hyperplane which intersects C0 orthogonally at
x~(8) consists of those points x" which satisfy

U„(8)Lx"—x'(8)j=0.

where {Lp(8) ) is a continuous one-parameter family of
homogeneous Lorentz transformations.

4 K. Gode1 in Proceedings of the Sixth International Congress of
3fathemoticiols (American Mathematical Society, Providence,
1950), Vo1. 1, p. 175.
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U~;p+Up;~=0 (40)

The concept of group motion is of course not restricted
to Rat space time. See, e.g., Eisenhart, ' page 221 8 for a
discussion of groups of motions. It is clear that any
solution of (40) is a solution of (24), i.e., any group
motion is a Born-type rigid motion.

To the four-velocity vector field s (x") corresponds
an unnormalized four-acceleration vector field u
..=Q;pQp.

Theorem: For a group motion,

u = (log, (—Up U )*),„ (41)

where Up satisfies (40).
Proof: Let lt and s be defined by (25) and (26).

Equa, tion (40) implies that

U ,
.pl uP=O. (42)

Multiplying Eq. (27) by sP and taking account of (42),
we get

(43)&P, psP= 0.

Differentiation of Eq. (26) gives

s.,p= —
&P, ps +e &U.,p.

Multiplying Eq. (44) by sP, using (43), (40), and (27),
we get

u =it, ,
which, since &P=log, (—UpUP)*', is (41).

Theorem: A rigid motion is a group motion if and
only if the normalized four-velocity vector field I
satisfies the equation

Ocr, p
—

Ap, ~=0 (45)

at all points x" of v'.

Proof: The four-acceleration u of a group motion is
the gradient of a scalar, which implies Eq. (45). This
proves the only if part of the theorem.

Consider a rigid motion which satisfies (45). Equation
(45) is the necessary and sufficient condition which
insures that a function &P(a") is defined by

5. GROUP MOTIONS

For ari appropriate choice of the parameter 8, the
four-velocity vector field U (a") of a group motion
satis6. es the ten Killing's equations,

The theorem proved by Herglotz and Noetht:r can
then be stated in the following manner. In special
relativity a normalized four-velocity vector field s„(x")
which satisfies Eq. (17), must also satisfy at least one
of the two equations (34) or (45).

The rigid motion equation, (17), may be written

S»;,+S, »= . u»S—, u& S—» (47)

s»;v sv;»= u»sv+urs»+2( g)'—e»rr»a s' (49)

Adding Eqs. (47) and (49) gives us

S»;&= u»S& ( g)'e»&, »ra S .
From (10), (34), and (50) it follows that

u„m,"=a„u~= 0.

(50)

From the antisymmetry of c„„,in p and v, it follows
that any s„(x') that satisfies (49) also satisfies (47),
and therefore (17).Equations (50) and (51) are equiva-
lent to Eq. (17). The Herglotz-Noether theorem can
then be stated: In special relativity, if a normalized
four-velocity vector field s„(x ) satisfies Eq. (49), i.e.,
if it is the field of a Born-type rigid motion, then at
least one of the two conditions—

(1) u„ is the gradient of a scalar and the motion is a .

grouP motion; or
(2) a vanishes and the motion is a plane motion;

must hold throughout K

The geometrical properties of the world lines of Born
type rigid motions in special relativity were examined
in detail by Salzrnan. ' In particular it was shown that
at" does not vanish for the group motion which is such
that the world lines of the particles undergoing the
motion may be identified with the world lines of the
particles constituting a rotating rigid disk. This means
that there is no three-dimensional manifold orthogonal
to this set of world lines. Hence the metric

From the definition of the local angular velocity four-
vector ao given in Eq. (34), we obtain

2 ( g) e&&&&&&ra
=

B&&&r S&&Sp; y
=S„(S»;r Sr;»)—+S»(Sr;, S„;r)—

+Sr (S&,;r—S»;y)

From (9), (10), and (48), we find

2 ( g) ie»vera"s"= sr; ~ sa; r+—s~ur sru,
&

f' S"
P(x")= u.dx . (46)

dP= (g.p+s sp)x „xe,,dp'd)&', (15)

Let the vector field U be defined by U =e&N . Then

U.,lp+Up, =et'(s, p+sp, +s &Pp+sp&P, ).
Substituting up for &fr, p and taking account of (17), we
get (40). This proves the if part of the theorem.

L. Eisenhart, Riemanlia&e Geometry (Princeton University
Press, Princeton, 1949).

l= dl (52)

G. Salzman, thesis, University of Illinois, 1953 (unpublishedl.

which measures the orthogonal distance between the
world line of the particle $' and that of the particle
$'+d$', is not the metric tensor of a three-space im-
mersed in the Minkowski space time. Nevertheless, the
quantity
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can be computed for any curve in the P, P, P space and
it will be independent of |I. We may take a curve such
that

The invariant pressure p is defined by

S =3p. (56)

(8')'+(P)'=&' 8=0
where b is a constant. This curve goes through the par-
ticles initially (i.e., for 0=Or) on the circumference of
the rigid disk. When 0&0~ this curve is mapped into a
locus described by Eqs. (39), where I.~e(0) has been
given by Herglotz. The value of l for this curve com-
puted from Eqs. (15) and (52) has been called the
intrinsic circumference of the rotating disk. The value
of l/2'.

It should be pointed out that although it is possible
to define other ietHwsic three-dimensional geo@retries

associated with a given three-parameter family of world
lines with the dis1arlce between the particle t' and
$'+d$' given by

dt'= g "dPdp'

the definition given by Eq. (15) has the virtue that dl
is independent of 8.

6. THE DYNAMICAL EQUATIONS FOR A
COMPRESSIBLE, NONVISCOUS, NON-

HEAT CONDUCTING FLUID

Consider an isolated system of particles whose
streamlines are the family {C1*') of a rigid motion. Let
I (x") be the unit four-velocity vector field defined by
the streamlines. The system is described by a stress-
energy tensor T ~ from which field quantities with
correct relativistic transformation properties are de-
fined. All fieM quantities, T I' included, are understood
to be the macroscopic averages of the corresponding
microscopic quantities, and it is assumed that T ~= T~ .
A method of performing Lorentz-invariant kinetic
theory averages is given by Taub. ' The result is that
the macroscopic stress-energy tensor may be decom-
posed in the same way that Eckart' decomposed the
corresponding microscopic stress-energy tensor, i.e.,

In what follows it is assumed that the Quid being dis-
cussed is incapable of conducting heat or of maintaining
shearing stresses. Thus Q =0, and in the proper locally
Lorentz coordinate system S ~=0 for nWp, S"=p, and
S44=0. If we write S~e= pg~~, where g,e is the metric
tensor of the proper locally Lorentz coordinate system,
then this is correct for all values of rr and P except
rr=p=4, when it gives —p instead of 0. In these coor-
dinates I u~=0 unless n=P=4, when it equals 1. Thus

S"~=p(g~~+I u~) (5&)

is correct in the proper locally Lorentz coordinates, and
since it is, a tensor it is the correct form in any coor-
dinates for the stress tensor of a Quid that can sustain
only a pressure. Substituting Eqs. (55) and (57) into
(53), and taking account of the assumption Q =0, we
get

T e= pLC'+6+ (p/p)7Q Ne+pg" e

Defining the dimensionless function

p = 1+(1/c')(e+ (p/p) 7

enables us to write

T"e=ppc'I"le+ pg e

The equations of motion of the Quid are

T I'.
, p

——0,

(58)

(60)

(61)

(pm ), =0. (62)

Equation (61) expresses the conservation of momentum
and energy. Equation (62) states that no particles are
created or annihilated.

Let the invariant absolute temperature 7. and the
invariant specific entropy 5 as measured by an observer
at rest with respect to an element of the Quid be defined

by

(53) de+ pd(1/p) = rdS (63)

where

Q"= —T"e(8 ),+I ug)up

S e=T""(8 i+I ug)(8e„+ueN. ).
(54)

Then the conservation of energy equation, T ~.pg =0,
and the conservation of matter imply conservation of
entropy along the streamlines, S, I =0, as follows.

By use of (60) and (62), Eq. (61) becomes

pue(pcsN ).p+ (pg ~).,e ——0. .

w= p(c +e). (55)

These field quantities are interpreted as follows. The
invariant zv is the proper energy density, i.e., the energy
density as determined by someone instantaneously at
rest with respect to an element of the fluid, Q is the
heat Qow four vector, and S t' is the stress tensor. If p
is the proper density of matter then e, the internal
energy per unit rest mass of the Quid, is defined by

By using the fact that g &,.p=0, and taking account of
(59), this becomes

p&'L~+(P/p)7. e +ppc'& +P,eg e=0

Multiplying by u, ancl noting Eqs. (9) and (10), we get

pLe, e+P(1/p), e—7N'= o,

which implies, since —p7/0, that
r A. Taub, Phys. Rev. 74, 328 (1948).' C. Eckart, Phys. Rev. 58, 919 (1940). 5,pN&= 0. (64)
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R~p —2g pR= —kT p, (65)

in which the T p are the same as those occurring in Eq.
(61).

The problem is then to solve the system of equations,

Rap 2gapR ~~ap p

u~ p+up; «+u~up+Bpu»= 0,
Sr' = —1
TaP 0

(pu )., =0.

(65)'
(47)
(9) (66)

(61)
(62)

for the sixteen functions g p, u, p, and P, where T"& is
assumed given by Eqs. (59) and (60) and e is assumed
to be a given function of P and p. Equation (61) is a
consequence of Eq. (65), but is included in the system
(66) because explicit use is made of it.

Theorem: A hydrodynamical system which satis6es
the Eqs. of (66) and for which

IIBe/BP/0 and S=coustamt,

is performing a group motion.
Proof: Equation (9) implies (10).If Eq. (47) is multi-

plied by g & and (10) taken into account, then

I, =0.
Equations (62) and (67) imply that

(67)

If all parts of the Quid are initially at the same entropy,
then S=coestuet holds throughout K In this case Eq.
(63) determines p and p as functions of each other, once
e(p,p) is speci6ed.

7. RIGID MOTION IN GENERAL RELATIVITY

The covariant derivatives that enter in Eqs. (61) and
(62) are with respect to the coordinates in which the
gravitational Geld is represented by the metric tensor

g p. We are concerned with problems in which this
gravitational field is due to the Quid undergoing the
motion described by Eqs. (61) and (62). Thus the g p's

are determined by the Einstein field equations,

But S~constant implies that p and P are functions of
each other, which in turn implies that p, p, p

—P pp, ~0.
Therefore Eq. (45) is satis6ed at all x" in Y; and the
motion is a group motion.

If e(p,p) is any nonnegative function and if Be/BP&0,
then Ij, is a positive function and pBe/BP/0 We will
restrict ourselves to isentropic motions of Quids that
satisfy this condition, and therefore we replace system
(66) by

R~p —~g~pR —kT~p,
U.,p+Up, =0,

u~= (—g U"U") ~U~

T P.
, p

——0,
(pu ),.=0.

(65)
(40)

(8) '(72)
(61)
(62).

Equations (40) and (8) of system (72) imply (47) and
(9), respectively, of system (66), and therefore every
solution of (72) is a solution of (66).

8. A METHOD OF INTEGRATING THE
SYSTEM OF EQS. (72)

The method we shall pursue is to reduce the system
(72) to a set of equations for the g p. In this set the U~

will be considered as known since the coordinate system
may be chosen so that the U" may be prescribed arbi-
trarily. The reduction is accomplished as follows: p and

p may be expressed as functions of g pU UP if one
assumes that @Be/BP/0 and that the Quid is performing
isentropic motion in accord with Eqs. (72). We examine
solutions of (72) for which the U chosen is such that
the angular velocity vector 6eld given by (34) is non-
vanishing. Since the motion is a group motion, the
dynamical Eqs. (71) may be written

P. -/6 ~~') = —Dog (—UuU')'j, - (73)

Since the motion is isentropic P=P(p), which implies
that the integrability conditions of Eq. (73) are satis-
Ged. Therefore

p, 1=0. (68) (- ) dP=-I g.( -UU), -(74)

By using (60) and taking account of (62) and (68), Eq.
(61) becomes

ppput'u~Be/B, P+P pu~u&+p pg~~+up'c2u~=0 (69).
and we can explicitly obtain

p=p(g nU U ) P=P(g nU U ) (75)
If Eq. (69) is multiplied by u, and (9) and (10) taken
into account, then

—
pP, pu~Be/Bp=0,

or, since Be/Bp and p are nonzero throughout K,

p, pu&=0 (70)

throughout K Equation (69) then becomes, since y, WO'

&-= —P, -/(w~'). (71)

From (71) we get

u, g
—up, = (p+pBu/Bp) (P,.p, p

—P, pp, .)/(upc').

where the right-hand members are known functions of
g pU UP. This enables us to eliminate the unknown
functions p and P from T p.

It is known (see, e.g., Eisenhart, ' page 5) that given
a vector 6eld U, there exists a coordinate system in
which U =8 4. It is therefore no restriction at all to
specify U, because g„p is yet to be determined.

Thus, given a velocity 6eld U (x"), Eqs. (8) and (75)
enable one to write T p explicitly in terms of the
unknown functions g,p. Equations (65) then determine
the g p s. Equations (40) are additional conditions on
the 6rst derivatives of the g p's. Equations (8) just
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deffne Na(x"), and there is no question about satisfying Substituting Eq. (80) into Eq. (81) we get, since the
them. second and third terms vanish,

That Eq. (62) is automatically satisffed can be seen
as follows. Since the motion is isentropic, p= p(p) and g-p, ~E&lcl+g-p, 4=0

p, -=p, .dp/dp.

Equation (73) may be written

(76) The general solution of this equation is

g.p(*")=X-p(», s, 0 —(~/c)«),

p, a= ppC ita.

It follows from this and from (10) that

p la=0.

From this and from (76) we get

p, I=0,
which is Eq. (68). Since the motion is a group motion
(67) holds, and (67) and (68) imply (62).

The problem is thus reduced to that of solving the
system

~-p kg-P=— &&-p(g—"U"U"), (77)
(78)

U,.p+Up. , =0, (4o)

for the ten unknown g p's, the U&'s being considered as
given.

We will be interested in dynamical solutions which
satisfy the condition p=0 on the boundary hypersur-
face of the region W, which hypersurface can be de-
scribed by equations of the form

x'= h'(bi, b2, ct)

The solutions will be required to be such that the func-
tions p and p are nonnegative throughout K

9. THE ROTATING RIGID BODY IN GENERAL
RELATIVITY

where x p is an arbitrary function of r, s, and P—(co/c) ct
We restrict ourselves to looking for steady state motions
with cylindrica symmetry, i.e., all the field quantities
are assumed independent of ct and of p, respectively.
Therefore

g p=g p(r s)

and this together with (80) insures that Killing s equa-
tions are satisfied, The problem is thus reduced to that
of finding integrals of Eq. (77), i.e., sets of g,p(r, s)'s,
which have the property that when they are substituted
into Eqs. (75), nonnegative functions p(x") and p(x")
are determined which vanish everywhere except in a
region s; and p is continuous on the boundary of 9'.

Also, U must be timelike throughout K In order to
solve (77) an approximation method is used.

iO. AN APPROXIMATION METHOD FOR
INTEGRATING EQ. (77)

The method is based on the smallness of the constant
k of Eq. (77). Newton's gravitational constant G is
related to k by the equation (in our choice of units)

k=8wG/c'=LE-&(6. 67X10 s dyne cm' gm 'j/
L(3)(10"cm sec ')'j

= 2.07' 10 "g ' cm ' sec'.
It is convenient to replace k by Kk, with K= 1 g

—' cm—'
sec', and k the pure number 2.07&10 ",and to assume
the metric tensor expanded in a power series in k,

We assume that in the x -coordinates, which for
heuristic reasons are called, r, s, p, ct, the world lines
are given by

g p= Zk"g'"' p= Zv(") p
0

(82)

x'=r=rI, Then, substituting this expression for g p into both
members of (77), we seek a solution in which each equa-

(79) tion obtained by equating the coefficients of like powers
of k satisfied. This has the eff'ect of replacing (77) by a
sequence of equations of the form

i.e., the time coordinate ct is the parameter used to
describe the motion, and the initial hypersurface from
which the world lines start is et=0. rr, sr, and Pr are
the parameters $' that label the world lines.

The four-velocity vector field defined by Eqs. (79)
with this choice of parameter is

IIU II
= II0,0,~/c Ill (80)

Let g p(x") be the metric tensor of the x -coordinate
system. Killing's Eqs. (40) can also be written as

g p, ),U"+U'.Pg). +U". g) P=0

On& ap+(n) kny(n)»i 0 (83)

where
E.p= —KEY p(gi, U"U"),

t'ap ~ap 2gapL~»g

(84)

where 0» P is a linear differential operator and g(")~
is a known function which depends only on the g( & p's
with m(»i, and their derivatives. Thus if Eqs. (83) are
solved in order, g(").p is a known function of x" at each
step.

More explicitly, (77) may be written in the equivalent
form
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If it is assumed that y(0) t)=)) )), then Eqs. (83) are The homogeneous equation R*"~ p=0 has the solu-
tion y*(" ))=f*,p+ f*p, , where f* are arbitrary func-
tions. Therefore

(x*")=Kk (27r) ' P *(') (x*'") jI

where

1)pvf')a y (n) k n@(n) (85)
Bx'8$"

@(n) — g (n—1) 1g (rr)

X [));,(x*"—x*') (x*')—x*r)]—ld V*'

+&k(f*-(+f,*a -) (87)

&("&
p is defined by the equation

P k n+ (n) —
~a()

n=p gx~ggp

and W")
p is dined by the equation

p krr[ot, vt,g( r) +rlirlr'(n) j
n=I

In this method the boundary condition p=0 is to be
satisfied at the last step in the approximation.

11. USE OF THE APPROXIMATION METHOD IN
THE CASE OF THE ROTATING RIGID BODY

Here the problem of Sec. 9 is examined in the first
approximation, and it is shown that there exist in the
classical limit of the theory rigidly rotating dynamical
systems held together by their own gravitational fields.

AVe assume that

p(0))1—p(o)2~ ——y(0)44 —I p(o)33 —r2 p(o) s
—0 if (i~p

This choice satisf)es the zeroth order Eq. of (83) and
Killing's equations, and enables us to get a formal ex-
pression for (" p.

The next step is to integrate the first-order field
equations. To do this it is convenient to make a coor-
dinate transformation which transforms y") p into g p,
the Minkowski metric tensor.

x*'=x=r cos1f)=X' CoSx',

x*'=y=r sin(t)=x' sinx',

X*'=S=S=X2

x*'=ct= cf= x'.

In this coordinate system the first order equation of
(83) may be written

is a solution of Eq. (86) which has four arbitrary func-
tions in accordance with the freedom of choice of a
coordinate system. The three-dimensional volume ele-
ment d V~'= dx~'dy*'dz"'. The expression iZ'"(" ))(x"'")jI

is to be evaluated at the retarded time. The spatial
distance between the field point and the variable inte-
gration point, evaluated in zeroth order, is

[)),,(x*"—x")(x*"—x'&))'.
It can be verified that (87) is a solution of Eq. (86) for
any choice of the region of integration.

The region over which the integration in (87) is
carried out is related to the boundary condition
p(')=p([y(" p+p(",p)U Ut')=0 as follows: For any
prescribed region of integration p(') will be determined
as a function of the coordinates, as will be shown below,
the explicit functional form depending on the choice
of the region of integration. The boundary described
by the equation p("=0 will then be determined by the
region of integration and will vary as this region is
varied. Thus, if the region of integration is given, the
boundary p("=0 is determined. It may not be a real
boundary for some choices of the region of integration,
in the sense that there may be no points in space time
whose coordinates satisfy the equation of the boundary.
Presumably, if one is given a real boundary p("=0,
one should be able to determine whether a region of
integration exists for which the process described above
leads to this boundary. This question will not be dis-
cussed further here.

In the subsequent discussion we shall assume that
the region of integration in Eq. (87) is the interior of a
sphere of radius a(" and shall show that real boundaries
exist for this case.

Because we are considering steady state motion the
expression ltZ*(') ))(x*'")) in Eq. (87) can be evaluated
at any time. Transforming back to the x"-coordinate
system, we get

R*(" = —eke*(0)
where

g*( ) —8 s p*( ) —[ y*( ) +y*( )

(86) y"' S= (()x*"/c)x ) ((ix*'/c)x)))xk(21r) —'

g"g (P) &$/(r g/t gs g/7', g j —id Vg/

~O(1) v ~O(1) v ]
y*(') p= (()x"/()x* )(()x"/Bx*)')y(') ),

~4(» v ~vp~W (&)

&*(»—&~p&+(»

where
+)-k(f-;()+f();-) (88)

f- t
= (»*"/» )(»*"/~x')f* i

= (»""/&x ) (&x*"/Bxs)[f , )+O*„(k,)]
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(7")-/+7("-p)U U'= ( / )'—1+I',
where

I'=7")44+2(cu/c)7(')a4+ ((u/c)'7 ' 3„-.

Using (88), straightforward calculation leads to

(89)

and of course the terms of order k with respect to f*., &,

are ignored.
The combination (7(0) s+7(') p)U UP is required,

rather than the individual 7('& s's. From (80) and the
y") p's assumed,

(92) is (—2) times the Newtonian gravitational poten-
tial of a distribution p('&(r) of matter.

Under the assumption that the motion is isentropic
and that e(p,p) =p/[p(7 —1)], where 7 is the ratio of
the specific heats of the Quid and is assumed to be a
constant, Eq. (63) gives

(93)

where f~: is the constant of integration. Substituting this
into (74), we find for Eqs. (75):

xk / Q(r, r')
I'(x")=— d V'+2xk(co/c)r f„

where

p("p")c'{1—[(&u/c)'rr' cos(p —P')]}'
0 (r,r') =

1—((or'/c)'

(90)
p={L(7 1)—/~7][~( a-—sU U') ' c'—]}"""

(94)
P=~{[(7-1)/~7][~(—g-sU U') '—c']}""'

where 3 is the constant of integration. Substituting
from Eq. (89) for g //U Us into the above equation for
p, we find the 6rst order approximation to p, namely,

—(-,'p(')p(')c' —p('&)(1 —( r/c)'), p"'= {[(7—1)/ 7][~"'(1—( r/c)' —I') ' —c']}""".
r is the ordinary radial three vector, i.e., no time corn- Let [)(]0denote the value of a function )( at the origin

ponent, from the origin (r=z=0) to the point r,s, (t&, and (r=s=0). Then from the last equation,

~

r—r'
~

=[r'+r"+ (z—s')' —2rr' cos(P —@')]l.

The function f, may be taken to be zero, for if it is
not we may go to another coordinate system related
to the r, s,P,ct coordinates as follows:

~"'={[7/(7 —1)][[P"']o!]"""+c'}(1—[I']o)'

P"'= {["(7-1)/7][~(1-[I']o)-:
r=r(r, s), z=z(r, z), Q=-P, ct=ct

where
& (1—(~r/c)' —I') '* —1]}""", (95)

In this coordinate system the U are still given by the
right-hand sides of Eq. (80). Hence Eq. (90) will hold
in the barred coordinate system. However we may
choose the functions r(r, s) and z(r, z) so that

fi =fiBr/Or+ fgBs//Br =0.

Therefore (90) becomes

(7-1)c'

If the square roots in Eq. (95) are expanded in powers
of k (remembering that I' and [I"],are of order k'),
terms of order k' or greater discarded and the classical
limit taken, we find with the help of (92) that

Kk / Q(r, r')
1(x")=— d V'.

2m & /r —r'f
(91) . . 7 1

Limit, ( p('& =/( -', (u'r'+8

12. THE CLASSICAL LIMIT

Before specializing e(p,p) or restricting ourselves to
isentropic Row, we can determine the classica/ limit of
c'F. Note that

p(0) (r')
+G ) dV'

f
r—r'[

(96)

u(o) = 1+(1/c~) [do)y (p(o)/p(0')]

ip(0)p(0)c2 —p(o) =~p(o c {1+(1/p)[c(0) (p(0)/p(o))]}

xk= 8n G/c4.

Therefore, we get from (91)

Classically, a rigidly rotating body of gas which obeys
the adiabatic law, Eq. (93), has a pressure p, & given by

/ p"'(r')
Limit i c'I'=Limit c'I'=2G d V . (92) P«=/(

~ )r—r'[

71, ~ p.((r')
',oPr'+8, )+G d V'-

/

r—r'f
, (97)

Equation (92) is useful in examining the classical limit

(c—)0()) of the first order approximation, i.e., the ap-
proximation to order k'. The right-hand member of

where
/'[P. i]o) """

/ p.((r')

)
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This is equivalent to Eq. (236.2) of Jean's Astrortarrty
@ed Cosnsogoey. '

Consider the classical problem of a rigidly rotating
body of gas which obeys the adiabatic law. If we at-
tempted a perturbation approach in which the gravi-
tational interaction was ignored in zeroth order, then
we would have, from Eq. (97),

p )(o) —/(

([p,t(o))o) (v—))/v- &/(& —i)
-' (or'+

)

&3. AN EXAMPLE

From (89) and (94) we see that

P( ) =/({[c (y 1)//(y)[A—(1—((A)r/c) )='* 1))&/(& i)—
This shows that p('& is a monotone increasing function
of r from 0 to c/(o, and that p"&—+on as r~c/(o. There
are thus no self-contained rotating rigid bodies in the
zeroth approximation, i.e., an external cylindrical wall
would be needed to keep the Quid moving in circular
orbits rather than fiowing outward. This is to be
expected because in this approximation the particles
are interacting only through the pressure.

The rest of the calculation is concerned with showing
that in the classical limit there are self-contained
dynamical solutions in the first approximation. We
restrict ourselves to the case

e= p/[p(y —1)), p=/(p&, and

and to the classical limit.
The boundary of a self-contained dynamical solution

in the first order approximation is defined by p(') =0.
From Eq. (95) it follows that p")=0 if and only if

/(or &

I

—I+&—[I') +(1-[1))
Ec

If this equation is multiplied through by c' and the
classical limit taken, one obtains for the equation of
the boundary in this case:

(or'+ Li mit, )c( I—[I')o)+6)(([P"))o//()'=0. (98)
' J. Jeans, Astrolomy or)d Cosmogony (Cambridge University

Press, I.ondon, 1929), p. 259.

If the zeroth-order density p, &&') corresponding to this
P, )(o) was used to calculate a first approximate gravi-
tational field and this field was used to calculate the
first order pressure, we would get, from (97),

p, (("=Limit, )p(".

Thus the classical limit of the first order approximation
gives the same density and pressure distribution as does
the scheme described in this paragraph.

f(r', z') =0,
where

p 2
f(r' z') =n' —— — +n("[n('&+-') z'

357

(99')

p 47
+ —4n(o) z'—

5 7 9

2P
z6

37911
P(2+9n(") 5P—1 z+ r'z4—

7 9 11

Sp
r4z'

7.11 12

+ + +n(o) (i n(o))
2 357

P (1—48n(o)) 113P
+ r4- r' (100)

7 9 11.125712
The function f(r', z') is related to the pressure in the
classical limit of the fi.rst order approximation as
follows: Substituting (92) into (96), and setting y= —'„
we get

Ljmjt, )p(') = )({[1/(6/()) [(d)'
+Limit, c'(I' —[I')o)+6 ([P(')o/ ) )}'.

The expression in the second square bracket is

(2~'(a(")'/n') f(r', z'),

as can be seen by tracing the steps from Eq. (98) to
Eq. (99). Therefore,

Limit, )P('& = (&{[1/(3a))((oa(o)/n)'f(r' z')) s (101)

It can be shown~ that the velocity of sound in a fIuid
of the type under consideration is

(/& (Et ') '
v=c

&/ dp)

where p, must be expressed as a function of p alone. We
then find that, in the classical limit,

~= 2t '/(3pi)

which enables us to replace /( in Eq. (98).
If the integral of Eq. (91) is evaluated on the as-

sumption of a spherical zero-order boundary of radius
a(o), this result substituted into Eq. (98), the resulting
equation brought into dimensionless form by dividing
through by 2(o'(a(o))', the dimensionless constants

n= 2([~(")o/«"))'
n(o) 2 ([s)(o)) /~(t(o)) o

P =2orG[p('))o/(o',

introduced, the replacements

r=r/a ,(o)z=s/a"&

made, and the equation multiplied through by u', then
the equation of the boundary is
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Thus Limit, ip'" and f(r', z') are monotone increasing
functions of each other and surfaces f= cortstartt surfaces
are surfaces of uniform pressure.

The choice ct&si=n=2 and P=100 gives a self-con-
tained solution. Figure 2 shows the trace of the bound-

ary on the positive part (z)0) of the r—z half plane.
The Quid mass is in the shap" roughly speaking —of
an ellipsoid of revolution about the minor axis. It
diGers from an ellipsoid to the extent that the equation
of the boundary is

z =+0.269 (0.0684—r' —0.967r') ',

whereas the boundary of an ellipsoid with the same
axes is

z = &0.277 (0.0643—rs) i.

0 .65 .IO .I 5 .20,25

Fxc. 2. A self-contained dynamical system
in the first approximation.

It has been found that there are other choices of the
parameters n"', n, and P which give non-self-contained
solutions in this approximation.

Thus, the classical limit of the first order approxi'-
mation in general relativity is a theory in which there
exist self-contained dynamical systems which perform
Born-type rigid motion.
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Comparison of the Cut-Off Meson Theory with Experiment*
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The cut-off theory for the interaction of pions with nonrelativistic nucleons is tested against experiments
involving a single nucleon, with and without the presence of an electromagnetic field. It is concluded that
most of the existing information about the P-wave pion-nucleon interaction can be understood with a
renormalized coupling constant, fs =0.058 and a cut-o6 energy, a& „„=5.6 p. No light is shed on the S-wave
pion-nucleon interaction.

I. INTRODUCTION

HE purpose of this paper is to compare with exist-
ing experimental data the so-ca1led cut-oG form

of the Vukawa theory for the interaction of pions with
nucleons. Although this form is not Lorentz-invariant'
and is appropriate only when the nucleon velocity is
small compared to the velocity of light, the meson
velocity is unrestricted, so the theory can be applied
to a very wide range of experiments. These include pion-
nucleon scattering, photo-pion production, nucleon-

nucleon scattering, and the ground-state properties of
the deuteron, as well as the anomalous electromagnetic
properties of nucleons (e.g. , magnetic moments). It
will be shown here that a large amount of the existing
experimental information can be correlated by the
meson theory with only two arbitrary parameters: a
coupling constant and an energy cuto8.

The theory can most easily be characterized by
writing down the interaction energy which it postulates
between the pion field and a single fixed nucleon (at the

* Supported by the U. S. Ofhce of Naval Research.' For a general discussion of the cut-off theory and more refer-
ences, see W. Pauli, Mesort Theory of NNctear Forces (Interscience
Publishers, Inc., New York—London, 1946), p. 12.

origin of the coordinate system):

& -t= (4~)'(fit ) «p(r) 2 ri~ 54.(r)
X=1

Here f is the dimensionless unrationalized coupling
constant ()'t= c= 1), tt is the pion mass, p(r) the "source"
function, normalized so that J'p(r)dr= 1, e and ~ are
the Pauli spin and isotopic spin operators for the nu-
cleon, and the g&, are the three real components of the
pion 6eld. The form (1) is often referred to as "gradi-
ent" coupling, but we prefer to call it simply "linear"
coupling, since it is the only form compatible with the
conservation of angular momentum, parity, and iso-
topic spin which at the same time is linear in the pion
field and does not involve antinucleons. The eGective
nonrelativistic linear interactions of any Geld theory
(including the ys theory) must reduce to the form (1).

Although (1) has been written for an infinitely heavy
nucleon, it is not hard to make the interaction Galilean
invariant, that is, to include eGects of order v/c, where
v is the nucleon velocity. This has been done for some
of the calculations discussed below, where it was felt
that the accuracy of both experiment and calculation


