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Isotope Shift in Neutral Carbon~
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There is a possibility that the discrepancy between the experimental values of spectral isotope shift in
light elements and the values calculated by including nuclear motion may be reduced by using improved
one-electron wave functions. In order to investigate this possibility and at the same time to make a com-
parison with recently obtained experimental data, the shift of the transition 2P' 'S—2p3s 'P(X=2478.5A) of
neutral carbon has been calculated using Hartree one-electron functions without exchange. The functions for
the 2P3s con6guration were calculated by the author for this purpose. The agreement with the experimental
value is comparable to that obtained for other elements with this type of function. A comparison of the term
shifts is made for both the 'I' and 'S terms of the 2p' configuration using Hartree functions with and without
exchange and analytic functions of the Morse, Young, and Haurwitz type. The use of functions with exchange
produced a signi6cant change in the calculated term shifts which indicates that it may be possible to im-
prove the agreement between calculated and observed transition shifts.

INTRODUCTION

~ XPERIMENTAL measurements of the isotope
~ shift of the spectral line 2p' 'Ss—2p3s 'Pg P,

=2478.5A) in neutral carbon have been reported by two

investigators. ' ' Each reported a value of —0.156+0.002
cm ' for the shift from C" to C" and one' reported a
value of —0.294&0.002 cm—' for the shift from C" to
C'4. A method has been published previously' for cal-
culating a theoretical value for the diGerence of energy
levels in light atoms due to nuclear motion. Application
of the method to lithium, 4 boron, ' neon, ' and magne-
sium' has produced varying degrees of agreement with
experimentally determined shifts. Before presenting the
results obtained by calculating some shifts in neutral
carbon, a brief review of the theory will be presented
following the notation used by Vinti. '

It has been shown by Bartlett and Gibbons, ' that the
assumption of a 6nite nuclear mass adds a term to the
Hamiltonian of an atom equal to
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where y; is the linear momentum of the ith electron
relative to the nucleus and 3f is the nuclear mass. This
term can be expressed as the sum of two terms,
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The quantity X is customarily called the "normal"
shift. It can be shown that its effect is to add a term
—(m/3I)E to the unperturbed eigenfunctions, where
E is the observed total energy. This is equivalent to
assuming a reduced mass for the electrons as is done in
the case of the hydrogen atom. The second term is
customarily called the "speci6c" shift. Its effect cannot
be evaluated exactly but since it is small compared to
the energy of the atom, first-order perturbation theory
can be applied. Russell-Saunders coupling is assumed
and the spin-orbit terms in the Hamiltonian are assumed
small enough to be neglected.

In order to evaluate the effects of the term 0-, it is
necessary to obtain the diagonal elements r of the corres-
ponding operator with respect to the unperturbed wave
functions. It is not necessary to calculate any off-
diagonal elements since the Slater diagonal sum rule can
be applied. If determinantal wave functions U are
formed from an orthogonal set of one-electron functions
of the form R(rg, l)(r)f(8,&)n(s), expressions for evalua-
ting the necessary diagonal elements can be derived.
These expressions are of the form:

(U
~

a [ U) = —iV-' g P [ (rg, l, m,
~

Xy (
rg', l—1, mg') ('&(m„m, '),

where p and p represent the sets of quantum numbers
rg, l, mg, m„and tt', l', mg', m, ', respectively. The 3(m„
m, ') indicates that the spins of the two orbits tg and p
are the same. The sums are extended over all occupied
orbits. The nonzero terms in the double sum can be
expressed' as:

[ (rg, l, mg[y[rg', l—1, mg) ~'

=CP(l' —mP) (2mRy)7'(rg l ' rg', l—1),

i (e, l, mgiyirg', l—1, mgw1) ['
=-',CP(i+mt —1)(i&mt) (2mRy)J'(rg, l; rg', l—1),
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where Ry is the Rydberg energy,

and

dR(ss', / —1) / 1—
X — R(ss', / —1) r'dr.

In these integrals the radial parts of the one-electron
functions R(ssl) are assumed to be so normalized that

The electronic state 2p(m, = ~„mi —0—)2p(m, = ~„m i——1)
appears only in the 'I' term and the shift for this term
can be shown to be the same as (1). There are three
electronic states for which Pm, =0, Pmi ——0, and
according to the diagonal sum rule the sum of the shifts
of all three electronic states, less the shift of the 'I' and
'D gives the shift of the 'S. The shift of the '5 can also
be shown to be the same as (1) and so the expressions
for the shift of all three terms have the same form. The
shift of the 2p3s 'P term may be found by applying the
diagonal sum rule. The electronic state 3s(m, =-', ,
mi=0)2p(m, = sr, mi= 1) is present in only the 2p3s 'P
term and so the shift for this term is:

The variable of integration r is expressed in units of the
Bohr radius and the units of 0 are cm '.

It is apparent that it is necessary to know the radial
parts of the one-electron wave functions R(ssl) in order
to evaluate the integrals. The sum of the two quantities
E and 0. mentioned before gives the energy shift from an
atom of infinite nuclear mass to one of mass 3f. In order
to calculate the shift between isotopes, it is necessary
to calculate the shift from an infinite nuclear mass to
each of the two isotopic masses and to take the diGer-

ence between the two. In order to calculate the fre-
quency shift in a given transition, it is necessary to
calculate the shift of each of the energy levels of the
transition and take their difference. It can be shown
from the properties of the operators X and 0- that to the
approximation used, all the levels of a given multiplet
have the same shift.

Term
M.Y.H.

functions

Hartree
functions
without

exchange

Hartree-Fock
functions

with
exchange

FORMULAS FOR SPECIFIC SHIFT IN CARBON

In evaluating the shift in the spectral line

2ps 'Ss —2p3s 'P,

of neutral carbon, it is necessary to obtain the shifts in
the terms 2p' 'S and 2p3s'P. There are three terms
which arise from the configuration 2p'. These are 'D, 'S,
and 'I'. An expression for the shift in the 'S term can be
found from Slater's diagonal sum rule. The shift for
'D can be readily calculated by observing that the
electronic state 2p(m, =-„mi=1)2p(m. = ——',, mi=1)
belongs only to this term. Evaluation of the double
sum leads to

o= (Mi ' —Ms ')(—'may)[2J'(2p, is)+2J'(2p, 2s)j. (1)

TABLE I. Speci6c isotope shift of C'3 relative to C~ in cm l.

TABLE II. Values of the J integrals
calculated from radial functions.

Term

2p' 'S

2p"P

2p3s 'P

J(2p, 1s)
J(2p, 2s)
J(2p, 1s)
J(2p, 2s)
J(2p, 1s)
J(2p, 2s)
J(2p,3s)

M.Y.H.
functions

~ ~ ~

—1.1899
0.5766

Hartree
functions
without

exchange

—1.2301
0.5155—1.2301
0.5155—1.4559
0.4715
0.1583

Hartree-Fock
functions

with
exchange

-1.2949
0.5297—1.3500
0.5105

NUMERICAL CALCULATIONS

There are several types of one-electron radial func-
tions available for the 2p' configuration of neutral
carbon. Torrance' has computed Hartree numerical
functions without exchange and Jucyss has computed
Hartree-Fock functions with exchange. Analytic func-
tions of the Morse, Young, and Haurwitz type (M.Y.H.)
have also been calculated' for the 'I' term only. The
shifts for both the 2p' 'S and 2p' 'P terms have been
calculated using these functions. The results are tabu-
lated in Table I. As previously mentioned, the expres-
sions for the 2p' 'P and 2p' 'S shifts are the same; the
diGerence in numerical results in the case of the Hartree-
Fock functions is due to a difference in the wave
functions for the two terms. In the case of the Hartree
functions without exchange, there is no distinction be-
tween terms of a given electron configuration. The
Hartree-Fock and M.Y.H. functions are inherently

o = (M& '—3IIs ') (am')[J'(2p, 1s)

+J'(2p, 2s)+J'(2p, 3s)].

There are two electronic states for which pm, =0,
Pmi= 0 and the sum of the shifts for these two states is
the same as (1). Therefore, the shift of the 'P term is:

o.= (M& '—Ms ') (same)fJ'(2P, 1s)

+J'(2p, 2s) —J'(2p, 3s)$.

2p2 lS
2p IP
2p3s 'P

~ ~ ~

0.893
0.908
0.908
0.591

1.000
1.064

s C. C. Torrance, Phys. Rev. 46, 388 (1934).
s A. Jucys, Proc. Roy. Soc. (London) 173, 59 (1939).
s W. E. Duncanson and C. A. Coulson, Proc. Roy. Soc. (Edin-

burgh) 62, 37 (1944).
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TABLE III. Specific isotope shift of C' relative to C'2 in cm '.

Term

2p' 'S
2p2 3p
2p3s 'I'

M.Y.H.
functions

~ ~ ~

1.658

Hartree
functions
without

exchange

1.686
1.686
1.098

Hartree-Fock
functions

with
exchange

1.857
1.976

orthogonalize these functions as follows:

Rs(1s) =R(ls),
Rs (2s) = 1.0007R (2s) —0.03703R (1s),

Rs (3s) = 1.0050R (3s)—0.09879R (2s) —0.00623R (1s).

The calculated shift for the 'I' term is also given in
Table I.

The values of the J integrals calculated with the
orthogonalized Hartree functions as well as with the
Hartree-Pock and M.Y.H. functions are shown in Table
II. Numerical integration was used in the calculations
involving Hartree and Hartree-Fock functions.

It is possible to compute the shift of C" relative to
C" merely by putting the appropriate masses in the
formulas. The results obtained are listed in Table III.

From the term shifts computed above, with Hartree

orthonormal, but the Hartree functions without ex-
change must be orthogonalized by taking linear com-
binations as follows:

Rp(1s) =R(1s),
Rs (2s) = 1.0006R (2s) —0.03552R (1s).

It is not necessary to modify R(2p) since the angle
functions produce orthogonality to the s electron func-
tions.

There were no radial functions available for the 2p3s
con6guration so it was decided to calculate Hartree
functions without exchange. It was also necessary to

TABLE IV. Comparison of experimental and calculated shifts for
the transition 2P' '5—2p3s 'E(X= 2478.5A) in cm '.

Experimental shift
Normal shif t
Experimental speci6c shift
Calculated specific shift

C» relative to C12

—0.156&0.002
0.141—0.297—0.317

C«relative to C'2

-0.294+0.002
0.261—0.555—0.588

functions, the shift in the transition can be readily
computed. The results are tabulated with experimental
values, in Table IV.

The discrepancy between the experimental and cal-
culated speci6c shifts is 0.020 cm ' for the C"—C" case.
The effect of exchange on the shift of the 2p' 'S term is
0.092 cm ', which is larger than the discrepancy and
indicates that the inclusion of exchange in the calcula-
tions may improve the transition results. However,
there are no Hartree-Fock functions available at present
for the 2p3s 'I' term. If the 2p' 'S term shift calculated
with Hartree-Fock function is used with the 2p3 sP
term shift calculated with Hartree functions, the
transition specific, shift is —0.409 cm '. This is in poorer
agreement with the experimental value than when
Hartree functions are used for both terms. It appears
from this, that it is not advisable in such calculations
to mix the types of functions used.

A calculation of the C"—C" specific shift was made
with the assumption that the is and 2s Hartree radial
functions are the same for the 2p3s configuration as for
the 2p' configuration. The value of the transition shift
obtained is —0.460 cm '. lt is apparent that such an
assumption is not justified in the case of these terms of
carbon.

At present, work is proceeding on a calculation of
Hartree-Fock functions for the 2p3s 'E term of carbon.
It is hoped that the use of this type of function for both
terms will improve the agreement between experimental
and calculated shift for the 2Ps 'S—

2P3s
'I' transition.

The author wishes to express his appreciation to Dr.
W. H. Davis for suggesting the problem.


