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The two nucleon problem is considered in terms of an interaction of the form (p ~
V

l
p') = —P /M) g(P)g(P').

In this case we can find exact solutions both for bound states and for continuum states, and prescribe
arbitrarily and independently the interaction effective in states of different angular momenta. This important
feature makes the analysis of scattering straightforward and unambiguous. An example for g(P) = (P'+tl') '
is presented and compared with the low-energy neutron-proton data. The photodisintegration of the
deuteron in our model is also discussed.

l. INTRODUCTION
' 'N the past several years, much (experimental and
& ~ theoretical) work' 4 has been published on the
two-nucleon system. However, our information about
nuclear forces is still rather small. From the theoretical
point of view, this is partly due to the difhculty in
solving the scattering problem. Therefore, it seems to
us worthwhile to discuss a special nuclear potential for
which we can get readily an exact solution. This
potential' is nonlocal and thus of a fundamentally
diGerent form than those usually discussed, but since
no one knows the correct form there remains room to
test new types. If we choose our nonlocal potential to
be without a long tail, we can depend upon the validity
of the so-called effective range theory to guarantee a
6t to the low-energy data for the two-nucleon system.
Furthermore, our wave functions described below are
convenient for the examination of various phenomena
involving two nucleons. To illustrate this we will treat
the photodisintegration of the deuteron in the last
section.

*On leave of absence from Osaka City University, Osaka,
Japan.
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~ This type of nuclear potential was discussed by E. P. Wigner
(unpublished), quoted in Blatt and Weisskopf (reference 1, p.
139), Bloch, Gell-Mann, and Goldberger (unpublished).

2. FORMULATION OF THE PROBLEM

Let us consider the two-body nonrelativistic
Schrodinger equation

1
8+ 5 lb(r)—= (r l

V
l
r')dr'p(r'),

E and M being, respectively, the total energy in the
center-of-mass system and the nucleon mass. (rl Vlr')
is the nuclear potential which, in general, is nonlocal.
Transforming to the momentum space representation,
we have

(2)

where k is the incident momentum and k=
l kl, h'/M

=E. If (plVlp') depends only on p —p', then our

potential is "local," i.e., (r l Vl r') must be the function
of r multiplied by 3(r—r'); otherwise our potential
becomes necessarily nonlocal. As stated before, we

want to assume a nonlocal but separable potential'

(r I
V

I
r ) = (&/Ilf )u*(r) u(r )

or equivalently

where the asterisk designates complex conjugate. If we

postulate time reversibility, s(r) and g(r) must be real
in the sense defined by Wigner. s Equation (2) takes

' This nonlocal potential can be derived from the (unfamiliar)
interaction between the nucleon Geld f and the meson Geld rtf7'.

providing that the nucleon has Gnite size:

,s., tt (P'+t")'~e ' dr=
+)& ( s )&

(p=meson mass),

and provided that we limit ourselves within the lowest order
adiabatic nuclear force.

This potential leads to the saturation of nuclear binding
energies.

E. Wigner, Nachr. Ges. Wiss. Gottingen 31, 546 (1932).
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the form

(&'—p')4 (n) = —~g(u) g(n')de%(v').
J

In such a case, one can easily find the exact solution.
To see this, let us consider the simplest case, g(p)
=g(~ p~). For the bound state we must replace —k'/N'

by the binding energy n'/M. Thus

where c(p) and t(p) are functions of p=
~ p~, the exact

solutions of the Schrodinger equation are readily ob-
tainable. This case will be discussed in the following
paper. A sufficient condition that the wave equation
be soluble is as follows:

P—p'2+ je

( '+P')4 (1)=~g(P) „g(P')~1V(1 ') =Lg(k) g(y)$&&(function of k= ~k~),

s= X(n)/hm), (n).

For the scattering problem

4(1)=~(p—k)—
Xg(k) g(p)

8
Q2 p2+ jcg'(q)

1+X t dq q'yie—
where k is the incident momentum and e is an infini-
tesimal positive quantity which makes the second term
of the right-hand side of (8) an outgoing wave. The
differential cross section turns out to be

d /~~= Ifl',
f=e" sin5/4=1/( ik+k cot5)—
= L2~'~g(&)g(p) j

where p is the momentum of scattered nucleon

(f vl =&).
In the more general case, where g(p) depends not

only on the magnitude of p but also on the direction,
one can often find an exact solution. For example, if
we assume the "central" plus "tensor" form:

\

g(p) =c(p)+ 1/+8

&&
—( '" p)( "'p) —( "' "') t(p), (10)

2

' The factorable potential can have at most one bound state.

The desired solution must be'
g'(v)

4(1)=»g(P)/(~'+P'), —= &V; (6)
»2 J (~2+q2) 2

and X=X(n) is now determined so as to fit the observed
binding energy n'/M of the deuteron:

g'(c)

X " n'+q'

Therefore, we see that the well-depth parameter s,
defined by Blatt and Jackson, ' is just

providing the integral exists.
If g(P) depends on P=

~ p~, we have just s scattering.
In order to get scattering in a state of orbital angular
momentum (without spin-orbit coupling), we must
assume the potential

= ——2 I'~ (0 &n)F~"(Ou &u')g(p)g(p') (11)~ m=t

3. DETAILED DISCUSSION OF SPECIAL CASE
g(P}=(P'+P) '

If we assume, say, a rational function of p=
~ p ~

for

g(p), we can easily perform all integrations required in

solving the two-body problem. In this section we

consider in detail the simplest case,"where

g(p) = 1/(p'+0'). (12)

This interaction acts in the 5 state only.

' This interaction was independently examined by F. Bloch
and M. Gell-Mann (to be published). Their results are in agree-
ment with ours.

where g(p) is dependent on p= j p~. It is evident that
we can also find the exact solution for this potential
(11). It is very important to see that V& causes scat-
tering only for the 1th partial wave, in other words,
that the potential is completely "separable. "We cannot
have such separability in the case of a local potential.
For example, the central local potential gives rise to
scattering of all orders of spherical harmonics. This
separability holds in terms of total angular momentum

and parity also for the nonlocal potential involving
spin-orbit coupling Le.g. , (10)]. This fact makes the
correlation of scattering phase shifts with the inter-
action quite definite and easy. Evidently this gain has
been achieved by vastly extending the number of free
parameters in the interaction.

One should note the seeming resemblance between
the form of our wave function (8) and the second Born
approximation to the usual local potential.



1630 YOSH IO YAMAGUCH I

(a) Bound State—Deuteron Problem

The Schrodinger equation takes the form

and we can determine the scattering length e, the
eGective range ro, etc. :

I.

dpi'(p')

(n'+P')4 (p) = l~

p2+P2$ p&2+p2

and its solution can readily be written down:

P (p) —AT/[ (n2+P2) (P2+p2)j igT2 —~—
2nP (n+P) 3 . (14)

1 P(
a 2E ~9&

Iro )
2x9,

1 ( 2P'~"=-I 1+
pE

Qr =0
(20)

2( +~)'

nP(n+2P)

(+W'+2~'

P(n+0)'
y=~ 'P(nyP)'=sn. 'P' s= (nyP)'/P' (15. )

(20')3P—n
r(l

&(n+P)
Ir(} —I erg

2~(+~)'
Curiously our deuteron function has exactly the same
form as that for the well-known local potential of the
Hulthen type; i.e., the deuteron function in the coordi-
nate space is

Q=Q) ——0

X e '—e~'
0()= I

—
I

42) P' —n' r
(14I) Here we can easily check the internal consistency:

ro ——rg —4P~d'0. ',1/a =n ', r,in' I'~rd—'n—', —

For the triplet neutron-proton system, using (15), we
where E is the normalization constant. Here X must
be determined so as to fit the observed binding energy
n'/M of the deuteron. We get

(b) Continuum State—Neutron-Proton Scattering

Our fundamental equation is r, = 2~' dr[(1 —r/a)' (1 r/a e~")—'j,— —
0

(20")
(' p'+ )P()= Id ', P( ) ( )

P2+ p2) P2+ p~2
rq=2 I dr[(e '")'—(e ~"—e ~")'].

Putting
k'+ p' 1 1

4(p) =~(p —&) — f(k) '
2~2 P2+ p2 k2 p2+i~

($73 Note that I' is negative for attractive potential P &0.
The intrinsic range k (see Blatt and Jackson') is

and inserting this into (16), we can find f(k):

f(k) =1
P'+k' (0'+k')'

-'k+
I 4+ +— I

(»')
2P 2m.9,

If we transform (17) into the r representation,

iver e
—Pr

P (r) ef&r+ f(k)

sin(kr+5) —e e" sinb
~ib

sinkr )
+I '"-

kr i

f(k) = (5=phase shift).—ik+k cot8

Thus we find

k cot8 = 1/a+ ', rok' Pro'k'+ —Qrp'k'+-—
+ lr ( 2+.k2) P~ 3(n2+k2)2

+Qdra'(n'+k')'+ . ; (19)

(this form has often been used by many authors'), we

can see that f(k) is equal to the scattering amplitude;

e" sinb

1 2P'
b = limr0= lim —+

s~l n~o
P ~2) (n)

(21)

(c) Comparison with Low-Energy
Neutron-Proton Data

I et us distinguish the various quantities n, P, ro, and
so on, corresponding to the triplet or singlet state by
the suSx 3 or s. Ke start with the triplet neutron-proton
system. Adopting the value 938.9 Mev for M (this is

equal to the average of the proton and neutron mass),
and using nP/M=2. 225 Mev, 2 we get

~,=2.3/6+$0'2 cm '. (22)

It is important to see that the expansion (18) does
not contain terms higher than k'. This feature is a
result of our special assumption, (12), for the form of

g(p). In general, if we take g(p) ' as a polynomial in
p' of order e (here we assume g(p) '=0 has no real
roots), we find that our expansion (18) is a polynomial
in k' of order 2e. Furthermore, if g(p) ~ p' for small

p=
I p I, we can prove that

k"+' cot6= (const)+ (const) k'+
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Then P~ can be determined from the experimental
value' a&= 5,378)(10 " cm for the triplet scattering
length u~. We And &e

(10» cm) Pe Ss
bs

(10» cm)

TABLE II. Parameters for the n-p singlet interaction.

Insert:ing these values into (20') we can calculate the
triplet effective range rp& and the shape-dependent
factor P'&.

Exponential we'll'

Yukawa well'

p~= 6.255n~= 14.488X 1 ois cm i. (23) Sq«re well' 2.47
~0.20

2.30
+0.22

2.03
~0.23

—0.03

+0.010

+0.055

0.926
~6

0.937
~6

0.953
~6

2.58
~6

2.51
~6

2.47
~6

rp~= 1.716)&10 "cm, (24)

P, (rp,)s= —0.122X 10 "cm'= —0.024(rpg) . (25)

These values may be compared with the corresponding
parameters in Table I.Also the frequently used quantity
pi=rp~+2nPP«pP=1703X10" cm. We get a very
small value for P&, because our nuclei potential does
not have a long tail (the range P, ' is small compared
with that of usually accepted local Yukawa well).

Secondly, let us examine the singlet neutron-proton
scattering. For simplicity, we want to assume P, =P, .
Then the singlet scattering length' a, = —23.69&(10
cm is su%cient to fix the value of strength ), of singlet
potential. Using (20) we find the effective range rp,
and the shape-dependent factor P'„

Nonlocal
Ps/0't

6.2547
6.25
6.00
5.75
5.50
5.25
5,00

2.151
2.253
2.246
2.348
2.459
2.581
2.716

—0.01748—0.01747—0.01744—0.01739—0.01734—0.01729—0.01723

0.94494 2.071
0.94490 2.072
0.9427 2.159
0.9404 2.252
0.9379 2.345
0.9351 2.467
0.9321 2.590

a E. M. Hafner et al. , Phys. Rev. 89, 204 (1953).Also see reference 1.

potential. That is to say, we must replace our nuclear
potential (3) by a modified potential which is com-
patible with the gauge transformation. The most
reasonable and simplest choice will be given by

(—) /M) s(r„—r„)e(r„'—r„')

rp, ——2.151)&10 "cm (26) Xexp &e

~R

~ry I'R
A ds+se A d.s, (28)

4. PHOTODISINTEGRATION OF THE DEUTERON

We must consider the problem of gauge invariance
when we take into account the electromagnetic field in
our two-nucleon system, because we have assumed a
nonlocal and therefore a velocity-dependent nuclear

TABLE I. Parameters for the n-p triplet interaction.

&t
(10» cm)

bt
st (10» cm)

Square well'
Exponential well
Yukawa well'
Nonlocal

Pt ——2.4488 X20" cm-'

1.724
1.687
1.637

—0.040
+0.029
+0.137

1.440 2.040
1.416 2.346
1.419 2.913

1.716 —0.024 1.345 2.071

' G. Snow, Phys. Rev. 8V, 21 (1952).

P, (rp,)'= —0.174X10 '" cm'
= —O.O17(r,.)p.

At present experimental information about the singlet
neutron-proton system is rather poor, and the results
(27) and (26), based on choosing P, =P&, are in agree-
ment with existing knowledge' Lsee Table II]. If we
want to have a diferent value for rp„we may take a
different value for P, Lsee Table II). Figure 1 compares
our theoretical total neutron-proton cross section with
experimental results. '

We have not yet examined proton-proton scattering,
because the combination of the local Coulomb po-
tential with our nonlocal interaction presents a compli-
cated problem.

where r~ and r„arethe coordinates of proton and neu-
tron, respectively, r =r„—r„,r'= r~' —r„',R= (r„+r„)/2
= (r„'+r„')/2,and A is the electromagnetic potential
acting on the proton. The integral over ds from 8 to C
means the integral along the straight line from 8 to C.
Of course the most general choice should have a form
(28) XF+G, where I' and G are gauge-invariant quan-
tities which approach limits F—+1 and 6~0 as the
electromagnetic field vanishes (also see Sachs" and
Osborne and Foldy"). For the sake of simplicity,
however, we confine our discussion to an interaction of
the form (28). Furthermore we want to adopt the
special potential which is "spherically symmetric"
(i.e., acts in S states only) when the electromagnetic
potential vanishes. For this case, if we make a power
series expansion in A and keep only zeroth- and first-
order terms,

——s, (r)s, (r')4 (3+a".e")
M

+—& (r)s (r')-'(1 —~" ~")
M

1

X 1+is
t'

—,r A(R+-,'rs)ds
~o

p1

ie —',r' —A(R+-', r'(1 —s))ds, (2&)

"R.G. Sachs, Phys. Rev. 74, 433 (1948); R. K. Osborne and
L. L. Foldy, Phys. Rev. 79, 795 (1948).
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40
Here do, /dpp is the spin-independent part I due to the
interactions (29), (30)],

30

Totol Cross Section
20~ In Borns

O' E. MELKONIAN--P. R, 76 (49) l744

X D. H. FRISCH---" P. R.70(46) 589
LAMPI, FREIER, NILLIAMS-

P.R. 80(50)853
E M. HAFNER et al-P. R. 89(53)204

~ G. SNON----- P. R. 87(52) 2I
and

-2
~gi(P)

J
dS

2pclp f = lvf —(~/2)&I-

,
' Pf',

I
g (P)

dpp 4pr Mv u'+p' p=iv, ——,vi

sin'0, (32e)

l o
9
8

1
g, (p)= I n, (r)e '&'dr, 1V', X&. see Eqs. (6), (7).

(2s.) ' J

I g, (p)/(a'+ p') j comes from the usual interaction Ap„,
(30), and (1/2p) Bg/Bp comes from the modified nuclear
interaction (29); while the spin-dependent cross section
due to the magnetic interaction (31), which does not
interfere with the spin-independent transition, is

d0'~ 7I' 8 pf v

xs{2IT'Is+ Isis).
d(o 6 4z M

(32m)

1.0
0.9
0.8
0.7
0.6
0.5

2 4 8 Io I2
Incident Energy In Mev (Laboratory System)

Fio. 1. Calculated a-p total cross section (triplet S plus singlet
S only) is compared with observation. Here the S phase shifts
are evaluated on the basis of following parameters (see Eqs.
(2&)-(27)):

scattering length (in 10» cm)
effective range (in 10» cm)
shape-dependent parameter

triplet
5.378
1.716—0.024

singlet
—23.69

2.151—0.017

where e„ando„arethe spins of proton and neutron,
respectively; —() &/M) e&(r) e&(r') and —(X,/M) e,(r)v, (r')
are the nonlocal potentials for triplet and singlet states,
respectively. This interaction then contributes to the
radiative processes in neutron-proton system such as
the photodisintegration of the deuteron, " aside from
the usual electromagnetic interactions,

—(e/M)A p

—[pvrrv curlA(rv)+li„a" curlA(r„)gy„

(30)

fi„=2.793, P = —1.913, lip= e/2M. (31)

Since we assume no interactions except in '5 and '5
states and we know the correct 5 wave functions, we
can easily calculate the photodisintegration cross section
of the deuteron including all multipoles,

do/dcp=do, /d(a+do. /do). (32)

"The singlet part of (29) does not contribute to the deuteron
photoeffect.

g '(q)
~f(pf) = J~dQ (j=f or s).

pf' —q'+se

If we are interested in the case where the incident
photon energy is sufficiently small, (32) will reduce to
the dipole cross sections

do. , do (E.D.) e' Pf'
x'S' sin'0

dip dpi 4sa'+Pf'

g~(pf) 1 Bg, (pf) I'
(33 E.D.)

+Pf Pf Pf

In these expressions yf(pf= lpfl) is the final proton
momentum, v(v= lvl) is the incident photon momen-
tum, fl= (pfv)/(Pfv); thus the energy balance is

v+ v'/4M =Pf'/M+ u'/M.

a'/M is, as before, the binding energy of deuteron. All
quantities are measured in the center-of-mass system.
Note that es/4s. =1/137. The quantities T and S are
given by (T sS—+triplet, S S—+singlet)

gi(p-) g~(p+) (f v+f -)) C~(pf)+f-
u'+P ' a'+P+' 1+XiJg(Pf)

g (q)q (I»——:vl)

(pf' —q'+se) (u'+
I q —

s v
I
')

g~(P )g~(p+) -(f . f -)& g.(Pf)—S=p„—p„a'+ p
' u'+p+' 1+X,J,(pf)

g. (a)g (I e—lvl)

~ (pfs —qs+z.) (I q —-',.I'+a')
P+= l&f+s" I
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and

do. do. (M.D.) e' Pf V2

(t.—1 -)'
des 42r M2(r22+Pf') 242r2

X sin8, ; (33 M.D.)
)«). g(pf)

where as before

p+=
I pf ~2v

I ~

f;= 1/( 2p—f+pf cot5f)

8&= triplet phase shift,

b, = singlet phase shift.

(j=t or s),

where S,=singlet phase shift (note that T=O). In
(33 M.D.) we have assumed the same shape for the
triplet and singlet nuclear forces:

Here we have Not assumed g, (p) =g, (p), i.e., P~=P, .
At very low photon energy, we can approximate (35)

by the dipole cross sections

g~(p) =g.(P) =g(P)

and used Eq. (7) for X&.

Special Case

As in the preceding section, let us assume

(34) do. (E.D.) e' npfs p (n+p )

d(o 42r (n2+Pf')' (P,—n)2

)&2+p 2q 2 2

x 1—
I I

sinse (36 E.D.)(p2+p 2$

and
g, (p) = 1/(PP+ P2) for the triplet potential,

g, (p) = 1/(p, 2+p') for the singlet potential,

and

do(M D ) 1 e' n2+Pfs sin28

Pf ( . t .)'~P—~(~+4~)'
do) 6 4m M'

do' g e c2Pf
P, (ot+P,)' sin28

do) 4x Mv - (-'+p ') (~'+ p ')

a (
I 2qr)q (-'2v(pp+q2) l

—'2v(P, '+q')'*

Pt +q {sv (Pfv)} (Pfv) v ~ 22 fpf (vfv)-

(35e)
For do /dry, we 6nd

(~'+P ') (P~'+P ') -(~'+P+') (-P~'+P+')

(»+t -)2f~/v

P2 ~2

(P,—n)-2, v

tan '
(P2 spf) (~ spf)+—sv'—

I
(P(—n)-', v—tan '

~ 2P~(~+P~)+ 'v'--

where P, and P. are constants which determine the
ranges of nuclear potential. Then (32e) takes the form: Pf COG~ 1 harp( pf'—

('+Pf') Ã-~'+Pf') P + ( +Pf') (P'+Pf')

(36 M.D.)
(-+~.) (~+~.)

In the special case where P, =P,=P, we get, using
Eq. (15),

do. (M.D.) 1 e' (p„—p ) ' nPf
sins',

d(g 24 42r ( ~ ) P(n.+P)

xI
t')t~ —)'.l ' ~'+Pf' (~'+Pf'i '

& ). ) Pfs (~2+pf2)

Here we also put Mv equal to n'+Pf'.
As is well-known, the electric dipole matrix element

is always given by (e is the polarization vector of the
electromagnetic field)

z
—ev t (2P function)*s r(deuteron function).

J

( v t -)2f./v—
tan '

P2 ~2

(P~ ~) 2v

(p, spf) (n ipf)+ ', v'— —-
(P~ ~) sv

Q ~ A + g

(35')
Therefore, if we assume (i) a form of deuteron function,
gg&(p)/(n2+P2), and (ii) no forces in 2I' states, the
dipole cross section is just given by (33 E.D.), which is,
in this sense, independent on a speci6c assumption of
nonlocal nuclear potential. This fact holds for all
electric multipole transitions (see an article of Sachs
and Austern") (for low photon energy).

—tan '
(P2+P*) (~+t3 )+'v'-- "A. J. F. Siegert, Phys. Rev. 52, 787 (1937); R. G. Sachs and

N. Austern, Phys. Rev. 81, 705 (1951).



YOSH IO YAMAGUCH I

Equation (36 E.D.) has very familiar form and in
fact agrees with that reported by other authors" on the
basis of the local Hulthen potential. In the magnetic
dipole cross section (36 M.D.), we use familiar forms of
wave functions both for the deuteron and the '5 state,
and so obtain a well-known result.

Ps/cent

6.2547
6.25
6.00
5.75
5.50
5.25
5.00

&capPn
(10 20 cm'/sec)

7.069
7.068
7.019
6.967
6.909
6.847
6.778

&cap
(barns)

0.32130
0.32126
0.3191
0.3167
0,3141
0.3112
0.3081

'4H. A. Bethe and C. Longmire, Phys. Rev. 77, 647 (1950);
J. S. Levinger, Phys. Rev. 76, 699 (1949); L. I. Schiff, Phys.
Rev. 78, 733 (1950); J. F. Marshall and E. Guth, Phys. Rev.
78, 738 (1950); E. E. Salpeter, Phys. Rev. 82, 60 (1951);J. G.
Brennan and R. G. Sachs, Phys. Rev. SS, 824 (1952); L. Hulthen
and B. C. H. Nagel, Phys. Rev. 90, 62 (1953).

TABLE III. The thermal-neutron capture cross sections O.„pby
hydrogen, calculated from the formula (33 M.D.) multiplied by
(3/2)v'/tr'. For n& and P& we used Fqs. (22) and (23), while we
assumed several values for P. but fixed the value of the singlet
scattering length as —23.69X10 "cm.

Therefore, the content of Eqs. (35) and (36) is no
greater than that of equations reached by other authors
except that (35) includes all multipoles. For example,
our cross sections cannot explain: (i) The experimental
result (0.330 barn) for thermal neutron capture by
hydrogen. " [In this case we must modify (36 M.D.)
but in an obvious way (see Table III).] (ii) The large
cross section at photon energy &100 3/lev. We do not
repeat here, therefore, a detailed discussion based on

the cross sections which we have derived.
In conclusion, we should like to emphasize again the

usefulness of the wave functions examined in this paper.
As was illustrated in Section 4 for the photodisinte-

gration of deuteron, our wave functions are very con-

venient for the examination of various phenomena

involving the two-nucleon system.
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