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Use of Causality Conditions in Quantum Theory
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The limitations on scattering amplitudes imposed by causality requirements are deduced from the
demand that the commutator of field operators vanish if the operators are taken at points with space-like
separations. The problems of the scattering of spin-zero particles by a force center and the scattering of
photons by a quantized matter field are discussed. The causality requirements lead in a natural way to the
well-known dispersion relation of Kramers and Kronig. A new sum rule for the nuclear photoeftect is
derived and the scattering of photons by nucleons is discussed.

where p is the density of scattering centers and F(v) is
the coherent forward scattering amplitude. This ap-
proach does not seem too satisfactory in that it is based
on classical electrodynamics and further that the rela-
tionship to individual scatterers is established only in a
circuitous way via Eq. (1.1).A more direct treatment
has been given by van Kampen' who considers the
scattering of photons by a spherically symmetric scat-
terer outside of which the interaction is exactly zero.
His treatment, however, is still based on classical
electrodynamics. The causality condition in this paper
is that of Tiomno and Schutzer.

With a single exception, no one has to our knowledge
discussed the problem of relativistic particles with mass.
The exception is the work of Moshinsky' who has
treated the special case of particles interacting with a
zero-range force.

The causality requirement in the present paper is as
follows: The quantum-mechanical formulation of the
demand that waves do not propagate faster than the
velocity of light is, as is well known, the condition that
the measurements of two observable quantities should
not interfere if the points of measurement are space-like
to each other. In the case of the propagation of bosons
to which we limit ourselves in this paper, our formal
statement is that the commutator of two Heisenberg
operators for the 6eld in question shall vanish if the
operators are taken at space-like points. This condition
is sufficient to enable us to discuss the case of particles
with mass, as well as photons. Our demand is a much
more stringent one than that of Tiomno and Schutzer;
not only can waves not be scattered before the incident
wave arrives, but even after the arrival one must wait
the appropriate time to receive a signal.

The principle object of the work of van Kampen and
Schutzer and Tiomno was to obtain detailed informa-
tion on the analytic behavior of the S matrix in the
complex energy plane. In these treatments, the behavior
of phase shifts for individual angular momenta are

I. INTRODUCTION

'N the past few years there have been a number of
~ - papers which consider the question of deducing
general conditions on scattering amplitudes on the
basis of causality requirements. This has been a revival
of the original work of Kronig' and Kramers' and fol-
lowed for the most part a suggestion by Kronig' that
causality requirements should be added to the usual
conditions on the S matrix, namely, Lorentz invariance
and unitarity. The actual requirements imposed by
causality have been stated in various ways. Tiomno and
Schutzer, 4 discussing the scattering of nonrelativistic
particles, impose the condition that the scattered wave
should be zero before the incident wave hit the scatterer.
This work has been criticised by van Kampen' who

discusses the same problem. He demands that the total
probability outside the scatterer never exceed its initial
value. In the case of photons, a diGerent approach
has been made. In several of the papers the problem
is treated from the standpoint of the classical electro-
dynamics description of the propagation of light
through a medium with an index of refraction where
one imposes the condition that signals should not
propagate faster than the velocity of light. This was,
in fact, the original approach to Kronig and Kramers,
and has been developed most rigorously by Toll. '
The connection between the index of refraction and
the scattering amplitude is then made by means of the
optical relation:

tt (v) = 1+ (2srcs/v') pF (v) (1.1)
* On leave of absence from the University of Chicago, Chicago,

Illinois.
t Present address, Physikalisches Institute, Universitat Bern,

Bern, Switzerland.' R. Kronig, J. Opt. Soc. Am. 12, 547 (1926).' H. A. Kramers, Atti. congr. intern. Gsici, Corno, 2, 545 (1927).
s R. Kronig, Physica 12, 543 (1946).' W. Schutzer and J. Tiomno, Phys. Rev. 83; 249 (1951).' 'N. G. van Kampen, Phys. Rev. 91, 1267 (1953).' J. S. Toll, Princeton thesis (unpublished). In this paper, on

6nds complete references, and numerous very interesting applic
tions of the dispersion relations for light.

e 'N. G. van Kampen, Phys. Rev. 89, 10'I2 (1953).
a- ' M. Moshinsky (unpublished). We are indebted to Professor A,

S. Wightman for showing us Dr. Moshinsky's paper.
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studied. An entirely diferent and very powerful
approach to this specific problem has been made by
Wigner (unpublished lectures at Princeton, 1953)
whose method unfortunately cannot be directly applied
to the case of photons. In all of these treatments, it is
essential to assume that the interaction vanishes exactly
(or is completely known) outside some finite region in
configuration space. This limitation has not been com-
pletely overcome in our work. In the case of the inter-
action between photons and a matter field we are forced
to rely on the familiar 6eld theoretic device of adiabatic
switching on and oG of interactions. We shall not discuss
the implications of this procedure, but shall simply
accept it, as is conventionally done, as one of the
apparently necessary shortcomings of the present
formalism.

In this paper we shall use our quantum-mechanical
causality requirement, as described above, to discuss
the scattering of spin-zero particles and of photons. We
shall deduce results essentially equivalent to the
Kramers-Kronig dispersion relations and which are
independent of the size of a region of interaction.
Wigner and van Kampen demonstrate that the scat-
tering amplitudes for individual angular momenta are
analytic in the upper half-plane, if regarded as functions
of the energy. If one wants relations between real and
imaginary parts of the amplitudes for real values of the
energy (i.e., a dispersion relation), one needs not only
analytically but also certain boundedness of the ampli-
tudes. It turns out that one must supply an exponential
factor depending on the size of the scattering region to
secure the desired boundedness of the individual scat-
tering amplitudes. This greatly complicates the dis-

persion relations and makes them essentially useless
for our purposes. One finds, however, that certain com-
binations of the phase shifts, for example, the forward
scattering amplitude, have boundedness properties of
such a nature that any reference to the size of the region
of interaction may be avoided. The dispersion relations
deduced in connection with the forward amplitude are
the classical ones of Kramers and Kronig and many
applications have been made of them in the past. (See
reference 6.) There are other combinations of phase
shifts for which the size of the region plays no role;
these are essentially the derivatives of the scattering
amplitude evaluated in the forward direction. The
boundedness conditions on these are more obscure and
we have made no applications of them. Whereas all of
the previous dispersion relations have been confined to
completely coherent forward scattering amplitudes, our
results allow a consideration of processes in which

there are spin Qips and polarization changes.
In Sec. II we shall discuss first the simple case of a

spin-zero particle interacting with a spherically sym-
metric force center; the interaction is assumed to vanish
exactly outside a 6nite radius. The possibility of bound
states and particle absorption are included. . The more
realistic case of photons interacting with a quantized

matter field is treated in Sec. III. %e have used a per-
turbation theoretic approach to the problem, expanding
the Heisenberg operators of the photon field in powers
of the electric charge, e. The results obtained are in all
probability rigorously true to all orders of e, but for our
applications only the order e' was needed; it should not
be difFicult to generalize our result to all powers of e'.
In Sec. IV, the connection between the causality re-
quirement on the forward amplitude deduced in Secs.
III and IV and the dispersion relations is discussed. In
all cases causality yields the information that the
forward scattering amplitude has certain analyticity
and boundedness properties and it is the mathematical
consequences of these conditions that are explore in
Sec. IV. In Sec. V we treat in detail the application of
the dispersion relations to two cases of physical interest.
The first is the deduction of a sum rule for photonuclear
reactions in which the integrated photonuclear cross
section (integrated up to the meson threshold) is related
to the observed photomeson cross section. It is a
generalization of the dipole sum rule given by Bethe and
Levinger. ' The second application is to the problem of
the scattering of y rays by protons. We use the disper-
sion relation to put limits on the forward scattering
amplitude and in the case of low frequencies we get a
limit on the phase shifts for the low multipoles. Since
this case is of considerable experimental interest, we
have gone beyond the results obtainable from our dis-
persion relations, mentioned above, to discuss the
general features of y-p scattering on the basis of some
additional assumptions. Finally, in Appendix B we
collect the relevant formulas for a phase shift analysis
of this process.

II. SPIN-ZERO FIELD IN AN EXTERNAL POTENTIAL

Note added in proof It has .b—een pointed out to us
by Professor N. G. van Kampen that in this section the
arguments pertaining to particles with mass are lacking
in rigor. In the following sections, however, we use only
results pertaining to massless fields. See reference 12.

In order to explain our procedure most simply, we
shall consider first the rather academic case of a neutral
spin-zero field interacting with a time-independent
spherically symmetric external potential which vanishes
outside a region of radius a/2. We shall assume for the
time being that there are no bound states and that there
is no particle absorption and later indicate the manner
in which the results are modi6ed if these complications
are included. In this simple problem we may imagine
that the solutions to the 6eld equations are obtained;
in terms of these normal modes we may confine our
attention to one-particle states. It is perhaps worth
noting that our problem is quite similar to that treated

by van Kampen; it is simpler in that we deal with a-
scalar rather than a vector field (which difference is

' J. Levinger and H. A. Bethe, Phys. Rev. 78, 115 (1NO).
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trivial) but more complicated because we consider a
nonvanishing rest mass.

%e now make use of the fact that the vacuum expec-
tation value of the commutator of two 6eld operators,
itt (x) and @(x'), vanishes if the points x, x' are space-like
to each other. (Obviously any matrix element of such
a commutator vanishes under these circumstances since
the commutator itself vanishes. ) @(x) is the Heisenberg
operator of our scalar 6eld. Since such a commutator
vanishes outside the light cone and is zero for $0 ——t~',

it must be an odd function of time. We may therefore
confine our attention to positive values of the time dif-
ference $0—to'. Ke may then define a retarded Green's
function, G «(x,x'), as follows:

i(OI I @(x),&t (x')] I 0)rt (x—x') —=G «(x,x'), (2.1)

hi &"(x) = (—i) expt i(kr —or/2)]qt (x),

i'(l+s)!
qt(x) =P

=s s!(l—s)!(2x) '

(2 6)

The hi are the usual (real) phase shifts and the Pt(k, r)
are Legendre polynomials of the angle between k and r.
If we substitute the eigenfunctions (2.5) into (2.4), the
angular integrations are easily carried out with the aid
of the spherical harmonic addition theorem. Setting

I rI =
I
r'I, and xs—xs' ——T, we find for G «(x,x') the

expression:

where kt&'&(x) = (nx/2)&Hi+~&'&(x) and Hi+i&'&(x) is the
customary Hankel function. "These functions are con-
veniently de6ned for our purposes as follows:

dk
where rt(x —x') is zero if xs') xs, and is unity of xs) xs'. Gr«(r&r', T) = ~r«(x —x')+rt(T) —

JThe properties of G,«(x,x') which we shall exploit are

G,«(x,x') =0 if (x—x')') 0
=0 if xo&xo'. (2.2)

(2l+1)L(e""—1){hi&"(r)}'+(e "" 1)—
L=O

X (hi&"*(kr)}']Et(r,r') Le '"'—e'"'] (2.7)

By hypothesis we need consider only one-particle states
which we may choose to be continuum states corre-
sponding to plane waves plus outgoing spherical waves.
If such states be characterized by the momentum
vector k of the incident plane wave, we may write fi(k) = (e"'«'i 1)/2—ik, (2.8)

where A,«(x) is defined as —rt(x)i},(x) with A(x). as
given by Schwinger. " We now define the scattering
amplitude for individual angular momenta fi(k) by

(0I&(x) Ik)= (2te) '*Ut, (r)e ' '& (2.3) and furthermore define them for negative values of k as

where re=+(k'+p, ')'*, with p, the particle (k=c=1
throughout this paper). We choose a unit quantization
volume and normalize the Ug to plane waves of unit
amplitude. The factor 1/(2re)' insures that G «(x,x')
reduces to the conventional retarded Green's function
for a free 6eld.

We may now rewrite Eq. (2.1) in the form:

f dak
G...(x,x')=i~(x x') ' — ((0Iy(x) Ik)(kIy(x') Io)

~ (2~)s

fi(-k) —=fi*(k).

Then using the elementary relation,

k, &'& (—x) = (—1)t+'kt&'&*(x),

we Gnd

rt(T) r
"kdk

G„,(r,r', T) =A„(x—x')+
(2m-)'r' e 2re

t kRq
X E(21+1)ft(k)qt'I I(—1)'~(r,r')

&2)

(2.9)

—(o I
&(x') Ik)(k I e(x) I o)}

d'k
=irt(x x') ——( U„(r) Ui,*(r)

(2')' 2w

Xe '""' "'—Ut, (r')Ut, *(r)e'"&e' e"&}. (2.4)

Outside the region of interaction (r,r') &t/2) we may
write the eigenfunctions Ui, (r) as

(2l+1)i'
Ut, (r) =P

I
kt&" (kr)+kt&'&'(kr)]Et(k, r)

t=o 2kr

(2l+1)i'
+g I e"" 1]Itt&"(kr)P—t(k, r)& (2.5)

2kr

XeisB(e iwT eiwT) —
(2 1(})

where we have set 2r =E.. The conditions to be imposed
on G,«, Eq. (2.2), are of course satisfied by A,«(x—x');
to insure their being satis6ed by the entire function
G «(r,r', T) we must demand that the function G(R,&tT)
de6ned by

G(RP, T) =rt(T) dk P(21+1)fi(k)(——1)'
2m i=o

(kRi
XPt(cos&7)qt I I

e'"+(e '~ e' ) (2.11)—(2)
'e G. N. Watson, Bessel Functions (Cambridge University Press,

New York, 1944), p. 73."J.Schwinger, Phys. Rev. 75, 651 (1949}.



CAUSALITY COND I TIONS IN QUANTUM THEORY 1615

(where 8 is the angle between r, r'), vanish for

R sin(os/2)) T, R)a. (2.12)

The restrictions on the fi(k) which are required to
make G vanish under the conditions (2.12) are ex-
ceedingly complicated and we have not studied the
problem in this form. One obtains considerable simpli-
fications by choosing 8=w which corresponds to putting
r'= —r. As we shall see below, the restriction to the
forward direction may be relaxed somewhat and we can
obtain information about scattering at other angles.
Observing that Pi(—1)= (—1)' and writing G(R,O, T)
simply G(R,T) we find that (2.11) and (2.12) may be
replaced by

00

G(R, T)=g(T) ~~ dk P(—21+-1)y,(k)qP(kR/2)
2W l=o

Xei kR (e ivvT e iv—vT)

=0 for R& T, R)a. (2.13)

We shall drop the ri(T) factor and simply restrict our
attention to positive values of T. It is convenient to
rewrite (2.13) in the form

where

=0, R&T, R&u,

XM(k R)e'"ii '"r

(2.14)

IvI(k, R) =P (2l+1)fi(k)qP(kR/2).
L=O:

(2.15)

Let us now consider the function (v' —p') i in the com-
plex v plane, and introduce cuts from —~ to —p and
from p, to oo. If we choose the branch of (v' —p') i which
is real and positive when v) p, we find that (2.16) may
be written as

pde
G(R,T) = i —M((v' —p')'*, R)J, 2

Xexp(i[(v' —p,')'R —vTj}, (2.17)

Using the 8 function to carry out the integration over k,
one finds, writing ki —-+ (v' —p') 1, that G(R,T) may be
written as

dv
G(R T) = —M(k R)e+'"v~ 'fv~

p 2

p~ dv
R) e iI vR ivr— —

2

r vdv
+ iaaf'( k R)e—isvR ivT—

2
f' dp

+ ~ —M(k„R)e's ~ '"r. (2.16)
2

u- plane

FIG. 1. The contour of integration C for the integral in Eq.
(2.16). The heavy lines running from —vo to —p and from p to
+ vv are the branch lines of the function (v' —p'}i.

where C is the contour shown in Pig. 1. In the strip
between —p, and +p, (v' —p')'=+i(p' —v')'*.

In place of the time interval T we shall introduce the
variable s=R Tso tha—t G(R,T) becomes a function
of R and s; our requirement is that G(R,s) shall vanish
for R&u, s&0. There is every reason to believe that
G(R,z) is a well-behaved function of z so long as s is
greater than zero; there is, however, a distinct possi-
bility in many cases of physical interest that G involve
terms proportional to 8(s) and 5'(s). This would in fact
be the case if the total cross section were to approach
a constant for large v. It is perhaps worth noting that
these singularities are not unexpected; the original
commutator is certainly singular on the light cone. In
order to obtain a formula valid even for a=0, we erst
erst multiply 6 by e '&" and integrate over s from s to
infinity (which cannot change the value since G is zero
over this range) giving qi, a negative imaginary part to
insure convergence, and then multiply by e '&" and
again integrate from s to infinity. YVe obtain then

II(R s) =j ds'J ds"e' '"'+'""'G(R s")
z gt

t dv M((vs —p,')I, R}
II(R s) = e'(&i+&'—)'

Jo 2 (v —Vi)(v —
Vs)

Xe p{i[( '—p,')i—]R+i Z}. (2.18)

Strictly speaking, the upper limits of the s integrations
should be R, since T)0 and thus for 6xed R, s cannot
exceed R. We shall be interested, however, only in the
limit as R—+~, in which case, the contributions from
the upper limits are negligible. The frequencies q~ and
q2 will be chosen at our convenience. We note that the
integrand in Eq. (2.18) is square integrable over the
interval —oo to +~.

Consider now G(R,s) for very large values of R. The
contributions to the integral coming from portions of
the contour for which (v' —p')1 and v have the opposite
algebraic sign will contain a rapidly varying exponential
factor and make a vanishingly small contribution,
O(1/R), in comparison with the portions for which
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(v' —ps)& and v have the same sign. We may therefore
discard the part of the contour below the real axis in

Fig. i, provided we retain only the lowest powers in
1/R." Suppose now we were to augment our contour
by the inclusion of the strip from —p to +is, staying
slightly above the real axis. From our choice of cuts,
(vs —p')'=i(its' —v')'*, and consequently we have a de-
creasing exponential dependence on E as well as a
rapidly varying oscillation from the factor exp( i—vR)
Such contributions are clearly negligible in comparison
with terms of order 1/R or larger coming from the
outer portions of the contour. We may therefore replace
the integral over C by one extending from —~ to ~
on a line just above the real axis. Retaining only the
leading term in powers of 1/R, we conclude that we
must have

E L(21+1)fi{ ("—u')'}7

(v —qi) (v —qs)

Xexp{il (v' —fs')i —v7R}e'"'=0, s &~ 0. (2.19)

We have, of course, assumed that M(k, R) does not do
anything spectacular on the strip —p, (v(p, provided
we stay slightly above the real axis. There may be sin-

gularities on the real axis and in fact if there are bound
states there will be poles. This point will be discussed
further below.

The sum in Eq. (2.19) is just the forward scattering
amplitude f(v) for a particle of momentum 0= (v' —ps) &.

As is discussed in Sec. IV, we may conclude from (2.19)
that the function g(v, R) defined by

f(v)
g(" R) = exp{sL(v' ss') ' —v7R}, (2 20)

(v —qi) (v —
qs)

must be analytic in the upper half of the v plane. The
discussion in Sec. IV also shows that g(v, R) is bounded
in the upper half-plane and we shall now show that this
boundedness is not dependent on the exponential factor.
To see this, put v= iy and consider the exponential for
very large positive values of y. The exponential becomes
exp( —fs'R/2y) and thus tends to unity for y~~. We
may conclude therefore that the function f(v) given by

f(v) = f(v)/I (v—qi) (i —qs)7 (2.21)

is analytic in the upper half-plane (and is bounded for
all values of v, 0(argv(w).

We must now generalize the above result to include
also the possibilities of bound states and particle ab-

"E.T. Whittaker and G. N. Watson, Moderts ANalysfs (Cam-
bridge University Press, New York, 1948), p. 172. The theorems
referred to, the Riemann-Lebesgue lemmas, do not exactly cover
the case at hand. The exact conditions on M[(v' —p')&, Rg which
must obtain for the above remarks to be true have not been
studied. The claims made seem very plausible, and in the only
case where applications are made (v, =0), the required extension
of the Riemann-Lebesgue lemmas is trivial. See the discussion
following Eq. (2.24).

sorption. In case there are bound states, there are, as
is well known, poles on the real v axis from —p, to p,.
However, these do not seriously trouble us because we
always integrate on a contour slightly above the real
axis. The contributions of the small indentations of the
contour (made to avoid the poles) are precisely can-
celled by the inclusion of the bound states in the sum
over intermediate states detailed in Eq. (2.4). In the
limit, then, as v approaches the real axis in an integral
such as in Eq. (2.19), one takes the principal value at
the poles of the forward scattering amplitude f(v).

If there is absorption of particles, we must imagine
augmenting our considerations to allow for the addi-
tional channel (or channels) describing the alternate
modes. This requires formal modifications of a variety
familiar in nuclear reaction theory; roughly speaking,
we must increase our set of eigenfunctions to include not
only those states initiated by a plane wave in the elastic
scattering channel, but also to include those states
initiated by plane waves in other channels (i.e., the
reactions inverse to the absorption processes) which
have only outgoing waves in the elastic channel. The
outcome of these manipulations is that the previous
conclusions drawn from the function f(v) in Eq. (2.21)
continue to be true provided that f(v) be interpreted
as the coherent elastic forward scattering amplitude.
In this case the phase shifts 8~ are, of course, complex.

The previous considerations relating to particles with
mass do not appear to have very interesting applica-
tions. Of greater interest is the case of zero rest mass to
which we now turn. The real physical problem of
photons interacting with a quantized matter 6eld will
be discussed in the next section, but for the time being
we shall continue the discussion with the amplified
model of spin-zero "photons" and an external potential.
All of our previous considerations remain valid but, of
course, become simpler. We shall rewrite some of the
equations for the special case p, =0.

The equation analogous to Eq. (2.16) becomes

p~ dv
G(R, T) = ' e'"re(v—){M(lvl, R)e't" l~

~ „2 —M(—
I
vl, R)e '~"~'t} (2.22)

which may be written in terms of s=R—T as

p dp
G(R,s) = ~l

—e'"'{M(v R) M( v, R)e ""n}—. (2.—23)
~ „2

The equation corresponding to (2.18) is obviously

dp gsvz

+(R s) = —e'(qi+ss&*

2 (v —qi)(v —qs)

&{M(v,R) —M( —v, R)e """} (2.24).
The argument now proceeds essentially as before. If

we look first at the leading term in the 1/R expansion
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of M(v, R) (which is independent of 1/R) we may
conclude that the second term in Eq. (2.24) goes to
zero in the limit R—&. This may be seen by using the
assumed square integrability of M(—v,R)e'"'/(v —qi)
X(v—

q ) together with Parseval's theorem. Imposing
the condition that H(R, s) should vanish for s)0 leads
to the conclusion that the forward scattering amplitude,
f(v), is analytic in the upper half-plane and that our
previously defined function f(v) is bounded in the
upper half-plane.

Thus far we have considered only the leading term
in the 1/R expansion of M(v, R). This term is the
forward scattering amplitude. One may well ask. if
anything can be said about directions other than
forward. We have been unable to obtain any very
simple relations, however some information may be
found in the following way: If we had not made the
the special choice of angle r7 =s. in Eq. (2.11),we would
still have been able to carry through all the steps leading
to Eqs. (2.18) and (2.24); the only difference that
appears is that M (v,R), say, in (2.24) becomes replaced
by

00 (vRi
M(v, R, cos6) =Q (2l+1)fi(v) J'i(cos@)qi'~ —

~, (2.25)
L=O &2)'

where we have replaced 8 by x—8.Note that the leading
term in the 1/R. expansion of M'(v, R, cosr7) is just the
total scattering amplitude, f(r7). Our causality require-
ment takes the form

dv
H(R, s, cos6)= —e '&"+«' '

" „2 (v —qi)(v —qs)

VZ

X{M(v,R, cosr7)

—M( —v, R, cos8)e ""~)

=0, for R cos(8/2) )T, R)a. (2.26)

[Bf(v cosr7')/cj cosr7')oo e=i
g(v) =

(v —qi) (v —qs) (v —qs) (v —
q4)

(2.27)

with the q's to be chosen conveniently, is analytic and
bounded in the upper half v plane. It is clear that there
is an infinite sequence of such relations, obtained by
carrying out the successive differentiations. In every
case more powers of v must be supplied in the denomi-

We now differentiate H with respect to cos8 and put
6=0; an attempt to continue as before to isolate the
leading term in the 1/R expansion of BM/ct cos6 leads
to some diKculty in general. The reason is that P&'(1)
=l(l+1)/2, so that BM/ct cos@ will probably be pro-
portional to v' (for large v) if f(v) v as has previously
been assumed. Before applying the Riemann-Lebesgue
theorem, we must supply two more powers of v in the
denominator by using our integration technique. [See
procedure leading to Eq. (2.18).) When these are
supplied, we may conclude that the function g(v)
de6ned by

nator to insure the proper boundedness. We have made
no attempt to solve in any sense for the individual
scattering amplitudes fi(v) from this set of relations.

Our demand is that g&„(x,y) be zero for (x—y)')0.
There is, of course, no way known at present to compute
the Heisenberg operators A except by perturbation
theory. Fortunately this is not too serious since the
lowest order perturbation calculations in the radiation
field are very accurate. We shall work to second order
in the electric charge e. It is unnecessary then for us to
carry out any renormalizations. We assume that all
interactions other than with the radiation field are
taken into account exactly and we work in such an
interaction representation. (For example, if we consider
the scattering of y rays by a hydrogen atom, we use the
Furry interaction representation. )"To the second order
in e, then, the Heisenberg operator Ai, (x) takes the
well known form"

Ai, (x) =A), (x)+i d4x'[H (x'),Ai, (x') ]rl (x—x')

F00 F00

+i' d4x'
J „

d4x"[H(x"), [H(x'), A, (*)])
X~(x—x')&(x' —x"), (3.2)

where H(x) = —j„(x)A„(x) and the A's are now inter-
action representation operators. Substituting for H(x),

'~ W. Furry, Phys. Rev. 81, 115 (1951)."J.Schwinger, Phys. Rev. 76, 790 (1949).

III. QUANTIZED ELECTROMAGNETIC AND
MATTER FIELDS

We pass now to a consideration of the more interesting
situation where the quantized electromagnetic field
interacts with a quantized matter 6eld. We shall con-
sider a system whose interaction with the radiation
field may be described by an interaction Hamiltonian
density —j„(x)A„(x),where j„(x) is the current density
four-vector operator of the matter system and A„(x)
the usual four-vector potential of the radiation field.
The procedure we follow at this point is strictly analo-
gous to that used in the previous section. We demand
that the commutator of two Heiseberg Geld operators
Aq(x), A, (y) shall vanish for space-like separations of x
and y. It is convenient to consider a matrix element of
the commutator between an initial state for which there
are no photons and the matter field is a state i and a
final state with no photons and the matter system in a
state f. We shall restrict our attention to such states i
and f for which the energies E; and Zf are equal. It is
again convenient to restrict our attention to positive
time intervals xo —yo and to deal with the retarded
function gi, (x,y) defined by

b,.(x,y) =i(o,fl [&.(x),A. (y)) li,O&&(x—y). (3.1)
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and making use of such well known results as

[A),(x'),A, (x)]= ib),.D(x—x'),

D„(x)= —
4) (x)D(x),

we And

A), (x) =A), (x)+ d'x'D„(x —x') j),(x')

We write now:

(lie. (x) l~&=(l l~. (x) l~&e "e 'p'*4
(3.3)

&fl j.(x')j (x") li&=&&f1j.(x') l~&&~I j.(x") li&

Xeseizo' —zP")e—iE (zP'—xP ) (3 11)

g 'CQSO

4)(x) =
~

da
2+i ~ u —ie

G),.(x,y) =i d4x' d'x"[j),(x"),j.(x')]n u

X{D,(* x') D, (y x")— —

+D„(x—x') D(y —x")))(x' —x")

+D(x x')D,(y x"—)q (x" x'—)) . (3.6)—

In the limit as xp—&+pp, yp
—&—pp, only the middle

term survives, in accordance with the adiabatic hy-
pothesis mentioned above. In this limit, G), (x,y)
becomes

00 F00

G„.(x,y)=i I d' ' d4x"[j (x"),j.(x')j

XD(*—*')D(x"—y)n(x' —*") (3 &)

where we have used (3.3) and also D(x) = —D(—x).
Substituting the Fourier representation of the D's,
namely,

we have

z
~d4kp(k)8(k')e'P 'D(x) =

(24r)' ~
(3.8)

d4k i d4k'

&0,flG~. (»y) Ii 0&=- &'a' ~—'a ~

J (2~)p J (2~)p

Xp(k) p(k')8(k')8(k")5Kf'(k' k) (3 9)
where

"&k'»)=' d' ' d' "{&flj ( ')j.( ")I
&

X[j,(x"),j),(x')]D,(x—x')q(x' —*"). (3 4)

We assume that the usual adiabatic switching on and
off procedures are carried out in order to give meaning
to the above integrals.

The commutator in Eq. (3.1) may now be evaluated
easily, with the result

g),.(x,y) = 5),.D„(x-y) 5r;

+~(x—y) &o,fl G'(*.y) li,0&, (3 3)

with Gz, (x,y) given by

where e labels a complete set of state vectors for the
matter system with the positii)e energies E and we
have used Ef——E;=E. The time integrations in (3.10)
may be carried out immediately, with the result

mt),.r'(k' k) = 24rb(kp —kp')P I d'x' d'x"
m J

&fl j.(x') l~&&~l j.(x") I'&
~
—sk' -x+sk ~ x"

E+kp E„+ic—
&fl j (*') l~&&~l j~(x") I'&

e4k x'—i7c.x" (3 12)
E—kp —E„—ie

This result is to be compared to the matrix element of
the S matrix corresponding to a transition in which a
photon of four-momentum k and polarization 0 is
scattered into a photon of four-momentum k' and
polarization 3 while the matter system makes a transi-
tion from the state i to state f of equal energy. Writing
S=i—iR, we have

s,.r'(k' k) = (xk'flail'k~&

= —i~" d4x'~" d4x"& Vfla(x')

XII(x")
I
ikp &))(x'-x")

p
00 F00

d'*"{&f I j.(*')j.(*")Ii&

Xe ik' s'+ip z"
&x~ xII)—

+(fl j.(x')j~(x") li&

Xe 'P''*"+'P'*'4)(x' —x")). (3 13)

Using Eq. (3.11) as before, we And

&f I
j~(x')

I ~&&~l j (x") I'&
~
—ik' .x'+i k ~ x"

E+kp E„+ip—
Xe'" *' '"' *"4)(x"—x') ). (3.10)

&fl j.(x') l~&&~l j.(x") li& .,&ir .~r—;a~,*«

E kp E+ip—— (3.14)
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We see that except for the sign of e in the second term,
(3.14) and (3.12) are identical. If, for example, E is
the ground state of the system, E )E for all e, and
kp&0 (which is the case for real photon absorption as
we have de6ned it), the difference between the two
expressions is of no consequence, because in such a case
the second denominator can never vanish. Of course,
kp in Eq. (3.12) is not restricted to positive values and
we may formally consider kp in Eq. (3.14) taking on
negative values. We write for the coe%cient of
2orb(kp —kp') in the two cases M&,.f '(k', k) and Fq.i'(k', k)
for (3.12) and (3.14), respectively, and further introduce
the dispersive and absorptive parts of Ii~,~' according
to the de6nition:

Fg,f'(k'. k) =D)J'(k', k)+iA).r'(k', k), (3.15)

where the division is made according to whether the
intermediate states in the sum are virtual (contributing
to D) or real (contributing to A). Unless i= f, o =X,
D and A will generally themselves be complex. We
shall see examples of this in Sec. V. In terms of D and A,
M can be written as

Mg f'(k' k) =D), i'(k' k)+is(ko)A), f'(k' k). (3.16)

Thus, the factor e(kp) in the absorptive term reflects
the previously noted diGerences in the energy denomi-
nators. It should be remarked that Fq,~'(k', k) is the
scattering amplitude except for some easily supplied
factors. For example, in Compton scattering, one must
supply a factor of (1/4or) (o'/r ) if F is computed in the
laboratory system, or a factor of (1/4or) (m/W), where
S' is the total energy if P is computed in the barycentric
system.

We now return to Eq. (3.9) which may be written,
in virtue of the 8 functions in the integrand and the
definition of 3f, as

r" dkpkp' e'"' ' ' dQ dQ
(2~)'

Xe'~so~"" '~~o~ ' M ' (k ' lk In'' Ikoln). (3.17)

We have introduced a more explicit notation for the
arguments of Mq, 'f. The kp refers to the "photon fre-
quency" that appears in the energy denominators of
Eq. (3.12); Ikpln' was, before the above-mentioned 8

functions were used, the momentum vector k' of the
"emitted photon, "and similarly I ko I

n was the momen-
tum vector of the "absorbed photon, "k.

We have already imagined that xo—++ oo, yo—o—~;
we now consider removing x,y to infinity. As in Sec. II,
it is convenient to put y= —x and for the purpose of
carrying out the integrations over n and n' we choose
the direction x as polar axis, and de6ne a unit vector n
parallel to x. In carrying out the angular integrations,

we integrate by parts and retain only the leading terms
in powers of 1/I xl. We 6nd

00

dk e
—iso(oo—ool{eoikofx)

(2or)'lxl'"

XMgo' (ko' kono' kon )—My, '(ko', —n kp', n, kp)

XMy ~'(ko'n kp' n,—ko)+e sisolol

XMy r '(kp' —n kp n kp) j. (3.18)

where we have dropped the subscript x of n, . This will
furnish more general forms of the dispersion relations
than are usually considered, since we need not con6ne
ourselves to the completely coherent case X=o, f=i.
Note that for kp&0, Mz.r'(kp, nkp, nkp) is, except for a
factor 1/47r, the forward scattering amplitude in the
laboratory system. (See remarks following (3.16).)

It has not been necessary for us to make any assump-
tions about the evenness or oddness of M as a function
of frequency kp up to this time. The precise dispersion
relations which follow from Eq. (3.19) depend, however,
on this question. We may deduce the behavior of M
directly from its explicit form given in Eq. (3.12).
Writing k= kpn, k'= kon' in accordance with Eq. (3.19),
we see by inspection of Eq. (3.12) that

Mg ~'(—k —kpn kpn) =Mq 'f'(+k k n' kpn).
(3.20)

If we regard 3f as an operator on the initial and 6nal
states, we see that changing kp into minus kp yields the
Hermitian conjugate operator. There are similar rela-
tions which will not be used here but which are perhaps
worth while pointing out. One of these is the direct
counterpart of a relation recently used by Gell-Mann
and Goldberger" in meson-nucleon scattering, namely

Fg f'(k', k) =F,)f'(—k, —k'). (3.21)

Note that this relation is not true for M~ f'. Now the
four-vectors k', k in (3.21) refer to real photon four-
momenta, and in the case being considered here kp' ——kp,.
we may write then k=

I kpl n and k'=
I
kpln', since the

amplitude Ii is de6ned only for positive kp and we are
free to decide whether k,k' shall change sign for

"M. Gell-Mann and M. L. Goldberger (to be published).

We now proceed exactly as we did in Sec. II:We intro-
duce s=2lxl —(xp —yp), multiply successively by the
exponential factor e '"'e "2' in each case integrating
from s to ~, and use the argument following Eq. (2.24).
Imposing our condition that (o,flG(x, y) Ii 0& vanish
for s&0 yields, as our 6nal condition,

Mg.~'(kp, nkp, nkp)
dkpe'soo

' ' = 0, s &0, (3.19)
(kp —qi) (kp —

qo)
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k~—ko. Writing Eq. (3.21) very explicitly, we have cross sections becomes

Fg.f'(kp., )kp)n', [ko(n)
=F.ir'( —kp. —

[ kp [ n; —
]
ko )

n'). (3.22)

pImf(v) ) '

v' )
(4.1)

It is easy to prove from our explicit formula, Eq. (3.14),
that if X, 0-= 1, 2, or 3, which is the case for real photons,

F.gr'( —kp —
)

kp
) n; —

(
kp (

n')

=+F gf ( kp', (kp]n; (ko[tz) (3.23)

where one takes the plus or minus sign depending on
whether the parities of the initial and final states are the
same or different. Thus Eq. (3.22) becomes

F),.r'(kp [kp)n; )koan')

=+F.), '(—kp JkoJn; JkpJn'). (3.24)

In exactly the same way one proves

M), '(—ko ',
[ ko ]

n';
[ ko [n)

=aMg. 'f'(ko,
f
ko

J

n';
[ kp f n). (3.25)

Our principal result, Eq. (3.19), will be applied in
Sec. V to a number of examples. In these applications
we never go beyond the e' approximation under which

(3.19) was derived.

IV. ANALYTICITY AND DISPERSION RELATIONS

In the previous sections we have shown that the
requirements of commutativity of field operators taken
at two space-like points have resulted in restrictions on
what are essentially forward-scattering amplitudes of
the variety that the functions are the Fourier transforms
of other functions which vanish for positive values of
their arguments. /See Eqs. (2.26) and (3.19).) The
relation between the requirement that a function k(w)
be the Fourier transform of a function g(s) which
vanishes for positive values of s, and dispersion relations
of the variety given by Kramers and Kronig, has been
discussed in great detail by Toll and van Kampen. We
shall give a short description of the mathematical
theory, taking advantage of certain simplifications
which we may introduce on the basis of physics.

We shall assume that the total cross section for any
physical process either approaches a constant for high
frequencies or approaches zero. Actually the theory we

shall develop will remain valid even if the cross section
were to increase with energy, provided this increase
were not so rapid that the integral Jo"dvo'(v)/v' ceased
to exist. With this limitation on the class of functions
to be considered, we may use the rather weaker the-
orems from I'ourier integral theory relating to functions
which are square integrable.

In terms of the scattering amplitude f(v), our ss
sumption on the high-frequency dependence of the

LWe used the well-known relation o (r ) = 4or Im f(v)/v. )
We shall assume that Re f(v) satisles the same require-
ment. In order to avoid difficulties at v=0 we shall
consider the conditions which may be imposed on a
function k(v) Lwhich in our application is essentially
the forward-scattering amplitude, and which we now
assume has the boundedness property expressed in Eq.
(4.1)) from the requirement

k(v) 1 i.o
=—h(v) =—' dsg(s)e

—'"' (4 3)
( —q)( —v)

From our original restrictions k(v) we know that this
integral is convergent for all values of v. If we add to v

a positive imaginary parti' the integrand is multiplied
by e&' and the integral consequently converges even
better. It follows that h(v) is the boundary value of a
function which is analytic in the entire upper half v

plane. We now remark that not only is h(v) analytic,
but it is also square integrable in the upper half-plane.
To prove this, we observe that

~p

j dv
) fi(v+oy) ('=— dse' '[g(s) )'

—00 2x' ~

dv(li(v) ~'(~, (4.4)

independent of p. Evidently the analyticity of h(v)
implies that of k(v), but of course not the integrability.

We wish now to express our requirement (4.2) as a
dispersion relation of the familiar variety. This may be
done in a variety of ways; one simple way is as follows:
Let us simply evaluate the integral

P I.
" h(v')

zeal 4 ce v v
(4.5)

where P stands for the Cauchy principle value. Since
h(v) has no poles in the upper half-plane, and because
of (4.4),'o the integral in (4.5) may be evaluated imme-

"It can be shown that Eq. (4.4) implies that the integral over
an in6nite semicircle above the real axis vanishes.

k(v)
g(s) —= dv e'"*=0 s)0. (4.2)

(v—Vi) (v —
Vo)

The frequencies q& and q2 are complex with Negative

imaginary parts which will later be allowed to approach
zero, and whose real parts will be chosen conveniently.
The integrand in Eq. (4.2), h(v)/(v —gi) (v—

qs) may be
expressed in terms of g(s) by the Fourier theorem
according to
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diately by contour integration, and it yields

P
t

" h(v')
h(v) =— dv'

Z7l 4
oo V P

(4.6)

where the principal value sign applies to all three
singularities of the integrand. In our applications it
will be convenient to consider the limit of both sides
as v~—+0. Under these circumstances, we find

h(v) h'(0) h(0) P I-" h(v')
= lim — d v'

v' v v' "' si0r ~ „v'(v' —vi)(v' —v)
(4.8)

There are two special cases of interest: (1) h (v)
=h*(—v), and (2) h(v) = —h*(—v). In the first case,
we have

Re h(v) =
Im h(v')2v

dP
0r ~ 0 v'(v" —v')

2v vi(vi+v) f'
+lim P ' dv'

v].~0 7r 0

Im h(v')
(4.9)

P V —Py V —P]

Let us now put in our explicit form for h(v) [Eq. (4.3)),
taking q&= v&

—it.&, q2=ie2, and considering the limit as
ei and es approach zero. [Recall that 1 /(x+ se) = P (I/x)—s0rb(x).j We find that

h(v) 1 h(vi) h(0)

P P—Py P] P—Py P

P t
" h(v')dv', (4.7)

2' oa P V —V] P —V

v' t" o(v')
P dP

7l p P P
(4.12)

It should be remembered that our derivation was valid
only to order e'.

Before passing on to the applications of greatest
interest, there are several simple observations worth
making. Suppose we apply Eq. (4.12) to the case of a
free electron. There is no e' cross section in such a case,
and we see that coherent dispersive forward scattering
amplitude is independent of frequency and takes on
the value Dig "(0)= —e /m which is, of course, correct.
Consider now the limit of (4.12) as the frequency ap-
proaches in6nity:

1
Dig"(~)—Di),"(0)= — dv'o (v'). (4.13)

2~' ~p

Either both sides are finite or they are both infinite. To
order e', for a free electron, both sides are zero; the
relation also checks to order e', incidentally. If the
scattering is from a bound electron, say in a hydrogen
atom, Dz&, "(0)=0, since one must have Rayleigh scat-
tering at low frequencies. 'r One might expect D&,i,"(~)
to equal its value for a free electron, —es/m, which
would yield the remarkable result:

imaginary part of the coherent scattering amplitude
and the total cross section, we have the result [in the
notation of Eq. (3.15)j:

2v' t
" Ag), "(v')

%),"(v)—DM, "(0)=
v'(v" —v')

whereas, in the second case, Jp
d va (v) = 2s'e'/m, (4.14)

2v
Re h(v) —vh'(0) = lim

p

(v+ vi) Im h(v')
SP

~2 2 ~2 ~2

(4.10)

In all of our applications we may pass to the limit of
vi—v0 without diKculty because Im h(v) will invariably
vanish for v less than some threshold value. Equations
(4.9) and (4.10) become then, respectively,

2V~ f'
R h() —h(0)= P ~ d'

p

Im h(v')

P V P

2v' t." Im h(v')
Re h(v) —vh'(0) = P dv'

v" v"—v'

(4.11)

Case (1) in (4.11) becomes exactly the Kramers-Kronig
dispersion relation provided we identify h(v) with the
quantity Xz '~ of Sec. III and consider the case of
complete coherence, which we notice satisfies the
appropriate condition h(v) =h*(v) [compare Eq. (3.20)j.
Using the previously mentioned relation between the

which is the well known Thomas-Reiche-Kuhn sum-
mation formula usually derived under the assumption
of dipole transitions only and VR(&1. Unfortunately,
there is some uncertainty as to whether Di&,"(eo) is
equal to the value for a free electron. As has been
pointed out by Toll' in the same connection, the photo-
electric cross section for large frequencies goes like 1/v
and this gives rise to a logarithmic frequency dependence
in the dispersive amplitude. It is not completely clear
that the published calculations of the photoeffect are
reliable at very high frequencies. Xone of the existing
direct calculations of the forward scattering amplitude
are sufliciently accurate to decide if Dzi, "(eo) takes the
free electron value and this matter is being looked into
further.

The causality condition (4.2) is not fulfilled for the
scattering of light by a classical electron, as has been
noted by Toll. ' The same criticism applies to the scat-

"Note that the coefBcient of the v' Rayleigh scattering ampli-
tude is simply (I/2w') J'dv'0 (v')/v", where o is the atomic absorp-
tion cross section for light. This is, of course, an old result, con-
tained in the Kramers-Heisenberg dispersion formula.



GELL —MANN, GOLD BERGER, AND TH I R RING

where f(vP) is the entire scattering amplitude valid for
all angles 8.We consider only the case of zero mass. For
if this were true, one would have such a relation for the
individual fq, which in turn leads to the conclusion that
the phase shifts 8& have for small frequencies a frequency
dependence of the form 50 v, bg p' for /&0. Such a
situation leads to grave diKculties in that the integral
in Eq. (2.22) is badly divergent near v 0. This is
because the higher terms in the expansion in powers of
1/E carry also powers of 1/v at the same time. The
weakest frequency dependence which can be tolerated
is 5& v". (One customarily has 5& v"+' for scattering
by a potential; it has been shown by van Kampen that
in the limit of a point scatterer 5~-v.) The situation
seems to be that although f(vP) is analytic in the
upper half-plane, it does not have the requisite bound-
edness for a relation such as (4.15) to obtain. The proof
of the above statements about the frequency dependence
of the phase shifts is as follows: Assume that

2v' t." Im f((v')
Re f((v) = P dv'

X' ~p P P —P

(4.16)

and that sin'5&/v'~0 for ~0 at least as rapidly as v .
We may write (4.16) as

sin5~(v) coslg(v) 2v' p" sin'5~(v')/v"

P (}
P~2 v2

We now remark that

PJ dv
0

j. 7r2

=—5(v),
v"—v' 4

(4.18)

so that we may write, setting sin'5&/v'=s'(v), cosh&(v)
=c(v)

2 v' t." s'(v') —s'(v)
s(v)c(v) =

i

dv'
7l p P P

(4.19)

We no longer need the principle value sign since the
singularity has been removed. We wish now to show
that the integral in (4.19) has a nonzero limit as v~0
and consequently that the low-frequency behavior of

tering formula obtained by Heitler's radiation damping
theory. It turns out that in those cases the scattering
amplitude has a pole in the upper half-plane. It gives
a nonvanishing contribution to the commutator outside
the light-cone which decays exponentially with a half-
width of the order of the classical electron radius. This
seems to be connected with the well known preaccel-
eration of the classical electron.

It is important to note that one cannot in general
expect to have a relation such as

2v' (" Im f(v', 8)
Re f(v, e) —f(o,a) = P ~ d", (4.15)

7l 0 P P P

s(v)c(v) is given by the explicit factor of v'. We write

s'(v') —s'(v) ('" s'(v') —s'(v)

v' (
" og(v') —LZov(v')+1Vo-~(v')]

= --—P dp (5.1)
2~2 ~p p 2 p2

The cross sections t7~ and 0.~ are of course zero for
frequencies less than the meson mass p, (or with recoil
corrections about 155 Mev). To evaluate the left-hand
side of (5.1), we first note that at zero frequency we
have pure Thomson scattering, "so that

Ds (0) =0, Dv(0) = —e'/)M',

Dg (0)= —(Ze)'/AM.
(5.2)

We next assure that in the limit of very large frequen-
cies the scattering amplitude for the nucleus approaches
that of equal number of free particles:

lim[D~(v) —ZDv(v) —1VDrr(v)) =0. (5.3)

's W. Thirring, Phil. Mag. 41, 1193 (1950); N. Kroll and M.
Ruderman, Phys. Rev. 93, 233 (1954); Dser, Thirring, and Gold-
berger, Phys. Rev. 94, I11 (1954).

s'(v') —s'(v)
4.20

VP P P

where vp is a small frequency but greater than v. Since
this is the case, v can certainly be put equal to zero in
the second integral; and in the 6rst integral, an expan-
sion of s'(v') and s'(v) into a power series shows that
one may safely pass to the limit of v=0 in it also. We
have then, using s(0) =0, the result that

s'(v') " s'(v')
lim P ' dv' = dv' )0. (4.21)
v +0 V~2 P2 V~2

i) P P )

V. APPLICATIONS

We shall discuss several applications of the dispersion
relations to practical situations. We consider first the
case of the scattering of photons by a nucleus. The
absorptive phenomena to be considered are photo-
nuclear reactions and meson production. Our technique
is to compare the dispersion relations for the nucleus
to those of a collection of Z free protons and g free
neutrons. We call the nuclear absorption cross section
0.~ and the meson production cross sections for free
nucleons fr~ and (7~ for neutrons and protons, respec-
tively. (Notice that we are working to order e' only and
hence need only e' cross sections. ) The corresponding
dispersive forward amplitudes are called D~, D~, and
D&. We have from Eq. (4.12) (dropping the subscripts
and superscripts on the D's), subtracting from D~(v)
the quantity ZD&(v)+ED&(v),

D~(v) —D~(0) —ZL(Dv(v) —Dv(0) 3—&LD~(v) —D~(0)3
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The structure of this sum rule may be understood in
the following way: If the meson mass were infinite, so
that there were no meson production, real or virtual,
then Eq. (5.5) would reduce

1 ZÃ e'
dpggp(p) =

2'r 0 A 3f
(5.6)

where op(v) is the cross section for photodisintegration
of the nucleus. This is precisely the sum rule given by
Bethe and Levinger for electric dipole transitions oisly,

in the case of ordinary forces between particles. In our
derivation, the term ZXe'/AM in Eq. (5.5) may be
regarded as the contribution to the integrals of the

"J.S. Levinger, Phys. Rev. 87, 656 (1952).
~H. Feshbach and M. Lax, Phys. Rev. Sl, 189 (1951); W.

Thirring, Helv. Phys. Acta 26, 465 (1953).

This conjecture cannot be veri6ed in any simple way.
As has already been pointed out, it appears not to be
fulfilled for the scattering of photons by bound elec-
trons. Aside from a logarithmic term in that case
undoubtedly associated with the Coulomb field, the
corrections for binding are said to be of the order of
binding energy divided by electron mass. "Even if these
binding eGects actually exist in the present case, we
would expect them to be of the order of binding energy/
M or about a few percent and we shall neglect them
here.

Above the threshold for meson production, the ab-
sorption cross section for a nucleus is mainly due to
meson production. There are, of course, still some
photonuclear processes which one would expect to have
a rapidly decreasing cross section as the energy in-
creases, and we shall neglect these contributions to the
absorption when v) p, . The average cross section per
nucleon for a photomeson production from a nucleus
is reduced in comparison to that of a free nucleon by"
(a) the effect of binding, (b) Pauli principle, (c) reab-
sorption of produced mesons. The effect (c) essentially
cancels out here since we ask for the total absorption
cross section. In accordance with the above discussion
we write for v) p, ,

LZov(p)+&o~(p) —o~(v) j
—=L«p(p)+~'o~(p)XI —~(p)3, (5 4)

E(p) =0, R(~)=1.

The reduction factor R(v) defined by the foregoing equa-
tions, because of effects (a) and (b) may be determined

by existing experiments to about 20 percent. If now in
Eq. (5.1) we substitute Eqs. (5.2), (5.3), and (5.4), and
consider the limit as v—+~, we obtain

1 I& Z1V e' 1
dvo'g(p) = + dp

27r' "„ A M 2~'~„

&&I 1—&()3LZ"()+&. ()j (5.5)

A'1 ZX e'
dpog(v) = —1+0.1

27I p A M ÃZ
(5.7)

The term 0.1A'/iYZ may be assumed accurate to about
30 percent on the basis of the present data. This is to
be compared with the Bethe-Levinger sum rule,

p 00 ZÃ e'
dvog&(v) = —(1+0.8x),

2ir' "p A M
(5.8)

where oii(v) is the electric dipole absorption cross
section and x is the percentage of exchange forces in
the two-body forces assumed to act between nucleons.
Our sum rule, Eq. (5.7), has been derived under rather
more general conditions than that of Bethe and
Levinger, Eq. (5.8), and would appear to have some
advantages over it: (1) All multiples are included
automatically, (2) no assumptions whatsoever are
made about nuclear forces or nuclear wave functions,
(3) the upper limit of integration is clearly specified in

(5.7), whereas oD in Eq. (5.8) can be regarded as the
total nuclear absorption cross section only below the
meson threshold, and finally, (4) only experimental
quantities appear in (5.7) in comparison with the 0.8x
in (5.8) which is a very "model-dependent" quantity.
It is perhaps worth repeating that our only assumptions
were that the forward-scattering amplitude for a bound
nucleon approach that of a free nucleon for in6nite-
frequency photons, and that the absorption cross
section for photonuclear processes not involving meson
production may be neglected for photon frequencies
above the threshold. (Simple estimates of direct nucleon
ejection cross sections at these energies indicate that
this neglect is well justified. ) There are at present no
experimental data for making an accurate test of Kq.
(5.7). One finds by comparison with experiments with
a maximum energy of about 50 Mev that there must be
considerable absorption in the 50- to 150-Mev region,
and there are practically no data in this energy range.
It would be very useful to have the photodisintegration
cross section for deuterium up to the threshold since
the data on meson production in deuterium is quite
extensive. For the time being, Eq. (5.7) can perhaps
best be used to check the consistency of experimental

absorption cross section arising from strictly non-
mesonic processes, for in the absence of mesons the
infinite-frequency forward-scattering amplitudes for
free protons and neutrons would be expected to be

e'/—3l and zero, respectively. The second term in Eq.
(5.5) presumably contains all of the mesonic effects
such as modifications of the nucleon currents, exchange
forces, etc.

We have evaluated the right-hand side of Eq. (5.5)
using the available experimental data and assuming
that o rr/o p 1.3 in the important energy region between

p and 2p. We find
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data, since it is almost surely accurate to within 30
percent.

Our next application is to a study of the scattering of
p rays by protons. The amplitude for the forward
scattering of photons from linear polarization state )
to state p by a proton (or generally, any spin —,

' particle)
must be of the general form

F„q(v) = fi(v)e„ei+ifs(v)e e„Xei,, (5.9)

The behavior of the various functions for negative
values of the frequency is deduced from the general
requirements, Eq. (3.20),

We deduce that
M», (v) =M„),t(—v). (5.11)

where e„, e), are the photon polarization vectors and o
is the spin matrix of the proton. (We are regarding F„q
as a matrix in spin space. ) The factor i is included so
that if the frequency is below the threshold of particle
production, fs(v) would be real. In general, of course,
both fi(v) and fs(v) are complex, having dispersive
and absorptive parts. From the scattering amplitude
F», (v) given above, we construct the quantity M„z of
Sec. III (for forward scattering only) which differs
from F„i by having the absorptive parts of fi and f&
multiplied by e(v). Thus, writing fi di+i——ai, f& d2-—
+ia&, we have

M„g(v) = [di(v)+is(v) ai(v) 7e„ez

+i[d~(v)+is(v)ai(v)7e e„Xei. (5.10)

v'
l
" o(v')

d ()=—'/M+ ' d '
2' ~p V2 v2

) (5.14)

where o(v) is the total cross section to order e' and is
thus composed of such processes as electron pair pro-
duction, meson production, etc. This is the relation used
in the first part of this section. The quantity a&(v) is
not an experimental one in ordinary circumstances, but
it can be given an experimental interpretation. If one
introduces circular polarization for the photons (see
Appendix 8) one may define two coherent forward
amplitudes corresponding to the cases where the
polarization is parallel to the direction of the proton
spin f„and antiparallel f,. (Note that there is no spin
Rip in the forward amplitude. ) In terms of these co-
herent amplitudes we may write [in the notation of
Eq. (5.9)7,

fi(v) = s[fv(v)+f. (v)7 fs(v) = s[fv(v) —f.(v)7 (5 15)

and thus, since f„and f, are coherent amplitudes,

v o& v o+ v v

ai(v) =- &unpolari zed~
4m 2 4m

rays, since it is only the coherent amplitude p, =X that
enters in the relation between the imaginary part of the
scattering amplitude and the total cross section for
unpolarized light. Thus the first of the relations (5.2)
may be written (using di(0) = —es/M) as

di(v) =di( —v), ai(v) = ai(—v),
(5.12)

v o
as(v) =-

4m 2

di(v) —di(0) =
2v'

t
" ai(v')

Jl dv
v v2 v2

2v' l." as(v')
ds(v) —vds'(0) = l dv'

v"(v"—v')

(5.13)

[The passage of the limit of vi going to zero gives no
trouble because both ai(v) and as(v) are zero for zero
frequency (in our e' approximation) and the zero lower
limit in (5.13) is purely formal. 7

Now it should be noted that only the quantity ai(v)
bears any simple relation to the total cross section for y

Note that in the e' approximation, the d's and u's are
real.

With this knowledge of the behavior of the functions
for negative frequencies, we may apply the considera-
tions of Sec. IV to the entire operator M„i(v). If we
apply our fundamental relation (4.11) to M», (v) given
by (5.10), we notice that the coeKcients of e„ez and
io e„)(e&separately satisfy the condition as may be seen
by taking the trace of the entire expression. Using (5.12)
we may write, 6nally,

where o„and o are the total cross sections (or in the e'
approximation, the various production cross sections)
for photons polarized parallel or antiparallel to the
proton spin.

Since the quantities o-„and o- are not known experi-
mentally, we cannot predict the forward scattering
amplitude for p rays with any real assurance, but can
give only a lower limit, based on the neglect of f&. In
spite of the difficulties associated with making precise
predictions, we felt that it would be worth while to
pursue the problem further, going, as we shall see
shortly, beyond the famework of our causality con-
siderations when necessary. Before turning to this
analysis, it should be noted that the relations (5.13)
are of some theoretical interest since it is usually far
easier to compute theoretically, from any model the
absorptive terms u~ and a2 than to carry out a direct
calculation of the dispersive amplitude. This point is
well illustrated by the work of Rohrlich and Gluck-
stern. "

In our analysis of the p-ray scattering, we shall
consider the absorption cross section to be almost ex-

"R.Gluckstern and F. Rohrlich, Phys. Rev. 86, 1 (1952).
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elusively the cross section for meson production. One
should, of course, include the Delbruck scattering in
order to obtain the total coherent scattering amplitude
and we shall make some remarks about this later. We
have used the data on photomeson production compiled
by Nambu~ to compute the dispersive and absorptive
parts of the amplitude fi(v), according to (5.14) and
ai(v) = (vt/4m)o (v). These functions are shown in Fig. 2.
One sees that below the meson threshold, there is de-
structive interference between the Thomson amplitude
and the anomalous amplitude so that the total forward
scattering is quite small. The destructive interference
arises from the fact that the meson ampli. tude is nega-
tive whereas the anomalous amplitude is positive, being
caused by intermediate states with energies greater
than the initial state. This is unfortunate since in
principle we would like to use this result as a limitation
on the phase shifts for y-ray scattering below threshold:
In the Appendix, a phase shift analysis is presented
in terms of which the forward scattering amplitude may
be expressed. Assuming that at low energies only a few

multipoles need be considered (see below) and that the
phase shifts are small, Eq. (5.14) for di(v) gives a
limitation on a certain combination of phase shifts. The
cancellation just mentioned would not be expected at
other angles; for example, if there are only multipoles
other than those occurring in Thomson scattering
(8, E,') there must be constructive interference at
other angles, since the total cross section must be
larger than the Thomson cross section.

In order to illustrate the general features one might
expect experimentally, we have made a calculation of
the angular dependence and energy dependence of the
scattering of photons by protons on the basis of a model

suggested by the phenomenological analysis of photo-
production data. "At this point, of course, we must go
far beyond our general considerations and the following
discussion should be regarded only as giving qualitative
features. The phase shift analysis given in the Appendix
has been used with the following values for the phase
shifts:

2v 8 2v e'
Re b E'= ———, Re b~E'= ———(1—0 Sv')

3M 3M

2v
Im g)&1=0

3 M

R.6-

LO

fi

(e&/M)
I.O

0.5-

/
Im fi

/
/

/
/

/
/

/
/

/
/

/
/
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//'
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"5-

Re I)

2

FIG. 2. The coherent forward scattering amplitude describing
7 rays scattered by protons as a function of photon energy (in
units of meson mass).

where we have written q= (v' —1)I, taking the meson
mass as unity. At low energies (up to 150 Mev) it seems
quite reasonable to consider only dipole phase shifts.
The photoproduction data can be interpreted as in-
volving mainly 8,' and M, ' for x+ production and 3f~'

for m' production. In choosing the numerical value of
the phase shifts we have used the dispersion relation
for di(v), Eq. (5.14) to fix a particular sum of the phase
shifts and find (for low frequencies):

Re P Ei+b My+ i (b)Ei+bqMy) j
8 v f av

(5.16)
M 2ir' ~ v"

The sharing of the sum between M~' and E has been
done in a way which seems in accordance with the
photoproduction data. We have, however, made
another assumption about the energy dependence of
the anomalous part of the dipole phase shifts, and that
is that they behave for small frequencies like v'. From
the Appendix and Eq. (S), one finds:

—ReLbIE'+b ~' —(8 E'+b ~')]
2v

2v' q" as(v')= vfs'(0)+ dv', (5.17)

=0, v(1, =0, v&1,

all other 5's=0,
~ Y. Nambu (unpublished).
'3 K. Brueckner and K. Watson, Phys. Rev. 86, 926 (1952l.

g2 g2

Im bxE&=1.4qv—, v)1 Im bx '=1.4q v—, v)1
3E 3f

so that for that particular combination of phase shifts
in Eq. (5.17) there may be a v' frequency dependence.

t A physical model which yields for f&(v) such a linear
frequency dependence is a particle with a Pauli-type
anomalous magnetic moment. ) There appears to be no
general principle to guide one at this point. $1Vofe added
ie proof. This statement is in—correct. It has been
shown by two of us (M. 6-M. and M.L.G.) and inde-
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Fzc. 3. The angular distribution of y rays scattered by protons
computed on the basis of phase shifts given in Sec. V.

pendently by F. E. Low that the linear term in fs(i)
arising from the anomalous magnetic moment is exactly
correct in any known theory. This term does not appear
in a lowest-order calculation in meson theory, since it
is proportional to the square of the anomalous magnetic
moment. The formula is fs'(0) = —2(p, , )'.

The phase shifts suggested above must be corrected
for this effect.) If one computes the forward scattering
amplitude using pseudoscalar meson theory, charged
mesons only, one finds'4 that the amplitude fs(i) is

proportional to s'. This appears to be in contradiction
to the work of Sachs and Foldy" who find fs(v)~r, but
we have been informed by Professor Sachs that an
error has been found in the original work and they now

find an v' dependence.
In Figs. 3 and 4 we show the angular distribution and

the energy dependence of the p—I' cross section which
results from our assumed phase shifts. The angular

Dispersive

5-

live

~ M. L. Goldberger (unpublished)."R.G. Sachs and L. Foldy, Phys. Rev. 80, 824 (1950).

I
v/p

Fro. 4. The energy dependence of the total elastic scattering
cross section for the scattering of p rays by protons. 0.0 is the
Thomson cross section, 8m.e4/3m'.

distribution is very sensitive to the ratio of Mg' and
E~' phase shifts. The assumed dominance of M~' results
in a strong backward maximum which should simplify
the experimental verification of the effects, since large-
angle scatterings would be most easily observed. The
energy dependence of the total cross section is to be
contrasted with that given by Sachs and Foldy. They
found that the cross section fell sharply for frequencies

greater than p, , whereas our result shows a strong
increase. Aside from the previously mentioned mistake
in this paper, they inadvertantly dropped the absorptive
part of the light-scattering amplitude. It should be
emphasized that the results given in Figs. 3 and 4 are
not to be taken too seriously, especially for energies
above 1.5p. They are based on rather ad hoc assumptions
about phase shifts and are presented simply to give
some qualitative ideas as to what one might expect.

We must finally discuss the omission of the Delbriick
scattering. In the forward direction the scattering by
the Coulomb field actually has a greater amplitude
than the entire Compton amplitude considered thus
far. One has di(Delbriick) 10 " cm as compared. to
di(Compton) 2&&10 "cm. The total cross section of
the Delbruck scattering is, however, completely neg-
ligible ( 10 '4 cm'). Furthermore, since the scattering
is confined to very small angles, it should not aGect the
experimental search for anomalous y—I' scattering.

We have been unable to find any useful applications
of the dispersion relations for particles with mass; these
can presumably be constructed, since as a function of
the total energy, the scattering amplitude satisfies all

the requirements imposed in Sec. IV. There are at
least two obstacles in the way of such applications:
(1) One needs, in general, the scattering amplitude for
nonphysical energies, v, less than the mass, p, . Unless
one makes further assumptions, one cannot get a
formula involving only measurable quantities. (2) Tliere
is no small parameter analogous to e according to which
one may separate the dispersive and absorptive sects.
For example, an attempt to express the real part of the
forward scattering amplitude for meson-nucleon scat-
tering in terms of an integral over the total cross section
)assuming point (1) is overcomej poses the problem
that one knows neither side of the equation; the elastic
scattering cross section is by no means negligible in
comparison with the inelastic processes, as was the
case for photons.
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conversations with Professor E.P. Wigner. We are also
indebted to Professor A. Wightman and to members of
the Institute for Advanced Study for helpful conver-
sations. One of us (W.T.) is grateful to the Institute
for Advanced Study for a grant-in-aid and to Professor
Robert Oppenheimer for the hospitality extended him
at the Institute.
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APPENDIX

We wish to describe the scattering of photons by a
spin one-half particle. It is convenient to use a de-
scription in which the incident photons are circularly
polarized parallel or antiparallel to the spin of the
nucleon. We have in deriving these formulas neglected
the possibility that the electric and magnetic multipoles
mix. (Stated otherwise, we have not used the eigen-
phases of the scattering matrix. " The procedure is
quite standard and we give only the result. The electric
field vector E for the two cases of polarization becomes

&ivr

E„,,= —e'"*ruing+ Q [27r (2l+1)j'
y l=l

x p c„(j,I~-', ;1,~-,)

00 (exp(2i5i; 's) —1
P(2iy1)-: P I

1 2ZP

exp (2i5i;")—1
+i rx IXi, ilCi:(j s'» —s) I'

2zv

00 i+I (exp(2i5i, 's) —1
+ Z (»+1)' Z I

l=1 2ZP

exp(2i5i;ei) —1

2ZP
rx IX&, pCi;(j, —,', I, ——,')

XC;(j, —', ; 0, —',) . (8.2)

In (8.1) the first and second term correspond to the
coherent and spin-Rip amplitudes, respectively. In the
forward direction we obtain for the scattering ampli-
tudes f„and f, the values

2ZP 2zv

m=&

X p Ci;(j, ia-', ;1m-', —m, m)

exp(2i5i, ") 1—exp(2i5i,")—1 r X
X z

3
f (5,Mi+5 Ey)

2P

1
f — (5~81+5~srl)+ (5IE1+5qsrl)

2P P

(8.3)

XXi, i~; n„. (8.1)

The notation is that of Blatt and Weisskopf;" the n~
are the nucleon spin eigenfunctions. For the cross
section, we obtain

00 i+I ('exp(2i5i; ")—1
P(2t+I)' P I

l=1 g=l-' E. 2iv

exp (2i5i;")—1
+i rX IXi, ilCi:(j ~'~ I~ s) I'

2ii i
i+'. (exp(2i5„-s) —1

+ &(»+1)' Z I

l=l )=i—.( 2zv

exp (2i5i;")—1

21v
rx Ix&, s«I(j s' I s)

xCiI(j s'» —-')

"J.Blatt and L. Biedenharn, Revs. Modern Phys. 23, 729
(1953).

'7 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley and Sons, Inc. , New York, 1952), Appendexes A and
3.

We have assumed that the phase shifts are small and
that only dipole radiation need be considered. In de-
riving (8.3), we have used the fact that the spin-flip
amplitude vanishes in the forward direction and that

1 )2l+1y I
Xi, yi

s=p V2 I 4w )
r 1 )2l+1i '*

-xxi, ~, =—
I I x~.

r
'

ap @2' 4s j
In our application we assumed also that 8;~'=-0. We
find for the cross section for unpolarized light:

do.= [(7+3 cosset) (I5:~'I + I5'~'I )
Sv'

+4I5I 'I'+2 Re 5.~'5*~"(3 cos'tI —1)
(8 4)

+4 Re 5*~'5 ~"(5+costI)),
6m

~=—fs(I5I 'I'+ I5;"I')+s 15I 'I').
P2

In deducing (8.4) we used Eq. XII, (3.16) of reference
2S and

r 3
Xii*.s—XXii=—cos@, Xip* s—XXip=0.

r Sm r


