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Meson-Nucleon Scattering in the Tamm-Dancoff Approximation*
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An attempt is made to calculate meson-nucleon scattering by using charge-symmetric pseudoscalar meson
theory with pseudoscalar coupling and without the use of perturbation theory. The Tamm-Dancoff formalism
is used, with all states which are not directly coupled to the one-meson, one-nucleon state omitted. In this
approximation an inhomogeneous integral equation in three-dimensional momentum space is derived for
g(p), the probability amplitude for relative momentum p between meson and nucleon. This equation is
reduced to a separate one-dimensional integral equation for each of the six angular momentum and isotopic
spin (7') states, Sl, Pl, and Pt for 7'= ,', -', . Th-e phase shifts for these states are given by the value of g(p)
on the energy-shell.

All self-energy and renormalization terms are omitted and the present method is inapplicable to the two
states of total angular momentum and T equal to —,'. The integral equations are solved by semi-numerical
methods for the S~ and P,* states with T=-„obtaining the shape of g(p) and the variation of phase shift
with energy and coupling constant. It is shown that only for the I',*, T= —, (corresponding to an attractive
potential) is the phase shift much larger than in Born approximation and depends strongly on the coupling
constant and on energy. For the other, repulsive, states the phase shift is less than in Born approximation.
For energies of about 150 Mev or more and for a large enough coupling constant, the I';, T=) phase shift
is larger than any of the others. This is in rough qualitative (but by no means quantitative) agreement with
experiment,

results. In particular the equivalent potential is attrac-
tive only for the I'~, T= —,

' state, so one would expect
the correct phase shift F33 to be much larger than on
Born approximation, but the phase shifts for all the
other Ave "repulsive" states to be less than on Born
approximation. This is in agreement with the earlier
observation by Drell and Henley4 that at least in the
S states an electively repulsive potential is obtained
if the perturbation theory is avoided by a contact trans-
formation„and that the S phase shifts are greatly
reduced accordingly.

The present paper reports an attempt started' in the
fall of 1952 to calculate pion-nucleon scattering phase
shifts and using approximate methods but not using
expansions in powers of the large coupling constant.
The method used is essentially the Tamm-DancoG
treatment' of conventional three-dimensional field
theory, involving an expansion of state vectors in terms
of states corresponding to diAerent numbers of virtual
mesons and nucleon pairs present in the field. The treat-
ment is applied to the charge-symmetric pseudoscalar
meson theory with pseudoscalar coupling. To obtain
relatively simple equations, only the states directly
coupled to the principal one-meson, one-nucleon state
are considered. This approximation is a drastic one but
it goes much beyond perturbation theory.

Vhth this approximation the problem can be reduced
to an equation of motion in the form of a single integral
equation for g (p), the probability amplitude of a relative
momentum y between pion and proton in the principal
one-meson, one-nucleon state. This integral equation,
derived in Sec. II, can be greatly simplified by using the

I. INTRODUCTION

'XPERIMENTS on the angular distribution and
total cross-section for ordinary and charge-ex-

change scattering of pions on protons have now been
performed at various energies up to 135 Mev and
higher. ' An analysis of these experiments' indicates
that they are compatible with the assumption of charge
symmetry and that the results can be well represented
in terms of six phase shifts (for each energy) o.&, a.jt (xts,

the phase shifts for the 5;, I'; and I'; states of isotopic
spin T equal to —,', and n3, 0.3~, n„.3, the corresponding phase
shifts for T = ~. At energies approaching 150 Mev the
dominating feature of such an analysis is the fact' ' that
o,33, the I';, T=—,' phase shift, is much larger than any of
the other five. On the other hand, if a second-order per-
turbation method is used on symmetric pseudoscalar
meson theory, larger phase shifts are obtained for the
5 states than for I' states, giving results not even in
qualitative agreement with experiment. Chew' pointed
out that, since the coupling constant used is very large,
such a perturbation method is equivalent to using lowest-
order Born approximation for the scattering from a very
strong potential, which is well known to give misleading
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conservation of isotopic spin, angular momentum, and
parity (Secs. III to V), as was already pointed out by
Chew. ' For each value of T, j, and parity, the wave
function g(p) is thereby reduced to a function of a
single variable, the magnitude of the momentum p. In
agreement with the general scattering theory of I.ipp-
mann and Schwinger' and Goldberger, ' the function

g(p) is separated into an incident wave,

o(& &(P)—~(P)—)

and a scattered wave,

P (I/L~ —~(p) —~(P) l)f(P)

(P=principal part), and it is shown (Sec. VI) that the
scattering phase shift is directly related to the value of

f(P) on. the energy shell, f(k).
The integral equation for f(p), Eq. (27), is an in-

homogeneous one, and the Born approximation corre-
sponds to carrying only the inhomogeneous term.
Although the scattering phase shift is given directly by
the value of f(p) "on the energy shell, " for its correct
evaluation the integral equation has to be solved for all
values of p (off the energy shell).

No attempt is made in the present paper to relate
the Tamm-DancoG formalism to more fully covariant
four-dimensional treatments. ' As a consequence all

self-energy and renormalization terms had to be
omitted, and the analysis could not be carried to com-

pletion for the two states of total angular momentum
and isotopic spin of —,. The integral equations are inves-

tigated in detail for two of the four remaining states,
the S~ and Pg states with T=—'„which experimentally
show the largest phase shifts and most interesting

energy dependence. Even these simplified equations
cannot be solved by analytic means so that numerical
or semi-numerical methods of solution had to be applied.
Mainly to test the suitability of diferent numerical

methods, the solutions for the two states of interest
were carried out by slightly different means. In Secs.
IX and X we give the approximations thus obtained
for the shape of the "wave function" g(p) and for the
variation of phase shift with energy and with coupling
constant. The results are discussed in Sec. XI.

IL DERIVATION OF THE EQUATION OF MOTION

An arbitrary state vector can be expanded in terms
of the complete set of eigenfunctions of the number
operators of the various free-6eld quanta. These are

r B. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
s M. L. Goldberger, Phys. Rev. 84, 929 (1951).' M. Cini, Nuovo cimento 10, 526 and 614 (1953); Karplus,

Kievelson, and Martin, Phys. Rev. 90, 1072 (1953);S. Deser and
P. C. Martin, Phys. Rev. 90, 1075 (1953); F. J. Dyson, Phys.
Rev. 91, 1543 (1953).

given by'0

2

&"= "d'P 2 a *(p)a (p)
i=1

d'P 2 f'*(p)f'(p), w th f'(p) =a'*(p), (1)

Ãg~= t d'kc, *(k)c;(k),

X (p,r; k i)a, *(p„)c;*(k)C()+. . (2)

The )P( %)) (p s( ) p s( ) . . . p s( ) q t(r) qg(s) . . .q t(&)

kii(", ksi(", k&i.")) are then the probability ampli-
tudes for 6nding m "bare" nucleons with momenta and
spins and isotopic spins speci6ed by pl, p2, .p,
s&') s&2) . s&~); e "bare" antinucleons speci6ed by
the ql, q„; t&,", t& ' variables; and / mesons speci-
field by the k, i variables. This interpretation follows

from the fact that the probability amplitude for finding
for example a single nucleon of momentum p and spin
and isotopic spin speci6ed by s, in an experiment carried
out on our system is given by

(a.*(p)C', q') =g" ""(p,s).

Similarly the one-meson one-nucleon probability ampli-
tude is given by

(a,*(p)c;*(k)co, qr) =g("') (p,s; k,i). (3a)

It should be noticed that g( "'&(pis(" .p s( &;

qrt"' q„t'"'; kri "& k)s(')) is an antisymmetric func-

tion in the ps variables and pt variables, separately,
and a symmetric function in the meson variables ki.

The Schrodinger equation,

(&o+Ifr)+=~, (4)

where Ifo ——non-interacting free-field Hamiltonians and

III——interaction Hamiltonian,

=iG~ dsx))t (x)ysr, p (x))P(x),

Io 5|.|;Appendix for the decomposition of operators.

(4a)

for the nucleons, antinucleons, and mesons, respec-
tively. One readily establishes that these have as their
eigenvalues the positive integers and zero, and that
their eigenfunctions are obtained by repeated applica-
tions of the creation operators of the various 6eld
quanta on the vacuum state vector.

Our state vector for the meson-nucleon system, 4,
can therefore be written as

1
+=4"'"Co+ 2 "d'pit"""(p ) *(p)

(1 )'* "

1
~ dsp ds+(I, o;I)



D YSON, ET A L.

2,1;2

2, 1,'0

I,O; I
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1,0,'0

FIG. 1. The states directly
coupled to the one-meson one-
nucleon state.

decompositions given in the Appendix. One of the
terms in the decomposition of Hz corresponds to the
creation of a meson with the scattering of the nucleon.
We consider this term IIz( ) in detail. Explicitly, it is
given by

e.~» =C.+P(1/[E.—H, j)H&e.&», (5)

where C, is an eigenfunction of Ho with eigenvalue E
and corresponds to the incoming plane wave. P denotes
the fact that the Cauchy principal value is to be taken
for the resonance denominators. In the present problem,

can now be transcribed in terms of the amplitudes
g( "").When this is done, an infinite set of coupled
integral equations in the amplitudes g( "') is obtained.
As such an infinite set of equations is not readily
amenable to calculations when nucleon recoil eftects are
included, we have solved these equations in the lowest
Tamm-Dancoff (hereafter abbreviated as T-D) approxi-
mation. The T-D approximation consists in describing
the state vector 0' in terms of only a finite number of
amplitudes g( "")instead of in terms of an in6nite set.
Within this approximation, however, one then calcu-
lates all the amplitudes exactly. The particular ap-
proximation we have carried through consists in keeping
only those amplitudes which are directly coupled to the
one-meson one-nucleon amplitude in the state vector %.
This can be represented by Fig. 1. Stated concisely, we
have described our state vector 4' in terms of the am-
pl, tudes g(1,P;1) g(I,P;0) g(1,0;2) g(2, 1;2) and g(2,1;0) only

We shall now briefly indicate a method by which the
equation of motion for these amplitudes can be obtained
from the Schrodinger equation (Ho+Hr)P=M for
the state vector. This equation is to be solved with the
usual boundary condition imposed on a scattering state.
In the calculations to be described, we have adopted
the Goldberger' formalism for scattering theory in
terms of standing waves. The integral equation for the
state vector which incorporates the standing wave
foundary condition is then given by

Hr&'&=iG d'pg "d'p, "d'k P a,*(pg)a;(P2)
J

Xc&*(k)5(p~—P2+k)u;(y&)pgr~QJ(P2). (8)

It is obvious that the only nonvanishing contribution
to this matrix element comes from the g(' ")amplitude
of 4' ('). One obtains for this

iG~ d p,
~

d p, d u, ~i d p' p(e„a,(y)c.(1)
~l 1

'5(yl P2+kl)mi(yl)75TLQj(P2)ga ' ' (P )

=iG ~d'p, ) d'pg d'kg d'p'P(CO, a„(p)c„(k)
st 2

P (1/I E.—IIo3)a *(p~)~~.~(p' —p~) «*(k~)~o)

~(y —P +k~)~'(Pi)7~ ~& (P )g."""(P')

=iG) d3p, "dsp, d3ui P(CO, a„(y)c.(k)

a;*(yi)«*(k~)4 0) P (1/[E—E(p&) —cv(4)])

~(yl —P2+ki)~'(P~)v~«~ (P~)g " '"(P2)

=iG ~ d'p~
j

d'p2 d'k, 8„4(p~—p)&.(&(k~—k)

~ P(1/[E—E(pg) —(u(kg) j) 5(yg —P2+k&)

«'(Pi)v5«~ (P2)g, "'"(P2)

=iGP(1/[E —E(p) — (~)j)~.(y)v-
X;(p +k )g, """(p+k ). (9)

where E(po) = (M'+po'-)', ~(ko)= (g'+ko')', po, s and
kp, i being the variables specifying the nucleon and
meson, respectively, in the laboratory system. If we
form the matrix element of Eq. (5) with the base vector
a„*(y)c„,*(k), we obtain the equation for gu o'& (p,r; k,e)
in the form

(a„*(y)c *(k)CO,+ u&)=go'"(yr ke)
= (a (p)c (k)@'0 a (po)c' (ko)c'0)

+(a„*(p)c„*(k)Co,P(1/[E,—H, j)H +,u~). (7)

Consider the last term in this expression which contains
the interaction energy operator Hz. This operator can
be expressed in terms of creation and destruction
operators for the various Geld quanta according to the

Following this procedure, we obtain an equation for
g(''" which involves coupling to the four other am-
plitudes. Similarly, one derives equations of motion for
the amplitudes g"'", etc. , which as a result of our
particular approximation couple back only to the
g" ")amplitude "It is therefore possible to substitute
the expression for these amplitudes back in the equation
for g('") and thus obtain an integral equation for
go'"&(y,k) alone. This restates the Schrodinger equa-
tion in our approximation. The integral equation for
the g(p, k) [hereafter the superscript (1,0,1) will be

"Ifmore states were kept, then one would have gotten a set of
coupled integral equations, which could not be reduced to a single
integral equation except by having the kernel in the form of an
in6nite sum with the coupling constant as the expansion parameter,
which would be against the spirit of the present approach.



M E 8 O~N —N,.U C L E 0 N 8 C A T IE R I N G 1647

dropped, since we shall be concerned with this amplitude only] is

P—E(p) —~(&)jg-(P k) =— 3A+(p+s)
d $ ~(P)V5

16m' & E(p)E(P+ s)(o (s) E—E(P+s) —M (k) —(u(s)

3A (—P —s) Q' p M'
+ —Vs~(P)a-(P, k)+ i' d's-

E—2E(P) —E(p+s) —co(s) —&u(k) 167r' " E(s)E(s+k)co(k)

)&2 Sp)A+(s)y&A (—s —k)y ].
G2

+
16m'

62

.A (. P —k)T—, rA+(P+ s) r—+
E—E(P) —E(p+k) —E(p+k+s) — (&)— (~) E—E(p+s) — (&)— (~)

vgA ——s v( P )
+ ysw(p+ s+k)g,.g(p+ a+k; —s). (10)

E—E(p+ s) —E(p+k+ s) —E(P)

g-. (P,k)
E—E(s) —E(s+k) —E(p) E—2E(p) —2a) (k) —E(s) —E(s+k)

r M-' 6 SpLAy(s)pgA (t)pg]
d $ -5(0) . a-(P,k)

E(s)E(t)(o(s+t) E—E,(p) —(o(k) —E(s) —E(t) —M(s+t)

7, ( cV' ..A+(P+k). ,
d's/— —

I "u(p)vs
&E(p)E'(P+k)E(P+k+s)co(k)(o(s)3 E—E(P+k)

Here
p+i M

A+(P) =
2iM

P iM—
and A (p)=

2iM

This equation contains nine terms describable by the
following time-ordered Feynman graphs. The last four
terms, which connect g(p, k) with g for other momenta
by an integral equation, arise from the graphs of Fig. 2

tb)

FfG. 2. The graphs responsible for meson-nucleon scattering.

The first two factors on the left-hand side in a covariant
treatment would correspond to using modified propa-
gation functions (Si ' and D~' rather than Sp and Di ),
thus allowing for self-energy parts in the nucleon and

which correspond to Compton scattering. The other
five terms arise as a result of the self-energy processes
indicated by the diagrams (n), (P), and (y) of Fig. 3;
(n) giving rise to the first two terms, (P) to the next
two, and (p) to the last one. These five terms, however,
involve g(p, k) only as a multiplicative factor. Since the

g(p, k) only occur in these five terms as a multiplicative
factor, the correct treatment would be to transfer them
to the left-hand side and obtain an equation of the form

PS&(P)+A& (k) +DE+ 1]g(P,k)

~I.(P,k; P',k') g (P',k') d'k'. (12)

meson lines in intermediary states. The DE term arises
from graph (y) and corresponds to a redefinition of the
vacuum energy. In the present formalism we are pre-
vented from evaluating these terms correctly since they
diverge, and there exists at present no unambiguous
method of subtracting all the self-energy parts.

The difficulty in renormalizing the vacuum self-
energy term lies in the fact that we have diagonalized
the total energy in the subspace of complete Hilbert
space composed of not, more than (2,1;2) particles.
This means that the vacuum self energy is tak.en into
account in the (1,0;1) state but not in the other inter-
mediary states, thus causing a coupling between the
physical system and the vacuum fluctuations. In this
respect our present formalism is therefore wrong. A
modified Tamm-DancoG treatment, developed recently
by one of us (F.J.D.)' bypasses this difficulty by defining
the amplitudes with respect to the true vacuum state
vector +0, rather than with respect to the bare vacuum
state vector Co as done here. In such a treatment no
vacuum self-energy terxn is present, and only the finite
quantity E—Eo (Eo= energy eigenvalue of true vacuum
state) occurs. Furthermore, this modified form of the
Tamm-Danco6 method has the great advantage that
the self-energy parts can be unambiguously renor-
malized and the finite parts retained; In the present
work. we neglect the contribution due to the self energy
terms. " The terms corresponding to the Compton

FIG. 3. The graphs
involving renormaliza-
tion corrections.

I

la) )P)
' Some of the renormalization terms have been evaluated by

W. Visscher and will soon be published by him
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diagrams (a), (b), (c), and (d) of Fig. 2 do not differ
markedly in the "new" Tamm-DancoG method from
the ones evaluated in the present paper.

After neglect of the self-energy terms, we are left only
with the last four terms in the integral equation (10).
We write

Z N(p)g-(y») =g-'(y»), Q-~'=~~.-, Q-~= -r~,

and go to the center-of-mass system, setting

g-'(y») ~g-'(y, —p)
—=g-'(p).

By utilizing the relations y&A~(p)y& ——A (p); p~(p)ys
=A+(p), the equation may be written in the center-of-
mass system as

P—&(P)—~(p)]g'-(p)

G' p 3P iL (0) )v+0)
~+(y) i~

d'
, Q-s +Q.s

167r' ~ (E(p)a) (p)E(s)(v(s)) l 8 3I —E—E(p) —a&(p) —E(s)—(o(s) —M

A (p+s)

E—~(y+ s) —~(p) —~(s)

~+(—p —s)
ab g~'(s). (13)

&—&(y+s) —&(P)—&(s)

Hereafter, since we are only going to deal with the amplitudes g, '(p), we shall drop the prime on the g's, as there
will be no confusion.

III. SEPARATION OF STATES OF DIFFERENT
ISOTOPIC SPIN

The only operators in (13) involving isotopic spin
are clearly Q and Q'. Their properties and eigenvalues
may very easily be determined. Q &=r 7&, Q P=Q pep&
= 7 rsrs7q=3Q q. Thus Q q has the eigenvalues 3 or 0.
To assign these to isotopic spins, we note that Q q means
the annihilation of the meson 8 which is originally
present, followed by the creation of a new meson, 0..
Now the annihilation can obviously only take place if
T=-,', because only for this isotopic spin do we have a
state of the nucleon by itself. Hence Q;=3 and Q;=0.
The other operator is

I= 7)7&= 2 7&7))

and therefore has the eigenvalues,

Ql 1 Q/

IV. REDUCTION OF WAVE FUNCTION TO
LARGE COMPONENTS

Since g(p) refers to a state of positive nucleon energy,
it is clear that A (p)g(p) =0. We now write the four-

component function

I g+(y) ~

g—(y) )

where g+ (p) and g (p) are two-component Pauli
spinors. By eliminating the small components g (p) in
favor of the large components g+(p) we get

v~(~ p) i f'g+(y)igy= 1+
Z(p)+Ã) ( 0 )

Since (e p) is an invariant under rotations in 3-space,
it is clear that g(p) has the same total angular mo-
mentum as g+ (p). lt is convenient to make the reduction
in this way, because g+(p) may be a function with
de6nite orbital angular momentum, thus definite
parity, while g(p) clearly may not be.

Equation (13) then becomes

[&—&(P)—~(p)]g-(p) =—
16+'

G' [ w~(~ p)+P&—(p)+K ~, I' ~' i ' 1
)

d's( e.
2M (E(p) (p)Z(s) (s)& 2(Z—~)

1 3P

2[&—&(P)— (P) —&(s)—~(s) —~] " [&'(y+s)&(p) (P)&(s) (s)]'*

Py~[s (p+s)]—P&(p+s)+& Pcs[a-. (p+s)]+P&(y+s)+M 5 &s(~' ) )
Q ~' +e-'

I
1+ le+(s) (14)

2M[E—E(p+s) —u(P) —cv(s)7 2M[8—E(p+s) —E(P)—E(s)] . E E(s)+M/

To find the equation for g+(p) in terms of g+(s), we pick out the terms on the right-hand side which do not mix
small and large components (i.e., those with Dirac matrices 1 or yP, and with any P's or 0's). Remembering that
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yP= 1, and that P = 1 for the "large" component, we get

G' (~ p)(~. s)
[E-E(p)-~(p)]g+ (P) = e.i

64~' ~ [E(p)(o(p)E(s)co(s)]l (E—M)[E(s)+M]

E(p)+M 1
+ d s

E—E(p) — (P) —E()—()—M- " LE'( + )E(P) (P)E() ()]' E—E( + )— (P) —()
((~.p) (~ s)[E(p+s)+M] [e (p+s)](e s)[E(p)+M] )—(~ P)[~ (P+s)]+[E(P)+M]LE(P+s)—M)—

E(s)+M E(s)+M

r1 E(p+ s) M—
I (~ p)(~ s) +(~ p)[~ (p+s)]+[E(p)+M)[E(p+s)+M]

E—E(p+ ) —E(p) —E() ~ E(s)+M
E(p)+My+[~ (p+s))(~ s) g+i(s) (1~)
E(s)+M)

V. ELIMINATION OF ANGULAR AND SPIN
DEPENDENCE OF THE INTEGRAL EQUATION

Let

2 =E(p)+a)(p)+E(s)+co(s)+M E, —
B=E(p)+E(s) E, C=co—(p)+(u(s) E, (16)—

and let S„and R be the operators defined by

f
S g(s)=— dQ, P (0,—0 )g(s)

4~~
and

[E(p+s)]—'= P X„I'„(0, 0„), —
n-0

and

LB+E(p+s)] '=2 1'-&-(o.—o'.),
n=o

(e s)/ I
s I, but inserting the definition of g in (17), we

may write R g(s)=S„&(s)(o p)/I pl. Hence, R„has
eigenvalue [1/(2«i+1)]b„,i~i in the same sense as
before.

Ke define also:

(~ p) (~ s)
R„g(s)=— dQ, &-(H.—o".)g(s) (17)

4x ~ !pl Isl
[C+E(P+s))—'=p Z„I'„(0, Oi). —

+=0
(18)

S„clearly has the "eigenvalue" 1/(2«i+1) for a state

g with an orbital angular momentum /=m in the sense
thats g(s, O,) =b„i[1/(23+1)]g(s,O„).The eigenvalues
ofR„maybefoundasfollows. Let&(s) =[(o"s)/I s l)g(s).
Then, as has already been pointed out, @(s) has the
same total j as g(s) but has the opposite parity. Thus if
g(s) has l= j&-', , p(s) hast= jTi2 so that p and g are
symmetrically related to each other, and g(s)=p(s) and Eq. (18) becomes

=&IPI IslR„x„g(lsl),

Then we can evaluate such integrals as

1—
i

did. [E(p+s))-'(~ p)(~ s)g(s)

Gg eo [E(p)+M]So
[E—E(p)- (P))g(p) =, —,e- +e

8 '~o LE(P) (P)E(s) (s)Y*' (E—M)(E(s)+M)

psRO

e' psR„ i (1 1 1 1
+—p (I.—z„)l s.[E(p)+M]+ !+I —x„+—x„——z.——v. !

E(s)+M) EC B C B )
(psR„[E(p)+E(s)+M]

xI + [E(p)+M)[E(p)+E(s)—M)S. I g(s) (19)
E(s)+M

The coefficients X, T„, and Z„ in the expression (18)
can be easily determined. For this purpose write

E (p+ s) =M'+ p'+s'+ 2—psx =E'(1+2rx+ r') (20a)

with x=cos(0~,—0~„).Then, clearly,

E(P+s) =E(1+«), E(P s) =E(1 «), — —

and
E=LE(P+s)+E(P s)]/2. —

Also, by comparing coeKcients in (20a),
r =ps/E' M'+ p'+s' =E'(1+r'). (20b)

Introducing further the abbreviations
s=E(p+ s)/E, b =B/E, and c=C/E, (20c)

I
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we get It is convenient to de6ne the integrals
x= (s' —1—r')/2r;

(s' —1—r'~
dsI'„l

2r
X = (n+-', )(rE)—')

1—r

and the coeNcients become

~ 1-.t-r

1 ~ ~+~ 1 (Z' E—' R—')
R„(c)=, ~„l ldz,

2ps ~g ii C+Z 0 2R

E=rE, and Z= sE, (22)

t'+"
p s q )s' —1—r'q

I .=(+-,')( E)-
2r )

t'+"
/ s q (s' —1—r'y

z„= (~+ ', ) (r-E)-
&c+s) E 2r

and similarly E„(B).Then X —I' = (2ri+1)BE„(B),
and X„—Z„= (2ri+1)CE„(C). Considering states with
a definite l and j, we have seen above that the sum over
e in (19) reduces to a single term, and S„and R have
the eigenvalues 5„i/(2ri+1) and 8„,i+i/(2m+1), respec-
tively, for j =1+ ', . Then—(19)becomes

G'
t
" s'ds (E(p)+M q ( 1 ps

LE—E(P)—~(p)]g(P) =, , Ql l +Ql
g '"o LE(P) (P)E(s) (s)]'* & ~ & —: &(E—~) LE(s)+~]&

$
+-',Q'LE(P}+M][(A —2M)R', (C)+ (E—M)IC, (B)]+-,'Q' PAR,~,(C)+ (E+u)E:,„,(B)] g(,).

E(s)+3f

Thus Anally we have an integral equation in one
variable, the absolute momentum of the meson, which

may be solved numerically. For scattering problems,

g (p) has a singularity because the factor E—E(p) —cv (p)
becomes zero at a certain value of p, vis. , the momentum
of the incident meson. Hence the integral equation has
a singularity at this point, and its solution can be
written in the form

g(p) = ~~(E E(p) ~(p—))+-
E E(P) ~(P)— —

$2d$

X I (P,s)g(s), (24)", LE(p)~(p)E(s)~(s)]&

L(p,s)=expression in curly bracket in (23). (24a)

We may now define a nonsingular amplitude f by
setting

g(P) =~(E—E(p) — (p))+p f(P), (25)
E E(P) ~(P)— —

where we have set the normalization constant c in the
previous expression equal to unity without any loss of
generality since the normalization of g(p) has not been
fixed. In (25) we have chosen to take the principal
value of the singular factor LE—E(p) —co(p)] ', since
the use of purely real wave functions will simplify the
numerical work. This means that g(p) is required to
be a standing wave (Lippmann and Schwinger, 7 Gold-
berger' ). Next we shall find the relation of f(p) to the
scattering phase shift.

VI. RELATION OF f(P) TO THE SCATTERING
PHASE SHIFT

The asymptotic coordinate space wave function cor-
responding to g (p} is determined wholly by the behavior

g (r) = Lsin(kr —(/+ 2)ir/2)+ tan5i cos(kr —(l+ ~i)s/2)].
Expanding the radial function in terms of spherical
Bessel functions ji(Pr) whose asymptotic behavior is
sin(pr —(l+ ~~) ~/2), we find

g(p) =&(p—k) —(1/ ) t ~(1/I k—p])+R(p},
where R is a function of p which is regular at k. There-
fore the identification may be made that

f(k) = —(1/m) tan5, (26)

and Eq. (24) becomes

$2oo

f(P) = L, (p,s)g(s)ds, (27)8-'" LE(p) (P)E() ()]:
where L(p, s) is given by the expression within the
curly brackets of (23) and g(s) stands for

g(s) =&(E—E(s)—~(s))+P,(1/LE —E(s)—~(s)])f(s).
(27a)

VII. DISCUSSION OF THE INTEGRAL EQUATION

The integral equation we have obtained after omitting
all self-energy terms above for the meson-nucleon scat-

of ~(E—E(P)—~(p))+Po/LE —E(P)—~(p)]) ne» its
singularity. If we designate the momentum of the
incident meson by k, and assume that f(p) is well-
behaved near p= k, we may write

g(P) =~(p —k)+P (1/Lk —P])f(k)+R(P)
where R(p) is a nonsingular function. A typical wave
of angular momentum / behaves for large r as

g (r) Lji (kr) —tanbrl i (kr)]Fi"(r)

(definition of the phase shift). Asymptotically, one finds
that the singular part of the wave function is propor-
tional to
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tering problem is an inhomogeneous one, and the terms
therein arise as follows. The 6rst and second terms in
L(p, s) arise from graphs (a) and (b), of Fig. 2, graph
(a) contributing only to the pl state and (b) to the Sf
state respectively, and only for isotopic spin —,'. The
next two terms arise from graphs (c) and (d), (c) giving
the E(C) terms and (d) giving the E(8) terms.

The kernel I. in the integral equation is real for
E&M+fr, where E is the actual energy of the system
in the center-of-mass system. For energies greater than
M+p, L becomes complex over the region of momenta
for which the production of an additional real meson is
possible. Thus for p (or s) between 0 and p, where p
satisfies ~(p )+E(p ) =E fJ,, there —is a pair of singu-
larities in ln/(E+C+R)/(E+C R)j a—t fR/(C+E) j
= &1, between which the logarithm is imaginary.
Keeping the real and imaginary parts, one could cal-
culate the total cross section for the production of an
additional meson. This singularity in the kernel also
affects the scattering problem. For simplicity, the
principal part of the kernel alone was retained. If the
energy is only slightly above threshold, E—3f—p«p,
the e6ect of the imaginary part of the kernel is small.
Further, if we consider the cross section for meson
production near threshold as small of first order, then
the error made in the scattering calculation by retaining
only the principal part is small of second order.

We now have the task of solving a one-dimensional
integral equation with a real, nonsymmetric kernel
L(p,s) for the wave function f(p), for each of the eigen-
states of orbital and total angular momentum and
isotopic spin. The quantity which can be compared
directly with experiment is then the phase shift for each
state 5, which is given in terms of the wave function "on
the energy shell" f(k) by the relation (26).

We focus our attention now on the S and I' states.
The functions Kg required for these states are

1 E+C+R
IC p(c) = ln

2ps E+C R—
1 f Cy

R, (C) = — (ilP+P'+s' — C)Z, ( )C+
2ps 2ps E E)

d
3 C

Es(C) = — (M'+P'+ss C')Et(c)+ ——',Ep(—C);
4ps 4E'

(28)
and similarly for E'&(8).

It will be convenient to compare our results with the
equivalent Born approximation results. The lowest-
order Born approximation can be obtained from Eq.
(27) by retaining only the 8-function term in the ex-
pression for f(s) in the integral on the right-hand side.
The general expression for fs(p) is

G'
p E(k)ru(k) y

' k
fs(P)=,I

—
I L(P,k);-

8m' EE(p)re(p) J E
Z= Z(k)+~(k). (28a)

For the S and the I' states, the expression for L(p, k)
involves Eo, E», and E2 functions, for which the
general expressions have been given above. If we now
consider (E M—)/M and ff/M small compared with
unity, then the expansion parameters R/(E+C) or
R/(E+8) involved in the logarithms in Ee, E~, and Es
are small, " hence the logarithms can be expanded in
terms of the parameter, and the first terms retained. It
may also be noticed" that A 2M—E+C. Under these
approximations the following simpler expressions for
the first-order Born approximation are obtained.

S;: L(p k)

Z(P)+M Z(P)+M f Z —MP=e —+ ,'e' -—
I

1+
E 4 E+Bi

I' (pk)
—'L (p k)

(E—M) (E(k)+M)

Z(p)+M t 2E+C E M-
+ 'Q' —-+

E' E3(E+C) 2(E+8))
2M E+M y+ Il+ + I, (»)

E[E(k)+Mj ( E+C E+8 )

P (pk) 'L(p k)

Z(p)+M / 2E+C I; M)—
=-!()', +

E' ~ 3(E+C) 2(E+8) i

The quantity E which was previously a function of p
and s is now a function of p and k. At low energies, i.e.,
p &M it is found that the E(8) terms arising from time
ordered graph (d) are much smaller than the R'(C)
terms arising from graph (c).The latter are particularly
large as the denominators E+C are small. The Born
approximation phase shifts are plotted against energy
in Fig. 4. All these states are seen to imply a repulsive
potential except the I';, T=-,' state. The use of Born
approximation is based on the assumption that the
effect of f(s) in the integral equation is negligible com-
pared to that of the delta function. But physically
reasonable values of the coupling constant G'/4x. are
larger than unity rather than being small and the

"For If'+C this is not quite obvious, since this quantity is
small. If also p«M, then

E+C=E(k)+c (k)+(v(p) E=~(p)—{a)
because of (28a). On the other hand,

R=rE= pk/E pk/M, (b)

and, since p &su(p), we have pR/(E+C) j&4/M« I. If p is larger,

E+C=Z(p)+~(p)+~(k) Z=~(p)+Z(p) M, —(c)—
which makes the result hold u fortiori.

~4 g —2M=E(k)+&a(k) —E+Z(p)+co(p) —M, which, by (28a)
is equal to expression (c) in the preceding footnote.
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f(P) = f~(p)/(1+ (G'/8~')It(p) l
(32)

The second case is that in which L(p, sl can be written
as a product L~(P)Ls(s). Then f~(P) = Lt(P) Xconstant
independent of p. If we let a(p) = f(p)/Lr(p), then
an(p)=a~=a constant independent of p. Thus our
equation is

62 ~co

a(p) =a~+ dsLt (s)Ls(s) a(s).
Sm' ~0

The right-hand side is independent of p; therefore a(p)
is a constant and is equal to

(
(

1+
8~s )'

where

Finally,

Is= —
) dsLt ($)Ls (s) .

0

G'
f(p) =fn(p) I

1+
8s'

(32a)

alone, it is possible for the meson to become absorbed
by the nucleon in the intermediate state Lgraphs (a)
and (b) of Fig. 2] (for all other quantum numbers this
intermediate state is forbidden by conservation laws).
Now the Tamm-Danco6 integral equation implies that
the processes illustrated by the graphs can occur re-
peatedly, so that we are really considering graphs of the
type shown in Fig. 5. These clearly contain self-energy
graphs; hence they give the usual divergent results
which must be removed by renormalization. But until
now renormalization has only been carried out by
perturbation theory, and this is not applicable in our
strong-coupling problem. Therefore the two states in
question of T=-', and j=—', are beyond the scope of this
paper, and their treatment must be postponed to the
future.

To get a better feeling for the working of the integral
equation, we shall now discuss the solution of similar
integral equations, but with kernels of a simplified form
for which exact analytic solutions can be obtained.
These cases illustrate the general relation between
actual and Born-approximation wave functions as a
function of the coupling constant and sign of the eRec-
tive potential, but in a much simpler form than in our
equation. One of these soluble cases is that in which the
kernel has a maximum value when p and s are approxi-
mately equal to each other. The equation

G2 r~
f(p) =f (p)+ d L'(p, ~)f()

8~' ~0

may then be modified by taking f(s) outside the integral
sign, which gives

FIG. 5. Modified propagator cor-
rection for the j=~, T=—', state.

Although our equation is more complicated than the
two simple cases mentioned above, yet we may make
some qualitative statements about the nature of solu-
tions for attractive and repulsive states. In the case of
an attractive state, f~(p) and It (or Is) will be negative,
and as (G'/87r ) It (or Is) reaches the value —1, a
resonance occurs. This relation only crudely represents
the actual case for the P;, T=-,s state. Here (G'/8~') .Ir
(or Is) is negative and of the order of —1; the ratio

f(p)/f&(p) is very large and is a very sensitive function
of energy and coupling constant G'/4n. However, we
know that in the actual case f(p) cannot be expressed
in one of the simpler forms above, and therefore a
resonance might not occur.

Another simple property of the kernel of our equation
is that the important range of integration over s is of
the order of M rather than p. The integral is practically
constant over values of E—M —p, & p. Thus for states
other than the sensitive P;, T= ss state, the ratio of f(P)
to f&(p) is a slowly varying function in this energy
range. Qualitatively, therefore, we can say that the
forces represented by this theory have a range of order
1/M. In an attempt to determine whether forces of
longer range may be present, Mitra and Dyson'5 have
considered the role of meson-meson interaction, so far
with inconclusive results.

In the following section we discuss the solutions ob-
tained for the 5; and I'; states for T= —,

' for laboratory
energies up to 270 Mev by means of straightforward,
largely numerical methods.

IX. NUMERICAL SOLUTION FOR THE S STATE
WITH T=3/2

Two calculations were performed for the S state,
one at zero energy and another for an energy of about
270 Mev (laboratory system). These correspond to
values of k, the momentum in the center-of-mass
system, of zero and 0.335, respectively. For the zero-

energy case a seminumerical method was used for the
solution of the one-dimensional integral equation, Eq.
(30). This method only gives a fairly crude approxi-
mation, but is designed such that (1) the very lengthy
kernel has to be evaluated only for a few values each
of its two parameters p and s, (2) the integrals can be
evaluated analytically, and (3) that solutions can be
found easily for diR'erent values of the coupling constant
X=G'/4m. The method proceeds as follows.

For a fixed value of p, the kernel I (p,s) is evaluated
for a few values of s and constants a'('p), b'(p), and
c'(p) are chosen such that the simple analytic function

a'(p)+L&'(p)l&(~)3+I~'(p)~/~(~)3 (33)

gives a reasonable approximation to the kernel L(p,s).
'' A. N. Mitra and F. J. Dyson, Phys. Rev. 90, 372 (1953).
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I'zG. 6. Ratio of actual wave function to the Born approximation
wave function on the energy shell as a function of the coupling
constant X. (k/3II) =0.3 for upper curve and 0 for lower curve.

This fitting was done for a few values of (p/3E) (0, 0.5,
1, and 2); the coeKcients a', b', and c' are of course
functions of p.

It is convenient to rewrite the integral equation in
terms of a "wave function" a(p), instead of g(p),
where a(p) is defined by

A form of iteration procedure is then adopted as follows
We choose an initial trial wave function «, (p) of the
form

«.(p) =~+ (&/&(p) j+L~p/&'(p) 3 (35)

where the three constants a, b, and c are left unspecified
for the moment. We substitute this function at,,(s) for
a(s) in the integral on the right-hand side of the integral
equation and replace the kernel I (p,s) by the approxi-
mate analytic expression, Eq. (33). For each of the
values of p considered the integrals can now be carried
out analytically, and an iterated wave function a;&(p)
obtained. This function a;i(p) for each value of p con-
sidered consists of the sum of four terms, a known
constant and known multiples of Xa, Xb, and Xc. The
three constants a, b, and c are then chosen by requiring
the initial and iterated functions at, (p) and a;t(p) to
agree for three values of p (these values were then
adjusted very slightly to give the best overall fit
between «, (p) and a;t(p) at all the values of p used. )

For a value of X of 10 (the value used by M. Levy in
equivalent calculations on the neutron-proton system),
for instance, the constants chosen were

that the actual phase shift is very much smaller than
its Born approximation value. As discussed above such
a solution is easily obtained for a number of diGerent
values for the coupling constant X and the ratio of
actual phase shift to its Born approximation is plotted
against X in Fig. 6. It will be seen that this curve is
similar to that represented by Eq. (31), the equivalent
ratio for the simpler forms of the equation, although
the actual curve has a slightly higher curvature than
Eq. (31).

Similar calculations were carried out at a higher
energy namely that corresponding to k=0.3M. An
estimate of the contribution of the singularity due to
the double meson production was made in this case by
integrating the rapidly varying logarithm across the
singularity. The contribution due to this singularity
was found to be less than 10 percent of the value of the
integral of the kernel found disregarding this singu-
larity. Having found that this singularity did not con-
tribute much to the scattering at least near the thresh-
old, no eGort was made to include this contribution
accurately.

At this higher energy (k=0.3') essentially the
same method was used as for the zero energy case,
except that some of the integrations were carried out
numerically. The iteration process described above
was carried for values of (p/cV) of 0, 0.3, 1, 2, and 4.
For a coupling constant X=10, the values of the con-
stants in the trial wave function were found by re-
quiring that the equations at the above-mentioned
values of p be satisfied in the least-squares sense and
one gets

a = —0.053, b =0.454, c=0.094.

The agreement between the initial and the iterated wave
functions was not quite as close in this case as for zero
energy, but was suSciently good for the accuracy
required. These two functions are plotted against p in
Fig. 7, together with the Born approximation for this
function. The value obtained for the wave function

0.6

0.5
a(p)

1E

0,4

0.3

a= —0.003, b=0.271, c= —0.084. (36)

a„t„,t (0)= (0.24&0.01)an„(0), (37)
where

an. ,„(0)= 1.075.

As expected for a "repulsive" state, Eq. (30) shows

The initial and iterated functions were fairly similar and
the result for the function on the energy shell, with the
estimated error of this method of solution, is

0.2

O. I

2
p/M

I'zo. 7. Actual wave function together with the Horn approxi-
mation wave function for the Sy, T=-,' state, as a function of the
momentum.
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on the energy shell was (for 'A= 10)

u„t„,t (0.3)= (0.365&0.020)aB»„(0.3),
as...(0.3)= 1.172. (39) 0.2

2
~ 4.6m4a

75—

) =I5

45

30

.05 .I .I 5 .20 .25 .30~K/M

Fro. 8. Variation of Si, T=-', phase shift (s3) with momentum k,
in the c.m. system, for a coupling constant ) =15.

"It should be pointed out that this slow variation with energy
may no longer hold for energies far in excess of the double meson
production threshold energy, since the effect of the singulari-
ties, still small for 270 Mev, may become quite marked at these
energies.

As will be seen from Fig. 6, the ratios of phase shift
to their Born approximation for all the values of X

considered were not very difterent for the zero-energy
case and for the 270-Mev case (4=0.3M). Since this
ratio is such a slowly varying function of energy, " a
simple interpolation procedure was used for inter-
mediate energies. In Fig. 8 we plot the estimated phase
shift as a function of energy together with their Born
approximation for )t=15, (the order of magnitude of
I, which will be shown in the next section to give best
agreement with experiment for the I';, T=-,s state. )

X. THE Pt INTEGRAL EQUATION

The P;, 'l=~ integral equation was solved by ex-
pressing the solution f(p) in a manner similar to (35),
but with six parameters instead of three. The integral
equation could then be satisfied for six diferent values
of p; this yields six simultaneous ordinary linear
equations for the six parameters in f(p)

Several simplifications in the kernel were made before
attempting this procedure. The kernel is a sum of
terms Kr(C), Ks(C), K~(B), and Ks(B). The K(B)
terms are generally 1/20 of the K(C) terms (i.e., the
interaction with the one-nucleon, two-meson configura-
tion predominates). The K(B) terms were, as a result,
drastically approximated. The Kt terms (associated
with spin-independent processes) and the Ks terms (asso-
ciated with spin-dependent processes) are of the same
order of magnitude for momenta much bigger than M,
but the latter are relatively very small for low momenta.
Therefore, the E~ terms were neglected below the
momentum of integration s= (3/4)M.

O, I

0
0 2

p/IN

FIG. 9. Actual wave function together with the Born approxi-
mation wave function for the I'g, T=-,' state.

The region of very high momenta (p= 10M) was also
neglected. This might be justified on the grounds that
the error in the calculated phase shift associated with
this neglect is less than about two percent. The sin-
gularities in the kernel associated with meson produc-
tion were also neglected. Consider omission of the region
of the integration variable from [R/(E+C) 1=—

s to
$E/(E+C)J=-', (which contains the singularities). It
can be shown that the resulting error in the phase shift
is (5—5„~,)/8 I[to(k) —2pj/M}4 for %&M/2. At these
energies the error is then very small.

After the above approximations, the detailed method
of the solution of the equation was as follows. The
interval of integration was divided into four regions:
0 to 0.5M, 0.5' to 1.5', 1.5M to 3.531, 3.5M to 10M.
The kernel was expanded in each of the regions as a
function of s in a manner similar to (33), with the
criterion that the error in the expansion be less than
j.0 percent at the boundaries of the regions. This was
done for six values of p altogether. The form of the
expansion for the solution f(p) was chosen following
roughly the indications from the expansion of the
kernel; f(p) was then taken to be a polynomial with 3,
1, 1, 1 undetermined coefficients in each of the four
regions, respectively. The shape of this trial function
was taken to be quadratic in E—E(p) —to(p) in the
region p&M/2. From M/2 to 3E, after some experi-
mentation, it was taken as essentially constant. For
p)M, the first trial function had a shape roughly of
1/p, or more accurately pf&(p). The integrals were
performed and the set of six simultaneous equations
solved. The shape of the solution was then adjusted in
the upper regions to improve the fit at the boundaries
of the regions, and the equations were solved again.
The solution thus obtained at 161 Mev for G'/47r= 16
is shown in Fig. 9. The solutions in Fig. 9 are repre-
sented very well (from about k to SM) by

f(p) =&(1+&p)f~(p). (4o)

with 5=3/2M for G'/44r=16. For p))53f, it is found
that the behavior of f(p) is independent of the energy.
At the coupling constant in question (G'/44r= 16) we
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tion, f(p), from a smooth curve at the boundaries of
the regions (see Fig. 9). This deviation is of the order
of &20 percent. We shall take the average error in

f(s)/f(p), optimistically, as quadratic in this devia-
tion, or e2 &4 percent. The ratio to the Born approxi-
mation f(k)/fs(k) 6 at 161 Mev. Then an error

~ f (k)/f(k) of about a-', is expected for a given coupling
constant. As the ratio to the Born approximation
increases, this error in tanb increases without limit.
The error in the angle 8 becomes the more meaningful
quantity. For 6 =1, tanb&1, we can write

0
40 80 120 160 200 240 280~Kinetic Energy of Meson ( Lab System)

68 1f Atanh q

8 &1+tan'8)
61 62 ~

~f~(k)

F1G. 10. Variation of Eg, 1'=
~ phase shift (8&3) with kinetic energy

of meson in laboratory system.

flIld

f(p) =P "=P"f~(p) (41)

so that
~f(p) f(p)

62 )

f(P) f-(P)
(43)

where {c&+e2} represents the two terms in curly
brackets in Eq. (42). We have

f(s) f(P)
dsl. '(p, s) 1 for ))1.

f(P) f~(p)

Then e& is roughly given by the percentage error re-
sulting from our approximations of J.'. This error can
be. taken as about &3 percent. We may estimate e2

by examination of the deviation of the obtained solu-

Solutions were obtained at four energies, 113, 161,
186, and 272 Mev in the laboratory system, corre-
sponding to c.m. momenta 4=0.1835, 0.2231, 0.24M,
and 0.30M. In addition, the slope f(k)/k' was roughly
determined by using Eq. (39) at zero scattering energy.
In this case the coefficient bM was 1.5, 2.0, for G'/4s
=4.6x, 5.0x, respectively. The calculated P;, T= —,

'
phase shift is plotted as a function of energy for several
coupling constants in Fig. 10.

The accuracy. of these solutions can be estimated
very crudely in the following manner. Let the integral
equation be written

f(s)
f(p) =f~(p)+ I' L'(p, s) ds f(p).

f(P)
Then,

f(s)
~f(p) =

3
~L~ (P s)j

f(p)

f(s) f(P) —f~(p)+ "I'(P, )~ ~ f(P)+ ~f(p) (42)f(p)- f(P)

In the region of interest this error is also about &3.
Since the coupling constant is varied in practice so that
the solution obtained at one energy agrees with experi-
ment, the question is how accurate is the relative phase
shift determined at another energy' It might be ex-
pected that if the energy diGerence is of the order of the
characteristic length of the solution obtained in the
region 0 to 0.5M (say d k= 0.2M) then the error at the
new energy would be of the order of that indicated in
Eqs. (43) and (44).

KI. DISCUSSION

The numerical results for the two states investigated
in detail, using the approximate equation of motion
derived above, can be summarized as follows. For the
P;, T=-,' state the calculated phase shift is appreciably
larger than the Born approximation and is a very
sensitive function of coupling constant X=G'/4n. and
of energy. Rough agreement with experiment is ob-
tained for a value of X slightly larger than 15 (see Fig. 8
and below). For the S~, T=-,' state the ratio of phase
shift to its Born approximation value is considerably
less than unity, for A, =15 and decreases slowly with X.
Since the Born approximation itself increases slowly
with P, the calculated phase shift is a very insensitive
function of P indeed. This ratio to Born approximation,
as well as the Born approximation phase shift itself,
are also slowly varying functions of the energy, and so
is the calculated phase shift.

For the other two states which were not calculated
in detail but are not subject to renormalization diK-
culties, vis. , P; for T=-,' and P; for T=» the Born
approximation phase shift is small (of order 5') and is
further reduced in the Tamm-Banco' theory.

A direct comparison between the calculated phase
shifts and the observed one for the 5 state of T=-,',
which we shall call 63, does not give good agreement.
For example, at 136 Mev, the observed value is about
—15', while the calculated one is —32' and —34' for
the two values of the coupling constant. This would
indicate that the reduction as compared with the Born
approximation is not nearly large enough. However, it
is well known that the phase shift 83 has experimentally
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2.85/Mc=5. 9)&10 '4 cm from the theoretical re-
lation. (48)

The constant term in (47) is attributed to the long-range
attraction mentioned above.

Regarding the I'; state there has been considerable
controversy on the behavior of the phase shift above
120 Mev. It is now most likely" that there is a resonance
at about 195 Mev, and that the phase shift goes nearly
linearly with energy near the resonance. These experi-
mental phase shifts are shown in I ig. 10. At energies

up to about 150 Mev, these follow rather closely the
theoretical curve for G'/4s. = 5.1s.= 16.0 (not drawn).
However, at higher energy, the theoretical curve does
not increase steeply enough. This may be improved by
including the renormalization terms as has been shown

by Visscher. " It is also possible that higher configura-
tions, involving more mesons, play a more important
role and increase the phase shifts.

The work reported in this paper is to be considered

purely as a pilot study for the following reasons. As
discussed above, an unsophisticated three-dimensional

approach was used throughout and hence all renor

"R. E. Marshak, Phys. Rev. 88, 1208 (1952)."J.Tinlot and A. Roberts, Phys. Rev. 90, 951 (1953).
'~ Bethe, de Hogan, and Schweber, Introduction to 3IIesvn

Theory (Row, Peterson, 8t Company, Evanston, to be published).
"De HoRmann, Metropolis, Alei, and Bethe, Phys. Rev. (to

be published); M. Glicksman, Phys. Rev. 95, 1335 (1954);R. L.
Martin, Phys. Rev. (to be published).

"W. M. Visscher, Cornell University, thesis, 1953 (unpub-
lished).

a very complicated behavior at low energy which pre-
sumably cannot be explained by our theory, but which
requires probably the introduction of an additional
weak, long-range interaction"" between nucleon and
meson. This potential might be due to an interaction
between the incident meson and the "bound" mesons in
the nucleon, and one of us (M.R.) has found that a
phenomenological theory based on this assumption
accounts reasonably well for the behavior of 83 at low
energies.

We therefore consider it more reasonable to compare
our theory merely with the higher energy experiments.
Above 40 Mev, the experimental phase shift 83 can be
represented quite well by a straight line of the form"

8s ——11'—130'(k/M).

Our theory, for G'/4rr= 13, gives very nearly

5s = —160'(k/M). (46)

Therefore, the slope of the straight line bs ns k is given
quite well by the theory, as is the straight-line relation
itself. By the way, this relation indicates that the inter-
action corresponds to a very strong repulsive core whose
radius is given by the coefficient of k (in radians), and
is therefore

2.3A/3Ec=4. 8&&10 "cm from the experimental
relation; (47)

malization terms had to be omitted. It is hoped that
work relating this formalism to a fully covariant
approach will remove this difFiculty. More important
still is the approximation of restricting ourselves to
states directly coupled to the one-meson one-nucleon
state. Nothing is known about the rate of convergence
of the Tamm-DancoR expansion in terms of the number
of virtual mesons and nucleon pairs. A helpful fact in this
respect is the increase of the energy denominators with
the complexity of intermediate states. But even if the
hope for convergence is justified, one will certainly need
more terms of this expansion than were carried in the
present paper to get quantitatively meaningful results.
Higher terms could be included without essential modi-
Gcation in the method of deriving the equations of
motion, but the solution of these coupled integral
equations would be very lengthy, probably requiring
the use of electronic computing machines. It was not
felt worthwhile to carry such a program through until
the renormalization difficulties have been removed.

One therefore should not expect any quantitative
agreement between the present results and experiment,
but we hope that the terms omitted in this paper will

at least be qualitatively similar to those carried. In
particular we expect that the distinction between eRec-
tively attractive and effectively repulsive interactions
will remain, so that the phase shift for the I';„T= 2 state
will continue to be the largest, and considerably en-

hanced compared with the Born approximation, while

all other phase shifts will continue to be less than their
Born approximation.

To sum up, the present work has by no means proved
that pseudoscalar meson theory agrees with experiment,
nor even that it is a self-consistent formalism. But at
least it removes the impression given by perturbation
theory calculations, that pseudoscalar meson theory
with pseudoscalar coupling is incompatible with ex-

periment.
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APPENDIX

In the Schrodinger equation

(Hp+IIr)% =&P,

IIO represents the free-Geld Hamiltonian and can be
written in terms of the number operators of various
Geld quanta in the form

&o=Qs, ~ cV~(p)E~(p)+Qx, 1Va~(k)or (k),



X[K+ ~-(y)u(y) exp(ip. ~.)

+2- ~-(y)u(y) exp( —ip.~,)7

The summation in the two terms extends over positive
energy spinors and negative energy spinors, respec-
tively. In the exponentials appears the four-dimensional
scalar product of the vector p„and x„.The 0 component
of p„, i.e., po, is defined as +E(p). With the above de-
composition for P(x), P(x) takes the form

4'(x) =
(2~)«

&'p(MIE(p))'

X[K+ ~-"(p)u(y) exp( —ip.*.)
+E a„*(y)u(y) exp(ip„x„)7,

where E(p)=+(M'+p')'* and ~(k)=+(k'+p')~, M
and p being the masses of nucleon and meson, respec-
tively. The suffix n in the second term refers to the
charge state of the meson. X„(p) is defined in terms of
creation operators [a *(p)7 and destruction operat:ors
a„(p) of nucleons in the form

-~'. (y) = ~-*(y)~. (p),

if I is a su%x referring to positive-energy states of the
nucleon Geld. If u refers to negative-energy states, then

~".(p) =~.(y)~ *(p).

The a„(p)'s satisfy the relation

[~-(y), ~- *(p')7+=~3(y—y')~- .

Similarly the meson number operator is de6ned in
terms of meson creation and destruction operators,
c *(k) and c (k) respectively, in the form

,V.&&(k) =..*(k)c.(I ),

with the c's satisfying the commutation relations

[c.(1 ), ..*(k')7=&,(k—k')S.„,.

The nucleon field operator can be expanded in the form

The meson operator P (x) is decomposed in the form

y (x)= ~ d'k [c.(k) exp(ik„x„)
[2(27r)37&" [&0(k)7'

+c.'(k) exp( —ik„x„)7.

The Dirac spinors u(p) are normalized in such a way
that

u(p)u(y) =+1, and P u(p)u(p) = —1.

The u's satisfy the Dirac equation (P—iM)u(p)=0
for positive energies, and (p jiM)u(p) =0 for negative
energies. Substituting these expressions for the decom-
position of the operators P(x), P(x), and g(x) in the
expression for Hy, the interaction Hamiltonian, we can
write it as the sum of the following eight terms:

( M'
a,=ia(16~~)—:~"d'p'~ d'p~ d'kl

E(p)E(p )or(k))

.[2+- 2+- u(y')V~r-u(p)~-*(p')

c-(k)~-(y)~(y —p'+k)

+2+- 2+- u(y') V«-u(y) ~- *(p')

.c.*(k)a„(p)8 (y —p' —k)

+P~„P „u(y')Vsr u(y)a *(p')

.c-(k)~-(y)~( —p —p'+k)

+2+. 2--u(y')V -u(y)~-*(y')

'-*(k)~«(y) ~(—p —p' —k)

+2-- 2+-M(p')&sr-u(y)~-*(p')

'-(k)~-(y)~(y+ p'+k)

+E-- 2+- u(y')V~r-u(y)~- *(p')

'-*(k)~.(p)~(y+ p' —k)

+2-"2-- u(y')V~r-u(y)~- *(p')

c-(k)~-(y)~(- p+ p'+k)

+2-- Z-- u(y'h5 -u(p) ~- *(p')

c-*(k)~-(y)~(—p+ p' —k)7


