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The two nucleon problem is considered in terms of an interaction of the form (p ~
V

~

p') = —(lj/M)g(p) g(p'),
with g(p) = C(p)+(1/+8)(3p~(a& p) (a" p) —(a" a"))T(p), where the second term gives rise to a mixture
of D state with the 5 state determined by the erst term. After deriving general results vahd for any form
of g(p), we discuss in detail the special case of C(p) = (ps+ps) ' and T(p) = tpz(y—'+p') ' and compared
it with observed data. The photodisintegration of the deuteron is also discussed and it is found that the
D-wave part of the deuteron plays an important role at high photon energies leading to a larger cross
section than given by other calculations to date.

l. INTRODUCTION
' ' N the preceding paper' (cited as I hereafter) we have

& & shown that the two-body Schrodinger equation can
be easily solved with a nonlocal but separable nuclear
interaction. In continuation of I, we want to discuss
here the special case of a separable neutron-proton
interaction with spin-orbit coupling. Adopting the
algebraic notation of Rarita-Schwinger, ' our nuclear
interaction for the triplet state takes the form

(p I
I'l p') = —() /jif) g(p) g(p'),

g(p) =C(P)+ (1/v'8)S(p) T(P),

S(p) = (3/Ps) (a" p) (an. p) (a" a")

where C(P) and T(P) are the functions of P=
~ p (, and

o&' or 0" is the usual spin matrix-for the proton or
neutron. C(P) and T(P), or equivalently g(p), must be
real in the sense of Wigner. ' As will be shown, the
two-body problem can easily be solved for this inter-
action both for the bound and the continuum states.
It seems therefore worth while to report the detailed
discussion based on this potential to see the e6ects of
the so-called tensor force. In the case of the usual local
form, these sects are so complicated that they cannot
be seen in a simple manner, because a local potential
including tensor force requires tedious numerical inte-
gration4 for solution.

It is evident that our triplet potential (1) acts in the
('St+'Dt) state only. Moreover, as will be seen in the
next section, there is no room to find two independent
solutions for ('St+'Dt) states, because the wave func-
tion is uniquely determined by g(p). In other words,
our potential acts just in the "eigen-S" state, following
the terminology of Blatt and Biedenharn. ' This striking

feature is of course a direct consequence of the special
assumption for the form of g(p). To get an interaction
acting in other states than the eigen-5, one may adopt
another form for (p~ V~ p'), which necessarily contains
further dependence upon the direction of p. Neverthe-
less, for the time being let us confine our discussion to
the nuclear potential (1).

If we choose our nonlocal potential involving spin-
orbit coupling to be without a long tail, then we can
depend upon the validity of the effective range theory, '
just as in the case of local spin-orbit forces, 7 to guarantee
a 6t to the low-energy two-nucleon data. Since one gets
the deuteron and continuum wave functions in very
simple forms, one can easily apply them to high-energy
regions which are outside of the validity of the shape-
independent theory. Thus we shall calculate on the
basis of our model the neutron-proton scattering and
the photodisintegration of the deuteron at high energy.
It turns out that the neutron-proton scattering up to
100 Mev is fairly well explained by the force (20) for
the triplet eigen-5 state and the singlet potential 6xed
in I, and it is shown that the D wave in the deuteron
plays an important role in the high-energy photodisinte-
gration. The photodisintegration cross section will be
expressed in such a way as to make clear the dependence
on the assumed deuteron function.

2. GENERAL FORMULATION

In this section we want to give relevant formulas for
the neutron-proton system, without specifying the form
of g(p). In the next section we shall examine the two-
nucleon system, assuming a simple form for g(p). As
in I, our problem can be treated more conveniently if
the momentum-space representation is adopted rather
than the coordinate representation.

(a) Deuteron Problem

Let us start with the deuteron problem. The deuteron
function must take the form

4(p, spin) = (~(P)+ (1/v'8) S(p)~(P)}xt", (2)
6 E.g. , see J. M. Blatt and V. F. Weisskopf, Theorefica/ Egclear

Physics (John Wiley and Sons, Inc. , New York, 1952).
' R. S. Christian, Phys. Rev. 75, 1675 (1949); Y. Yamaguchi,

Progr. Theoret. Phys. Japan 6, 439 (1951).

5

' Y. Yamaguchi, preceding paper /Phys. Rev. 95, 1628 (1954)ji
cited as I.

'W. Rarita and J. Schwinger, Phys. Rev. 59, 436, 556 (1941).' E. Wigner, Nachr. Ges. Wiss. Gottingen 51, 546 (1932).
' T. Miyazima, Proc. Phys. -Math. Soc. Japan 22, 188 (1940);

H. Feshbach and J. Schwinger, Phys. Rev. 84, 194 (1951);J. M.
Blatt and M. H. Kalos, Phys. Rev. 92, 156 (1953);Fujii, Iwadare,
Otsuki, Takotani, Tani, and Watari, Progr. Theoret. Phys. Japan
10, 478 (1953).Other references will be found in J. M. Blatt and
V. F. Weisskopf, Theoretical lVzzclear Plzysics (John Wiley and
Sons, Inc. , New York, 1952).' J. M. Blatt and L. C. Biedenharn, Phys. Rev. 86, 399 (1952).
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1636 Y. YAMAGUCH I AND Y. YAMAGUCH I

where N(p) and rn(p) are the S and D wave functions,
respectively, depending on p=

l pl; x& (nz=1, 0, —1)
is the triplet spin function. Inserting (2) into the
Schrodinger equation,

(~'+P') (l(P)+ (1/v'g)~(p) ~(P)}x~"

(b) Neutron-Proton Scattering

Next let us examine the neutron-proton scattering.
Our fundamental equation is

M
0'(p) = 9.(p)+ (p l

U
l

p')dpi'.

(p'), (9)
ks —p&+i, a

=~(~(p)+ (1/v'g)5'(p) &(P)) dp'{C(p') (P')

(~„U4.)=(pl Tlk), (10)

~(P) =»«(P)/(~'+P'), ~(P) =»(P)/(~'+P'), (4) Eq. (9) takes the form

when k is the incident momentum, k= lkl, p~(p)
=8(p —k) is the incident plane wave, and e is a real

+2'(p~)~(p~)) .x m (3) positive infinitesimal quantity which makes the scat-
tered part of P&(p) only an outgoing wave. Introducing
the T matrix '

where n'/M =binding energy of the deuteron. One can
readily find a solution

where E is a normalization constant fixed so that r (pl Ulp')dp'(p'I2'lk)
(pl2'lk) =(plUlk)+ ' . (ll)

(ks P"+i—e)/3f

or

)' dp(u'(p)+w'(p)) =1, If (pl Ulk) is factorable [see (1)], our Eq. (11) is

(5) easily solved:

g(p)g(k)
(p Tlk)= ———

M 1+XJ(k)
(12)

, '(p')+ '(p')
J(k)= i dp'

ks Ps+is
(13)

~'(P)+ T'(P)
djp

n'+ p'
(6)

It should be noted that the wave function which
describes a scattering process is

One may determine the strength X=lh (n) of our nuclear ~here J(k) is given by
interaction so as to fit the observed binding energy
n'/3II of the deuteron:

Thus the well-depth parameter s, de6ned by Slatt-
Jackson, r is given by

s=X(n)/[limX(n) j.

g(p)g(k)
Ps(p, spin) = 8(p —k) —— x~". (14)

1+XJ(k) k' —p'+is

p = /pigs(p) = 4~tgr2
~ psdpT2(p) (~2+P2) 2

This wave function is determined uniquely from the
The D-state probability I'z and the quadrupole potential (1) assumed and describes the eigen- 5
moment of the deuteron Q are given by scattering.

From the T matrix (12), we can readily write down
the desired cross section; for example the differential
cross section in the c.m. system for an unpolarized
triplet beam is as follows:

1 1
Q= —-„~p ~(p)+ ~(p)~(p) xi'

gg

8 t9

X
gp 2 gp2

1
e(p)+ S(p)w(p) xg'

Qg

+gn. ~" Bn 8'u.
dp p Np — —zv"

5 ~s Bp Bp'

f Bwp
dP 6~'+P'I

500 ( ap)

dO 1 3+v~rr—=- sp 12~'~(pl Tlk) I', (p=k), (»)
dM 3 4

or

do. 1 2m2X

Sp
dry 3 1+XJ(k)

3+rrprrn
g(k)g(p)g(p)g(k), (16)

4

s B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).

where (3+a" e")/4 is the projection operator for the
triplet state and p is the relative momentum after the
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scattering. More explicitly,

&tot

dc' 4T

3 cos'0 —1
1+3(k) . cos8= (y ir)/pk,

o-...=4' — (C'(k)+ I'(k) }',
1+X X (k)

and
2C (k) T (k) —(1/V2) T'(k)

3(k) =
C'(k)+ T'(k)

(17)

fact, if we put t=0, all of our results found below
reduce to those of the "central" case of I, Sec. 3. Note
that if t&0 our tensor force is attractive for parallel
nucleon spins and gives a positive value for the quadru-
pole moment of the deuteron.

(a) Deuteron Problem

With this choice of potential, the deuteron function is

.V
~(p) =

02 2 2 2

Here it should be noted that the asymmetry coe%cient
3(k) is always positive.

The eigen 5-phase shift 6 can easily be calculated
from the relation where

~(p) =— lVtp'

(~2+p2) (v2+ p2)2

(21)

2n 9 (C'(k)+ T'(k) } e" sin5

1+XJ(k) k
(19)—ik+k cot5

—=%2
g2

+t'
-P( +P)' »( +v)'

(22)

Then by expanding k cotb in a power series in k2, one
can derive the analytic expressions for the scattering
length a, the effective range ro, etc. We shall show
this in the next section where a simple form for g(y)
is adopted.

1 1 t' (5n'+tv+ v')
7r2 +—.

P(-+P)' g
(23)

In our case the 5 wave function is again of Hulthen
form. X is determined by

3. DETAILED DISCUSSION OF THE SPECIAL CASE so that the well-d. epth parameter ~ is

In this section we want to examine our problem with
a special form for g(y). It is evident that if we assume
rational functions for C(p) and T(p), then we can
perform all integrations required in solving the two-
body problem. It is natural to choose the simplest
function in this category. At first sight the simplest
choice seems to be

C(P) = 1/(P'+P'), &(P) = t!(v'+ p')—
where P, v, and t are constant parameters. This is,
however, not a reasonable choice, because it corresponds
to a long-tail potential in the r representation, which
does not seem physically plausible and in fact leads to
undesirable results: (i) the asymmetry coefficient 3(k)
is insensitive to the incident momentum' k and in
general e(k) WO even at k=O and (ii) the electric dipole
photodisintegration cross section of the deuteron be-
comes anomalously large at very low photon energy.
Therefore we choose the next simplest function, namely,

C(p)=1/(P'+P') T'(P)= tP'/(v'+P')' (—20)

where P, v, and t are constant parameters. This choice
is quite reasonable, being free from the objections
mentioned previously, and for the special case of
D interaction only, i.e., C(p) =0, the scattering phase
shift 6 goes to the form k' cot6= (const)+(const)k'+,which is of course the normal behavior for pure
D wave scattering (see I, Sec. 3; this can easily be
seen from Eq. (27) below if t is made very large). The
form (20) is a natural generalization of the special
interaction g(P) = (P'+P') ' discussed in I, Sec. 3. In

t'(5n+v)

»(~+v)'
%2m'1Pt

t3(5m+v)

-P(-+P)»(-+v) ' (25)

Q = (~p'(5~'+4 P+P')
»( +P)' (P+v)'( +v)

+Pv (10n3+33n'P+22nP'+5P3)

+v'(5n3+ 22n'P+33nP'+ 10P')

+v3 (n'+4nP+ 5P') }

+ ( (P+v)'+4( '+Pv)
(P+v)'(~+v)'

X (P'+3Pv+v')+ 16~pv (P+v) }
2.+, ,(P( +v)'+4(P'+ v)

(P+v)'( +v)'

X( '+3 v+v')+16 pv( +v)}

~2+2t2 (7~3+49~2v+91 v2+.33v3)
(26)

160 v'(~+v)'

S=
P-'+(t'/»')

The D-state probability I'D and the quadrupole
moment Q are easily calculated: 0
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(b) Scattering Problem

Since we have solved the scattering problem without
specifying a form for g(p), we can readily write down
the unpolarized triplet cross section corresponding, to
the potential (20)

2P2 1 t2 )P2
+—-p'] —+—

fz.9 P 8 Ey' y')

2P'+( +P)'

p(a+ p)'

der

des —ik+k cot8

3 cos'9 —1
1+e(k).

t' 2(5 '+4 + ') p'
ps (30)

~(n+V)' V' V'

t'k4 y
-'-

1 P' —k'-'

k cot8=
i
—— +

~ (P'+k')' (y'+k')'& 27r9t 2P(P'+k')'

tr, ps( ] ] ts
I'rs'= — -+——

f

2z.9 2 ys Ez'g P' 8y'J

ts(y'+ 5y'k'+ 15''O' —Sk')

16' (y'+ k') 4
(27)

t' 1 t' 2P' SP'q
+——

i 1+ +
~4)

-(p'+k') (v'+k')'
c(k) =

2

I+
i ps+ks)

tk2

(ps+ ks) s

tk2

(~2+k2) 2

2- 2

(28)

—1 1 Sn'+4ny+y'
t2

2P( +P)' 2 ~v(-+v)'

p' Spll+ +

The asymmetry factor has following features:

.(k)=(4t'P'/~')k' (k&(P ~)

(2+t/%2)t '
e(k)—& (k—++~);

t2

P'(1 1

!+—I—
~s Ep' p(a+p)')—

P' ~ 1 Sn'+4nq+q'y
t4 (»)

8~(-+~)' &

thus
e(k) =0 at k= 0.

Thus the intrinsic range' b is given by

If we expand k cot8, Eq. (27), in a power series in k',
one can easily find the desired coefFicients, the scattering
length a, the eRective range ro, and the shape-dependent
factor I';

3 t'P4
b ———

p 8v'

where we have used Eq. (23).

(32)

p4 p tsp4

+-+
2~9, 2 16~'

(29)

(c) Comparison with Experiments

Now we are in a position to compare our results with
experimental data. To do this we must first find values
of the parameters, n, P, p, and t, which fit the low-energy
neutron-proton data. This procedure can be performed
conveniently as follows. First of all n can be fixed from
the deuteron binding energy, ' n'/M= 2.225 Mev:

TABLE l. Comparison with experiment of various quantities
calculated with the parameters given in Eq. (33b). o.= 2.3J6X&0» cm—' (33a)

Calculated

P~=4.000 percent

Q= 2.7394X10-"cm'
s= 1.2915
6=2.122X10 "cm
~= 5.378X10-» cm
r0= 1.704X10 ~

See reference 12.
See reference 13.

Experimental

2—8 percent (due to Miyzawa's
argument)~

5—10 percent (due to Machida's
argument)b

(2.74~0.02) X10~' cm'

(5.378&0021)X10 '~ cm

Next, from formula (29) for the scattering length a and
Eq. (25) for the D-state probability I'D, eliminating t,
we get

2(1 &D) (a+PI ' 1 P(n+2P)

PD E P ) aa 2(a+P)s

n+~ (a+V)'
2n+

v(Sn+v)—
s T.i, Whaling, Fowler, and T.auritsen, Phys. Rev. 83, 512 (1951).
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Inserting Pn and the observed value" of a=5.378
X10 " cm in this equation, we can find a value of p
for an assumed value for P. Then, for any set of values
for p and y, we can calculate the value of t either from
Eq. (29) for the scattering length for equivalently
from Eq. (25)] or from the Eq. (26) for the quadrupole
moment. If these two values of t coincide for some set
of p and y, this set (p,y, t) is the desired one. IJnfortu-
nately the D-state probability I'& has not been accu-
rately determined up to the present time. Many
authors, however, have adopted the value 4 percent, "
and we shall tentatively do the same here. For a
complete discussion of the D-state probability we refer
the reader to existing articles. ""Then we determine
the values of parameters to be as follows:

I I I I ) / I I

0.2

O.l

.08
C: .06

X.os

I I I I I l I I I I I

0 4 8 I2 I6 20 24
INGIOENT ENERGY E IN MEV(IN LAB SYSTEM)

400—

P = 5 759rr. , y =6.771a, 1= 1.784. (33b)
200—

For the sake of completeness, we list in Table I the
values of various quantities (re-)calculated with these
values for P, y, and t. From these results it is evident
that our model fits the low-energy neutron-proton
data very well. As is seen from the form (20) for T(p),
the effect of. tensor force is not appreciable at low
energies t also see the formula just under (28)]. The
total cross section for the triplet neutron-proton scat-
tering is in agreement with that of the "central" case
of I, Sec. 3 up to 20 Mev. However the tensor part
T(p) plays an important role at higher energies.

I.et us compare our results with high-energy nucleon-
nucleon collision experiments. ""Figures 1 and 2 show
the energy dependence of ot,,t/4+ and e(k), based on the
parameters (33). We have determined in I, Sec. 3(c)
the singlet neutron-proton interaction. Using this
singlet interaction combined with the triplet interaction
obtained here, we can calculate the high-energy neutron-
proton scattering cross sections which, of course, contain
contributions only from 'S and eigen-'5 states (see
Fig. 3) . The deviation from the isotropic angular
dependence is caused by the D wave in the eigen-'8
state. Furthermore, assuming charge dependence of
nuclear interactions, one can compare the singlet 5
phase shift without Coulomb force with the observed
one, " 50.2', for proton-proton scattering at 30 Mev.
(See Fig. 4.) As is seen from these figures, our calculated
cross sections are in fair agreement with observations

"E. Melkonian, Phys. Rev. 76, 1744 (1949); Surgy, Ringo,
and Hughes, Phys. Rev. 84, 1160 (1951).

"This value is correct under tvro doubtful assumptions: (i)
that the relativistic correction to the magnetic moment is small,
and (ii) that there is complete additivity of the proton and the
neutron moments.

's H. Miyazawa, Progr. Theoret. Phys. 7, 207 (1952).
'3 S. Machida, Progr. Theoret. Phys. 9, 683 (1953).
'4 Hardley, Kelly, I.eith, Segre, Wiegand, and York, Phys.

Rev. 75, 351 (1949); Kelly, I,eith, Segrh, and Wiegand, Phys.
Rev. 79, 96 (1950); Randle, Tayler, and Wood, Proc. Roy. Soc.
(London) A213, 392 (1952).

"W. K. H. Panofsky and F. L. Fillmore, Phys. Rev. 79, 96
(1950); Cork, Johnston, and Richman, Phys. Rev. 79, 57 (1950).
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up to 100 Mev for the neutron-proton case and up to
40 Mev for the proton-proton case. However, at still

higher energies the calculated cross sections for both
neutron-proton and proton-proton scattering are de6-
nitely smaller than the experimental values, indicating
interactions in I' or higher-order partial waves. This
is of course the conclusion reached by Christian and

Fio. 1. (a) The a-p total cross section O„q divided by 4s- for
the triplet eigen-S scattering vs incident neutron energy F. (in the
laboratory system). This curve is in good agreement xvith that
of the "central case discussed in I, Sec. 3 (also see Fig. 1(b)g.
(b) Curve T is the n-p total cross section ot,t divided by 4~ for
the triplet eigen-5 scattering Lcalculated from (27) and (33)g.
&Tote that the triplet eigen-5 scattering cross section is do/der
= (0 t,t!4s-)(1+ c (k) (3 cossa —1/2) l. For comparison, wc illus-
trated by curves C and S the triplet and singlet S-cross sections
on the basis of the "central" interaction described in I, Sec. 3.

The incident energy E in the laboratory system is given by
F.=2k'/7VI= (k'/cP)&&4. 45 Mev. The curve 0 shows the average
cross section of the triplet eigen-S and the singlet S scattering.
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lation of the electric dipole disintegration cross section
up to 50-Mev photon energy (in the c.m. system) than
has been reported so far."The magnetic transition is
partly due to.an unknown eGect, the so-called inter-
action magnetic moment. ' However, neglecting this
small eGect, we can also calculate the magnetic tran-
sition using our wave functions. Therefore, keeping
within the low and intermediate photon energies, we
want to discuss here the dipole photodisintegration of
the deuteron.

(a) Electric Dipole Transition

As stated previously, we want to use free 'P waves
and the deuteron function (4). According to Siegert's
theorem, " the transition matrix for the electric dipole
transition is given by J ( J function) r. e(deuteron func-
tion), where r is the relative coordinate between the
proton and the neutron, and ~ is the polarization vector
of electromagnetic field. This matrix element can also
be calculated using the argument of gauge invariance
as was done in I, Sec. 4. These two methods naturally
give the same results. Thus one can find the electric
dipole disintegration cross section in the c.m. system

da. e' np' s."V'
DE,+E~) sin'8+Es(1+cos'0)],

ks 4s- (n'+ p')' n

.02—

,Ol'
I

f f f f f l f f f I

4 6 8 IO 20 40 60 100 200
K ~/a('

(b)

Fro. 2. The energy dependence of the asymmetry factor, r(&),
calculated from (28) and (33). Incident energy in laboratory
system E= (k'/n') X4 45 Mev.

others. "Actually there is already some indication of a
P wave interaction even in 90-Mev neutron-proton
scattering, as is seen from the asymmetry around 90'.
More detailed analysis of high-energy nucleon-nucleon
scattering based on separable potentials is in progress.

"R.S. Christian and E. W. Hart, Phys. Rev. 77, 441 (1950);
R. S. Christian and H. P. Noyes, Phys. Rev. 79, 85 (1950);
K. M. Case and A. Pais, Phys. Rev. 80, 203 (1950); R. Jastrow,
Phys. Rev. 81, 165 (19S1).

4. PHOTODISINTEGRATION OF THE DEUTERON

Since we have found a nice form (21) for the deuteron
function, it is interesting to apply it to the photo-
disintegration problem. As was shown in the preceding
section, the neutron-proton interaction up to 100 Mev
can be well expressed in terms of our separable po-
tentials (20) for the eigen-s5 state and the singlet 5
potential described in I, and, as is well known, the
forces acting in states higher than P' are not important
in this energy reaction. Thus it may be concluded that
we are in a position to make a more accurate calcu-

E,= C(p)—
n'+p' BC '

2p r)p

n-'+P' riT '
Es= T(p)

2p Bp

(34')

3 n2+p2 2

Es——— T(p)—
2

'7A. Sugie and S. Yoshida, Progr. Theoret. Phys. IO, 236
(1953); W. Rarita and J. Schwinger, Phys. Rev. 59, 556 (1941);
N. Austern, Phys. Rev. 85, 283 (1952); T. M. Hu and H. S. W.
Massey, Proc. Roy. Soc. (London) A196, 135 (1949). Other
references will be found in I."¹Austern and R. G. Sachs, Phys. Rev. 81, 710 (1951);
N. Austern, reference 17.

"A. J. F. Siegert, Phys. Rev. 52, 787 (1937); R. G. Sachs and
N. Austern, Phys. Rev. 81, 70S, 710 (1951).

where 8 is the angle between the photoproton and the
incident photon, y is the relative momentum of the
final neutron-proton system, E& represents the transition
'5—+'P', and E2 and E3 correspond to the transition
'D—sI'. It may be seen from this result that, if T(P) is
constant for small p, the electric dipole cross section
becomes proportional to 1/p at very low photon energy
In contrast to this, if T(p) ~ p' at small p as in the case
of (20), the contribution from 'D +sI' is rea, sonably-
small at low photon energy.

Next let us compare our result (34) with that of the
"central" potential. For this purpose, it is convenient
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to introduce the "associated central potential"
—()i,/M)g (p)g, (p'), which is defined from the original
interaction (1) including spin-orbit coupling as follows.

(i) The form of associated central potential is the
same as the central part of the original potential;

g.(p) =c(p).
(ii) The strength X of the associated central po-

tential is now determined so as to give the same value
for the binding energy of the deuteron as that of the
original interaction (1).Therefore the associated central

potential does not exactly 6t the low-energy data, even

if the original potential (1) does fit. An example of this
is given by the potential (20) with (33) fitted to low-

energy neutron-proton data. The associated central
potential has the value 5.759a for P, but the best-fit
central potential has a different value, 6.255n, for P
(see I, Sec. 3). It should be noted that the relation
between the normalization constants X and g for the
deuteron functions corresponding to the potential (1)
and its associated central potential, respectively, is

given by E'=E,2(1—PD).
If we adopt the associated central potential, the

electric dipole cross section turns out to be

lD
4J
4l
K
CQ
Lij
Cl
~ 80—
I-
U.

60
4I
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40—

I I I I I I

If we adopt (20) for g(p), the electric dipole cross
section takes the form

do. e' rip' p(n+p)
(1—Pi))

dro 47r (n'+ p')' (p —n)'

~2 2 2 2

x
Epl+ p2)

sin'0

(p2 ~2)2( ~2~2+~2p2+2p4)2
+p sin'0

30 I I I I I I I I I I

0 IO 20 30 40 50 60
INCIDENT ENERGY IN MEV (LAB ENERGY)

Frc. 4. S phase shift is shown in this 6gure. This is calculated
from Eqs. (18), (26), and (27) in I.

do e' np' ir'1V '
8» sin'0.

dho 4ir (rr'+ p')' u
(35)

(~2+,p2) 6

3 (p2 ~2)2 (~2+p2) 2

+ t2- (1+cos'8)
(v'+ p')'

a,+b, sin'0—, (36)
This form is, of course, the same as (33 E.D.) in I.
Therefore, if in (34) we put E2 E3 Oand rep——lace ——cV

by X, )this fact is simply expressed by t=0, keeping
in mind Eqs. (5), (6), and (7)), we find the result (35). h

. t th f E (36 E D )

40 MEV
EXPERIMENTAL 90 MEV

(SEE RFF. I'I) 260 MEV

20—

~ ~

~ ~ ~

MEV

(b) Magnetic Dipole Transition

As mentioned previously we shall not discuss here the
eGect of the interaction moment. The magnetic transi-
tion can then be evaluated unambiguously by using
our wave functions. For future reference let us write
down the singlet S potential —()i,/M)g, , (p)g, (p'), and
define J,(p) by

g '(c)
~.(p) =

p' —q'+is

The magnetic dipole cross section is

d~„1 e' (ti„—ti.)'
)

~~@»p(~&+ p&)
dco 64~i M )

3 cos20 —&-

iMii'+ [M2['+M3 (37)

I I I

40 80 I20 I60
e IN DEG, (CtM. SYSTEM) where 0 is again the angle between the photonproton

pro 3 The onion]ated average oross spotions (trii)Jot pjgen $1iins and the incident photon, Mi and M~ correspond to the
: sing)et S scattering onjy) are compared with observation. S~S and D~ S transitions, respectively, and 3f3 is
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the interference term: where 8, is the singlet S phase shift and

C(P) ) 4 (P) f g (q)C(q)

n'+ p' 1+X,J,(p) ~ (qs+n') (p' q—s+i s)

p cot5,

Q2 2 2 2

flf's= T(p)/(~'+P'),

3Es V2 R——e(Mt3f s) —stMss.

Let us again use the d.euteron function (21) and the
singlet S wave function described in I, Sec. 3. To avoid
confusion, let us write

a.(P) = 1/(P'+P')»d C(P) = 1/(P '+P') (3g)

Then the magnetic dipole cross section is

~&m 1 & f/' pn)
i ~& ( +&)'(1—~D)p(~'+P')

dro 64m ( M )
csin'8, PP4

x I ]'+
p2 (~2+P2)2 (~2+p2)4

W2 sinb, cos6, 1Ps
-L 7+

2(~'+P') h'+P')'

ttp2

X
(~2+.Ps) (~2+ps) s

u+ b s—in'0,

3 cos28 —1

(39)

TAsLE II. The thermal-neutron capture cross sections
calculated from {40)and (33).

Singlet
effective

range

Capture cross
section multiplied

by neutron velocity

Ps/~
7.00
6.50
6.25
6.00
5.75
5.50

tOs
(10» cm)

1.914
2.067
2.153
2.246
2.348
2.459

&cap&ss
(10~0 cmg/sec)

7.05
6.95
6.93
6.88
6.83
6.78

If we replace our triplet interaction by the associated
central interaction, we get the result (37) with t=0,
i.e., S'=cV ' (M's)'=M =0. If T(p) =0 at p=0, the
effect of the D wave deuteron function is very small
near threshhold. Therefore our magnetic dipole cross
section is equal to that corresponding to the associated
triplet central potential except for the factor 1—I'~.
This holds also in the case of thermal-neutron capture
by hydrogen.

For thermal neutron capture by hydrogen we can
neglect the 'D—+'S transition and obtain the total cross
section o.„~as

1 n+P, a 1
X —— - —+— (40)

&.A P~ A (~+8.) (P~+P )—

where e„ is the incident neutron velocity in the labora-
tory system and a, is the singlet scattering length at
zero energy.

(c) Discussion

We have seen that the photodisintegration cross
section can be expressed in a tractable form, and our
approach has the particular advantage of showing the
eGect of tensor force. Although the results obtained
above were derived on the assumption of a separable
potential, some aspects are valid quite generally. For
example, our electric dipole cross section (34) depends
only on the form of the deuteron function (4), which
may be regarded as free from the assumption of a
separable nuclear potential, and as the solution for a
local potential if preferable. LNote that, the Hulthen
function is the bound. -state solution for the local Hulthen
potential and also simultaneously for the separable
potential g(p) = (p'+p') '.7 We can also generalize the
concept of an associated central potential for any type
of potential with spin-orbit coupling. The photodisinte-
gration cross sections based on such potentials will
obey the relationships stated above. Ke are nov
interested in comparison with experiment.

Table II summarizes our calculation on thermal
neutron capture by hydrogen. The calculated values are
definitely smaller than the experimental value, "0-„„v„
=7.30&(10 " cm'/sec, for reasonable values for the
singlet eQective range and shows the evidence for
interaction moment in agreement with Austern. "

The dipole cross section is shown in Fig. 5. We can
see that the contribution from '5—+'I' is essentially in
agreement with those reported on the basis of a local
Hulthen force, ~ apart from minor diGerence coming

's Hamermesh, Ringo, and Wexler, Phys. Rev. 90, 603 (1953);
Harris, Muehlhause, Rose, Schroeder, Thomas, and AVexler,
Phys. Rev. 91, 125 (1953); G. von Dardel and A. W. Waltner,
Phys, Rev. 91, 1284 (1953).' N. Austern, Phys. Rev. 92, 670 (1953}.~ See I, where other references will be found.
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from difference choices for the values of P& and the
factor 1—PD. The 'D—+'P transition becomes, however,
more important with increasing photon energy and
causes a rapid increase of the isotropic part a=a,+u
in the angular distribution of photoprotons; see Fig. 5.
In the magnetic dipole transition the D wave w(p) of
the deuteron gives some contribution. Thus we may
conclude that the isotropic component a=a,+a a,
is a direct measure of ro(lb) at a moderate photon energy.
Up to the present there are no definite experimental
results" about the isotropic part up to 20 Mev, and
thus our results naturally do not contradict observation
(the calculated total cross sections are in agreement
with observation). At higher energies precise experi-
ments by the Illinois group are now available. '4 Their
total cross sections at 20—60 Mev photon energy are in
reasonable agreement with our results but the angular
distributions do not agree with our theoretical calcu-
lations. But one can expect to find larger values for g/b
if one adopts a larger value for the D-state probability
PD than 4 percent.

At still higher energies the experimental cross sections
are de6nitely larger than our prediction. However, at
these energies we must certainly take into account
effects disregarded so far; na, mely, (i) higher multipole
transitions, (ii) forces in P or higher-angular-momentum
states (see Austern"), and (iii) interaction moments or
mesonic effects, and so on. One can hardly say anything
without a careful examination of each of these points.

It should be noted that the smallness of PD or Q
does not necessarily mean that the D wave function
io(p) of the deuteron must be small at large p. Thus
the possible and probable importance of D wave at
large p remains one of our conclusions which is valid
generally, because this statement follows directly from
the form of deuteron function itself and is not de-
pendent upon the assumption of a separable force.

Finally we should like to emphasize again the ease
with which the approach presented in this paper
handles the two-nucleon problem. The ability of the
interaction (20) to fit observed results, in spite of its

ss V. E. Krohn and E. F. Shrader, Phys. Rev. 86, 391 (1952);
H. Wafner and S. Younis, Helv. Phys. Acta 24, 483 (1951);J.
Halpern and E. V. Weinstock, Phys. Rev. 91, 934 (1953).

'4 Allen, Hanson, and Whalin (private communication).
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FIG. 5. The dipole cross section for d(y, p)n takes the form
d&r/d» a+b s=in'8, a=a,+o, b=b, +b /see Eqs. (36) and (39)].
The curves labeled T, E and S are T: the total cross section
(E.D. plus M.D.), E: the total cross section for E.D. transition,
and S: the contribution from 'S—+'I' in the E.D. transition. The
ratios a/b and a,/b, are also shown in this figure. It is noted
that our calculations are based on the D-state probability I'D of
4 percent. Experimental results are shown by X: total cross
section, and o: a/b The ab. scissa is the total energy E;
E= (photon energy)+(kinetic energy of the incident deuteron)
in the c.m. system.

"Bloch, Gell-Mann, and Goldherger (unpublished).

simple form, is remarkable. A slightly diferent sepa-
rable nuclear potential with spin-orbit coupling was
considered independently by Gell-Mann, Goldberger,
and Bloch."These authors started with the radial wave
equations, in which the nuclear forces were assumed to
be factorable.
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