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The relations between the incoming radiant energy and the outgoing electrical energy are developed in
terms of the experimentally measurable constants of the semiconducting material. These results are applied
to germanium by making use of constants found in the literature. The high efficiencies calculated for power
conversion are strong indication that the p-» junction may be a practical device for the direct utilization of

solar energy.

I. INTRODUCTION

p-n junction exists in a semiconducting material

in the region where the impurity content changes
from an acceptor type ( type) to a donor type (% type).
These junctions may be formed, for example, by the
diffusion of impurity atoms into the surface of a crystal!
or the segregation of impurities during crystal ‘growth.?
Single-crystal germanium, the most common material
used for such junctions, contains two electronic bands
which are involved in conduction processes. These are
the valence band which is almost filled with electrons
and the almost empty conduction band, which lies about
0.72 electron volt above the valence band. The Fermi
energy for the intrinsic material is about in the center
of the gap or forbidden region between these bands.
For p material it lies within the gap, but below the
center; for # material, above the center.?

Figure 1 shows the energy levels in the junction region
at equilibrium. At equilibrium, the Fermi energy
throughout the material must be the same. In order to
fulfill this requirement in the junction region, a charge
double layer and accompanying electrostatic potential
are set up. The height of this electrostatic barrier is
equal to the difference between the position of the gap
in the # material and the p material. The Fermi energy
and hence the barrier height vary with the temperature
and the impurity concentration.?

A hole or unoccupied level in the valence band may
diffuse for some distance in »# material before it com-
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2 Teal, Sparks, and Buehler, Phys. Rev. 81, 637 (1951).

3'W. Shockley, Electrons and Holes in Semiconductors (D. Van
Nostrand Company, Inc., New York, 1950), Chap. 10.

bines with an electron. The average distance it travels
before combining is called the diffusion length for
holes in # material. An analogous quantity is defined
for electrons in p material.

II. MODEL OF p-n JUNCTION TO BE USED

The junction model which we shall use in discussing
the photovoltaic effect is the one on which the usual
theory is based. We define it precisely by the following
assumptions:

(1) The junction or transition region itself is negli-
gibly small compared with the extent of the p or #
material and the diffusion lengths of holes in # material
or electrons in p material. (We consider here the
one-dimensional problem only.) Consequently, there is
negligible recombination or generation of holes and
electrons in the junction region.

(2) The electrostatic field is confined entirely to the
narrow junction region. Even under nonequilibrium,
steady-state conditions, we assume that there is no
field outside this region. The rate-controlling process
in current flow is, therefore, the diffusion of holes in
the » material and electrons in p material. Consequently,
in order to insure this field-free diffusion process, the
nonequilibrium concentration of holes in # material
or electrons in p material must always be much smaller
than the equilibrium concentration of electrons or holes.

(3) The donor or acceptor impurity concentrations
are always small enough so that Boltzmann statistics
may be used instead of Fermi statistics.?

III. THE JUNCTION EQUATIONS

In accordance with our model defined above, we
represent the junction as a narrow region of width
26 at x=0 (Fig. 2). The distance 26 is negligible com-
pared with any other dimension of the junction and
the figure is not to scale. As we traverse this region in
the x direction (from p material to # material), the
electrostatic potential increases by an amount V..

The difference in electrostatic energy in electron
volts between the p and » material is then eV,, where
e is the electronic charge and V. is the equilibrium
electrostatic potential difference between the » and p

4V. A. Johnson and K. Lark-Horovitz, Semiconducting Mate-
rials (Academic Press, Inc., New York, 1951), p. 70.
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regions. Then, the concentrations of holes on opposite
sides of the barrier are related in the following way:

Pn=pp exp(—eV./kT), 1)

where p, is the equilibrium concentration of holes in
the » material, p, that in the p material, # the Boltz-
mann constant, and 7" the absolute temperature. With
diffusion rate limiting, we may write the quasi-equilib-
rium equation

#(0)=pp exp[—e(V.—V)/kT], @)

where p(0) is the nonequilibrium value of p(x,) in the
» material at x=4 or x,=0, where x,=x—4, and V is a
voltage applied to the junction which changes the
height of the equilibrium barrier. (In the following,
all variables applying to the material to the right of
the barrier are functions of x,; those to the left, of x;.)
This voltage change may be accomplished by the use
of a battery, or by the generation of nonequilibrium
charge concentrations near the barrier by means of
radiation. Combining Egs. (1) and (2), we have

p(0)= pn exp(eV/kT). 3)

We have analogous relations for electrons in p material.
We shall continue to develop equations for holes in
»n material and write the analogous equations for
electrons in p material in the appropriate places.

We consider a small volume of » material. Within
this volume, holes are being generated thermally or
by other means and are recombining with electrons.
In addition, holes are entering and leaving this volume
by diffusion. Under equilibrium conditions (thermal
generation only), holes and electrons recombine at
the same rate they are generated within this small
volume. Shockley and Read have worked out® a theory
of recombination of holes and electrons postulating
the existence of trapping centers where recombination
can occur much more readily than in a direct collision
of a hole and an electron. This postulate is necessary
to account for the short measured lifetime of holes in
n material. Using Egs. (3.8), (3.9), (4.4), and (5.4) of
this reference and assuming that we are dealing with
an n-type sample with sufficiently high donor concentra-
tion, we may write for the equilibrium thermal
generation of holes:

8r= Pn/'rpy 4)

where 7, is the lifetime of a hole in seconds in # material.
From these same equations in reference 4 we write for
the nonequilibrium recombination rate

75=0/Tp (5)

where p is the nonequilibrium concentration of holes.
If we have generation of holes because of light quanta
or other radiation, we may designate this by g(x). The

5 W. Shockley and W. T. Read, Jr., Phys. Rev. 87, 835 (1952).
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F1c. 2. Model of p-» junction used for calculations.

total net generation is then:

8o tg(®)— (p/75). (©)

This net generation rate must equal the net rate at
which holes leave the small volume. This is just

e "X divergence of hole current density =e™191,/dx.
We have then from (6):

8o tg(@)— (p/7p) = €701 ,/0x. (7
Since we are dealing only with diffusion current,
I,=—eDy(3p/9%), (8)

where D, is the diffusion constant for holes in # material.
Combining with (7),

8o +8(%) — (p/ 1) +D 0%/ 9% =0. ©)

The function, g(x) can be written down by referring
to Fig. 2. Let us consider first the case in which the
light quanta fall on the surface of the p material. We
specify that the hole-electron pair generation at the
junction due to photons is go. The generation in the
n material (to the right of the junction) is then:

g(xr)=g0 eXP(—xr/Lx) (10)

where (Z,)™! is the absorption coefficient for photons
of wavelength A. To the left of the junction,

g(xr) = go exp(wi/ L), (11
where x;= — (x+46) and at the surface on which the
photons are incident,

gs=go exp(di/Ln).

If we have H, photons/cm? sec of wavelength A incident
on the surface (after the incident beam has suffered
reflection by the electrode or the semiconductor),
then, assuming unit quantum efficiency,$

g.=H,/L\ and go=(H,/L) exp(—di/Ly). (12)
The boundary conditions to be used with Eq. (9) are

(1) at x,=0, p=p, exp(eV/kT); (13)
(2) at x,=d,, 9p/dx=0; (14)
(3) as d,—>, p—p, for all large x,. (15)

8 F. S. Goucher, Phys. Rev. 78, 816 (1950).
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Boundary condition No. (2) is that attained by putting
a donor electrode on # material (or an acceptor electrode
on p material). Such an electrode provides a reflecting
barrier for the minority carrier, but no barrier for the
majority carrier.” When the electrode is many diffusion
lengths away, boundary condition No. (3) is used.

When we consider the differential equation and the
pair generation functions for the # material along with
the analogous equations for p material, we find that
there are four cases of practical interest: (1) Irradiation
of p material with junction near the surface; » material
extends to infinity. (2) Same as 1, except # material is
finite. (3) Irradiation of % material with junction near
the surface; p material extends to infinity. (4) Same as
3, except p material is finite. The solutions correspond-
ing to case 1 are

p=7ogpl exp(eV/kT)—1]exp(—x,/Ly)

780
; l[eXP (—/Ly)—exp(—,/L5) 47585, (16)
Ap"—

+

n= Tn{ gLexp(eV/kT)— 11+ 8 }
a2—1

cosh[ (di—x1)/ Ly ] o Tago [

T n €X d L
cosh(d;/L.,) a,.?——ll_a ep(@/In)
sinh (xy/ L)
m—exp(xz/h)]—i-mgn, a7

where a,=L,/L\, a,=L,/L\ and L, is the diffusion
length for holes in # material [L,= (D,7,)¥] and L, is
the analogous quantity for electrons in p material.
The electron current density and the hole current
density at the junction constitute the total current
density. For Case (1),

I,(0)=—eD,(3p/dx)o=eg,L,

For Case (2),

p=r| galexp(eV/HT) = 1T+—" }
a,’—1
><cosh[ (di—2x)/Lp]  7u80
coshd,/L,
sinh (x,/L,)

cosh(d,/L,)

1La,, exp(—d./ L)

apZ_
'f"eXP(—xr/Lx)}‘i“Tpgp- (20)

7 1s the same as Case (1).
I,00)= 6gpr[eXP (eV/RT)—1]

egoL,

Xtanh(d,/L,)—

Lap—a,

ap
Xexp(—d,/Ly) sech(d,/L,)—tanh(d,/L,)]. (21)

I,(0) is the same as Case (1). Case (3) is obtained by
interchanging the letters # and $ in Case (1). Case (4)
is obtained by interchanging the letters # and p in
Case (2). For any of these cases, the total current
density is I=1,(0)--1,(0). We may write this expression

I=¢[exp(eV/kT)—1]
X (gpLy'+gnLy’' —ego(Li+Ls),

where L, L./, L1, and L, are the appropriate coeffi-
cients of the corresponding terms in such expressions as
Eq. (21). This current is in the direction conventionally
called “reverse” in rectifier nomenclature. For con-
venience, we shall change the signs in the right-hand side
of Eq. (22) so that we have

I=egoL—egL'[exp(eV/kT)—1], (23)

where L= L+ L, and gL'=g,L,/4¢.L,. Solving Eq.
(23) for V, we obtain

(22)

kT egoL—1
X[exp(eV/kT)—1]—egoLy/(a,+1), (18) V=— log( 1+ § ) (24)
e egl’
1.(0)=—eD,.(8p/9%)0=eguL.[exp(eV/kT)—1] €
egoL The power delivered to an external resistor R connected
Xtanh(d,/L,)— [an exp(dy/Ly) to the electrodes is
a2—1 kT egoL—1
P=IV=I—10g(1—{— ) (25)
Xsech(d;/L,)—a,—tanh(d;/L,)]. (19) e egl’
TaBLE 1. Values of constants used in the calculation of power conversion efficiency for germanium p-» junctions.
Resistivity D, D, T Tn Lp La b pn Nn #np L) A
p(ohm-cm)  (cm?/sec)® (cm?/sec)2 (usec)d (usec) (cm) (cm) (cm™3)e (cm™3) (cm™3)e (cm™3) (cm) (cm)
14 44 94 80 500 0.059 0.22 1.5X10% 6.3X10" 1X10% 4.2X10% 1.7X107% 1.5X10™*
0.014 44 94 50 500 0.047 0.22 1.5X107  6.3X10° 1X10Y7 4.2X10° 1.7X107® 1.5X10™*

a Pearson, Haynes, and Shockley, Phys. Rev. 78, 295 (1950).
b See reference 9.
¢ Reference 3, pp. 16-17.

7R. N. Hall (private communication).
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Setting dP/dI =0, we find that the current for maximum
power output is
egL*(1+4-goL/gL’)eV o/ kT

m= , (26)
1+4eV,./kT
and V,, the voltage for maximum power is given by
exp(eVm/kT)=M (27)
1+eVn/kT
Hence, the maximum power P, is
po_1. m=egL’(l—{—goL,/gL’)eVm/kTVm. 28)
1+eV . /kT
The load resistance for maximum power is
Ry=V /I (29)
The open-circuit voltage is
Vo= (kT/e) log(1+-goL/gL’). (30)
The short-circuit current is
I,=egoL. 31)

Equations (30) and (31) are useful in determining
the quantities gL’ and gL experimentally from
which the maximum power output to be expected can
be calculated.

IV. DISCUSSION AND NUMERICAL EXAMPLES

The equations given above can be used to calculate
the efficiency of a p-» junction as a power converter.
The input power with monochromatic radiation of
wavelength \ and intensity H, photons/cm? sec is

P,=H(hcX1077/)\) (watts/cm?), (32)

where % is Planck’s constant in erg-sec, ¢ is the velocity
of light in cm/seéc and A is the wavelength in cm. The
efficiency of the junction as a power converter is

Eff.=P,/P;, (33)

where P, is given by Eq. (28). To obtain a curve of
the efficiency as a function of any of the quantities in
Eq. (28), it is necessary to solve Eq. (27) numerically
for a series of values and plot the resulting points.

We consider the efficiency of junctions made of ap-
proximately 1 ohm-cm material and those made of ap-
proximately 0.01 ohm-cm material. The experimental
constants needed for these calculations were taken from
the current literature. In the following calculations,
we have taken A=1.5 microns. We have assumed that
the absorption coefficient for 1 ohm-cm material and
0.01 ohm-cm material is the same as that measured®
in 48 ohm-cm # germanium, since we are dealing for
the most part with absorption in the fundamental band

$ H. B. Briggs, J. Opt. Soc. Am. 42, 686 (1952).

IN p-n JUNCTIONS 19
40 —t . 2 |
= P{ = | WAT T/CM
.01- OHM-CM Ge
0 |
> i |
o 1
z -
] _{_ Pj =002 WATT/CM?
20— ! “———1~-01-OHM-CM Ge |
I l

P;:.002 WATT / CM?
1-ORM-CM Ge

4 .005 .006 .007

Tic. 3. Efficiency of power conversion as a function of the distance
from electrode to junction.

which involves the breaking of valence bonds and does
not depend on the concentration of holes or electrons.
The values of the mean lifetimes of minority carriers
for the 1 ohm-cm material have been found by experi-
ment;® those for the 0.01 ohm-cm material are extra-
polated from the same experimental results. Table I
gives the experimentally-determined constants used in
the calculations.

Figure 3 shows the efficiency of power conversion
versus the thickness d of the p material and that of
the » material (the total thickness is 2d). We have
taken d,=d;=d and have assumed the » material is
irradiated (Case 4). For all regions of the curves, the
maximum nonequilibrium concentration of the minority
carrier is never greater than one-tenth the equilibrium
concentration of the majority carrier in accord with the
assumptions listed above under No. (2). It will be
noted that all three curves rise rapidly in the region
where the material is so thin that it is transparent.
This region is probably of little practical importance,
since such thin sections would be too difficult to prepare.
As the thickness increases and the material becomes
opaque, the efficiency rises to a maximum and gradually
decreases. This gradual decrease results from the
increase in the total recombination rate with thickness.
This increase is not very fast since the thickness is in
all cases small compared with the diffusion length. Thus
it is possible to make the assembly considerably
thicker than the optimum without an excessive loss
in efficiency. This is an important point, since it means
that the thicker, more easily realizable assemblies are
useful.

The 0.01 ohm-cm material, because it has a higher
equilibrium concentration of majority carriers, can be
used with power inputs up to 2 watts/cm? at 300°K
before the concentration of minority carriers becomes
so great that the theory is not valid. The corresponding
limit for the 1 ohm-cm material is 0.004 watt/cm? for
the optimum thickness. Figure 4 shows the variation of
efficiency for input power in the 1 ohm-cm material
and Fig. 5 that for the 0.01 ohm-cm material. It will be

9 Bl)lrton, Hull, Morin, and Severiens, J. Phys. Chem. 57, 853
(1953).
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noted that the efficiency rises sharply with the power
input and then levels off. By expanding the exponential
in Eq. (27) and retaining only the first-order term, we
obtain for the low input-power efficiency:

1 gL L exp(—d/Ly)

4gI/ I e/

kT,
4 gL’ Iy

(goLKgL!), (34)

showing that the efficiency starts from zero and is
linear with go, which is proportional to the input power.
Such a variation, of course, follows from the variation
of the output power for low intensities:

Po=1(gL)*/gL' JkT.

This variation is obtained because, initially, both the
current and the voltage increase linearly with input
power. The variation gradually changes from a square
law to an almost linear relation at high input power,
because, for large go,

(35)

Im'_)egOL; (36)
kT gL
V —— log—, 37
e gL’
and
Pn=1I1,V.—kTgLlog(gL/gL’), (38)

giving an approximately linear variation of the output
power with input power. The efficiency at high input

power is consequently
8o
og( ) (39)

P, L exp( d/Lx)
P 1 L)\ hC / A

It is interesting to consider the effect of temperature
on the efficiency of power conversion. We must know
the temperature variation of the quantities listed in
Table I. Shockley® (p. 288) gives results which indicate
that the variation of mobility resulting from both
temperature and impurity scattering

p~T=0, (40
14
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Fic. 4. Efficiency of power conversion as a function of power input
for 1 ohm-cm germanium at 300°K, d=2.5X 1073 cm.

where b is between zero and 1. The Einstein relation3
shows that
D= (kT/e)u,

which makes D almost temperature-independent. The
diffusion length L is given by

L= (D7)},

(41)

(42)

where 7 is the mean lifetime of an excess minority
carrier. Shockley and Read* state that for highly doped
material = is insensitive to temperature. Therefore, L
itself is quite insensitive to temperature.

In the temperature range in which all donor or
acceptor impurities are ionized, the concentration of
the majority carrier does not change with temperature.
The minority carrier concentration, however, changes
exponentially with temperature and therefore, in
accord with Eq. (4),

8o=1n/Tp, 4)
the thermal generation rate does likewise. By using the

relation developed by Shockley® (p. 245) it is easily
shown that

L
gL/ =2.33X 10475 exp(——eV,,/kT)[

NnTp

’ ’

- ] (43)

PpTn

so that the thermal generation rate varies exponentially
with temperature with an activation energy of eV,
where V, is the potential difference between the
valence band and the conduction band in the semi-
conductor. Thus, the low-intensity efficiency [Eq. (34)]
decreases exponentially as the temperature increases.
The limiting high-intensity efficiency [Eq. (39)] does
not decrease so rapidly as the low-intensity efficiency,
but still has a negative slope. In Fig. 4 curves of
efficiency wersus input power are shown for the 0.01
ohm-cm material for three different temperatures, viz.,
200°K, 300°K, and 400°K.. These curves were calculated
from the exact expression (28) and Eq. (43) and conform
in general with our approximate analysis above.

We see that the p-» junction is potentially a useful
device for the conversion of light energy to electrical
energy. Under our assumption of unit quantum
efficiency, we may calculate the total number of charges
created per second, the fraction of this total that passes
through the external circuit, and hence the fraction
that is lost by recombination. For example, at 300°K
in the 0.01 ohm-cm material with a power input of
0.1 watt/cm? we have 7.55X10' photons/cm? sec
incident on the surface. Potentially the charge genera-
tion is 7.55X10Y charges/sec. However, because a
small fraction of the photons is transmitted through
the material, the charge generation is 7.43X10%
charges/sec. The number per unit time passing through
the external resistor is 6.76X10'7 charges/sec. The
number lost by recombination is 0.67X 10" charges/sec.
Thus, 89.4 percent of the possible charges generated
pass through the external resistor; 1.6 percent are not
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generated because of photon transmission, and 9
percent do not pass through the external circuit because
of recombination. The potential energy obtained per
charge is 0.305 electron volt. The potential energy
expended in creating each charge is 0.825 ev (the
energy per photon). Thus, each charge gives up only
37 percent of the energy used to create it giving the
power conversion efficiency of 33 percent as plotted
on the curve. From this analysis it is apparent that this
device would be efficient in using the charges created,
but that the potential energy per charge available for
useful work is the limiting factor in power conversion
efficiency. If we consider the same material with the
same power input at 200°K, we find that transmission
through the material is still about zero.”* The number of
charges/sec passing through the external resistor is
7.1X107. This is 94 percent of those potentially
available or 95.6 percent of those created, leaving only
4.4 percent lost by recombination. The potential energy
per charge delivered externally is 0.453 ev. This is
54.8 percent of the energy expended in creating a
charge. The power conversion efficiency is thus 0.94
X 54.8 percent=>51.5 percent as plotted on the curve.

For greatest power conversion efficiency, it is thus
apparent that the following conditions must be met:
(1) The energy per photon must be nearly equal to
the band gap (it must not be less, of course). (2) The
potential barrier height in the junction should be as
close to the band gap as possible. (3) The whole
assembly should be short compared with the diffusion
lengths of the minority carriers, but great enough in
extent so that the incident radiation will be absorbed.

Condition (1), in the practical case of a fundamental
power source, would be applied to the solar spectrum.
Since we are not dealing with monochromatic radiation,
a semiconductor with a gap energy somewhere near
the photon energy characteristic of the peak of the
solar spectrum, i.e., 2 ev would be required.

WH, Y. Fan and M. Becker, Semiconducting Materials (Aca-
demic Press, New York, 1951), p. 138.
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Fic. 5. Efficiency of power conversion as a function of power
input for 0.01 ohm-cm germanium for three different tempera-
tures, d=3.5X 1078 cm.

Our analysis shows that Condition (2) can be met by
using material with the doping as high as possible and
by keeping the temperature as low as possible. In
addition, materials with band gaps larger than germa-
nium and the same resistivity have potential barriers
greater relative to the band gap.

Condition (3) can be readily met in practice, since
the diffusion lengths of the minority carriers are
reasonably long.

In practice, some provision for cutting down surface
reflection would have to be made. The reflection coeffi-
cient for germanium is of the order of 50 percent.
Using a germanium junction with a band gap of 0.72
ev and solar radiation and sufficient cooling, one might
expect to realize an efficiency of 10 or 12 percent (assum-
ing a reflection loss of §) for power conversion. The
feasibility and engineering details of such a system
would have to be determined by examining the over-all
economy of this method of power production.
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