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Theory of Electron Multiylication in Silicon and Germanium
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Using methods similar to those employed to treat the gas discharge, a theory is developed to explain the
multiplication of electrons (and holes) in Si and Ge junctions. The calculations take into account the effects
of electron-phonon and pair-producing collisions on the distribution function. En Si, the only element for
which complete measurements have been made, the calculated ionization rate versus 6eld curve is in agree-
ment with experiment if one assumes a mean free path of 200A for interactions between electrons and
optical phonons.

A RECENT series of experiments by McKay and
McAfee' have demonstra, ted that in P—n junc-

tions of Si or Ge it is possible to obtain charge multi-
plication similar to that observed below breakdown
in a gas. In the high-field region of the junction the
electrons and holes attain suS.cient energy to create
additional charge by electron-hole pair production. The
multiplication obtained in this way is small for low
reverse bias but grows rapidly with increasing voltage
and eventually approaches a large value at the critical
breakdown potential. This process, as McKay' em-

phasizes, is quite analogous to that taking place in a
gas discharge, a fact which permits him to apply a
considerable part of the gas discharge theory to the
solid state case. In particular, by using the formulas of
Townsend' s' P mechanism, he derives values of the
ionization rates per unit path length, n;, from the data.
The resultant curve of o., versus field is one of the most
significant features of his work since n, , though it is
used to describe the nature of the discharge, is a quan-
tity which is determined by the properties of the
material in which the multiplication takes place. It is
the parameter which relates the microscopic solid state
properties of the junction to the macroscopic charac-
teristics of the breakdown taking place in it. A theo-
retical calculation of the n, versus field (h) curve would,
therefore, be of special interest since from it one would
not only obtain an understanding of breakdown in
junctions, but could also infer something about the
properties of the materials of which they are made.
Such a program is the aim of the present work.

The actual calculation of o.; is straightforward and
parallels rather closely similar ones which have been
made for ionization rates in gases. Basically, the
method consists in solving Boltzmann's equation for
the motion of electrons (or holes) in a high field, taking
into account the effect of electron-phonon and pair-
producing collisions on the distribution functions.

' K. G. McKay and K. B. McAfee, Phys. Rev. 91, 1079 (1953).' K. G. McKay, Phys. Rev. 94, 877 (1954).
3 L. B. Loeb, FNndamenta/ Processes of E/ectrica/ Discharge in

Gases (John Wiley and Sons, Inc. , New York, 1939).
See, for example, %. P. Allis and Sanborn C. Brown, Phys.

Rev. 87, 419 (1952).

Having once obtained the distribution function, it is
then a simple matter to calculate n, , as well as other
properties of interest such as the drift velocity. The
final expressions contain parameters typical of the solid
under consideration, not all of which are known at
present. Fortunately, however, it. turns out that the
only one of these that plays a critical role in deter-
mining o,; is the mean free path for electron-phonon
scattering. Its value is obtained by matching the theo-
retical ot, es h curve to experiment at a single point,
the theory then being evaluated by how well the rest
of the curve fits the data. As will be seen, reasonably
good agreement is obtained in this way, the discrepan-
cies possibly being explainable in terms of fluctuations
in donor (or acceptor) density within the junctions.

As outlined in the previous section, the main di%-
culty in calculating n; is the solution of the Boltzmann
equation for the electron (or hole) velocity distribution
functions. However, before one can attack this problem
it is necessary to decide what the forces and interactions
are that can aGect the state of motion of electrons or
holes within the solid. In the present case these par-
ticles are moving in an electric field and will, of course,
be accelerated by it. In addition, they interact with the
lattice vibrations of the crystal, emitting and absorbing
phonons in such a way that the net eGect is a resistive
or frictional one opposing the accelerating field. Finally,
when the electrostatic field is large enough, they will
reach sufficient energy to produce electron-hole pairs in
collisions with valence electrons. The question of the
exact value of the threshold for this process will be
discussed later, but it is clear that it must be at least.
as great. as the forbidden gap in the material in question,
i.e., 1.0 ev for Si and 0.7 ev in Ge. Thus pair production
and multiplication will only occur when an electron has
an appreciable chance of having energy of 1 ev or more.
At energies such as these the coupling between electrons
and the lattice is quite diGerent from that for slow
(thermal) electrons. Experiments of Ryder and Shock-
ley' indicate that the fast electrons lose energy princi-
pally to the optical modes of the lattice. Few details as

' E. J. Ryder and W. Shockley, Phys. Rev. 81, 139 (1951).
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yet are known about this interaction, but the theoretical
work of Shockley, ' as well as that of Seitz, ' suggests that
it is most reasonable to choose a constant mean free path
for collisions between electrons and optical phonons.
This assumption will be made in the succeeding work
of this paper. Actually, the form of the n; ~s 8 curve
appears not to depend critically upon it so that a small
velocity dependence of the mean free path should not
invalidate the results.

Another question of importance is that of the mean
free path for hole-electron pair production. Fortunately,
as will become clear later, the exact value of this
quantity is not necessary in calculating n;, it only being
required that it be small compared to the mean free
path for electron-phonon interaction. For the latter
process the value needed to 6t the experiments turns
out to be about 200A. On the other hand, an estimate
of the mean free path for pair production gives 15A for
an electron energy 0.5 ev above threshold. This 6gure
is obtained by treating the ionizing collision as a
Coulomb scattering, the total cross section being found
by integrating Rutherford's formula over values of the
scattering angle such that energy greater than the gap
width is transferred in the interaction. This value is also
a reasonable one from the experimental point of view.
Johnson and McKays have shown that secondary elec-
tron emission from Ge is similar to that from metals,
and for a metal a mean free path for internal secondaries
of 15A is about right. Thus the criterion that the elec-
tron-phonon mean free path be long compared to that
for pair production is satisfied, provided the electron
energy is at least a few tenths of an electron volt above
threshold. Right at threshold, of course, the pair cross
section is zero, but it rises rapidly (quadratically if one
counts available phase space) with increasing energy
and, as the above figures show, soon surpasses that for
electron-phonon scattering.

The next step in the calculation of n; is the solution
of the Boltzmann equation. Since the cross section for
pair production is large, this process will have a big
eRect on the distribution function. This fact will
necessitate different treatments in the regions above
and below the pair production threshold. In the low-

energy region the velocity distribution is simple and
can be expressed in terms of tabulated functions. For
higher velocities the situation is more complicated, and
it is only possible to obtain an explicit solution of the
Boltzmann equation for energies far enough above the
pair threshold that the mean free path is small com-
pared to that for phonon scattering. The intermediate
region is quite dificult and would require the use of
numerical techniques. Considering the many uncertain-
ties inherent in this problem such eRort hardly seems

' W. Shockley, Bell System Tech. J. 30, 990 (1951).' F. Seitz, Phys. Rev. 73, 550 (1948).
s j.B.Johnson and K. G. McKay, Phys. Rev. 93, 668 (1954).
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FIG. 1. Approximate form of electron energy distribution.

warranted. Instead, the high- and low-velocity solutions
will be extrapolated into the rather narrow intermediate
range and there matched. Figure 1 illustrates in a
qualitative way the sort of procedure that will be used.
This method, in eRect, replaces the problem described
above by a slightly diRerent one in which the pair-
production cross section has a threshold about 0.2 ev
higher than formerly but also has a 6nite value there.
The shape of the n; vs 8 curve is mainly determined by
the ability of the electrons to overcome the phonon drag
and reach the threshold. This process will be the same
in both these cases so they should give substantially
the same results for 0,;. Of course, if really accurate
values of 0.; ever become necessary it is always possible
to carry out the numerical integration of the diRer-
ential equations.

From Wannier's' paper on high-field mobilities it is
evident that the solution of the Boltzmann equation is
generally dificult. The expansion of the distribution
function, which depends on the magnitude and direction
of the electron velocity, into spherical harmonics leads
to an infinite set of coupled diRerential equations which
is very hard to handle. However, in certain limiting
cases the problem simplifies considerably. For instance,
if the charges lose only a small fraction of their energy
at each collision the velocity distribution is nearly
spherically symmetric and only the 6rst two Legendre
polynomials are needed in its expansion. The Boltzmann
equation then reduces to a pair of fairly manageable,
coupled differential equations. The solid-state break-
down being discussed here satisfies this criterion since,
as was mentioned earlier, to obtain appreciable multi-
plication the average electron (or hole) energy must be
approximately 1.0 ev, whereas the energy of the optical
phonons is of the order of 0.j. ev.

Within the approximation mentioned above, the
velocity distribution function can be written in the form

N(c,8) =Bp( )c+By( )ccosO, (0
' G. H. Wannier, Bell System Tech. J. 32, 170 (1953).
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(10)

(cos8—1)= I g(c8) (cos8—1)dO.
tt (dni 2nig —np l np(c )+ i

=- +4sr Fp(c,c') dc' (2)
3&dc c ) r r(c') Equation (9) integrates immediately to give the relation

where c is the magnitude of the electron or hole velocity 2Ilro/ntc' compared to 1, Eq. (3) becomes
and 8 is the angle it makes with the electric field. When
the electron energy is below the pair-production thresh-
old, no and nj are solutions of the equations

dnp ni t n, (c')
tt = —+4sl

~
Fi(c~c ) —dc .

dc r & r(c')

oGC n], (4vcnp/mr)+ constant. (12)

(3) Substituting into Eq. (10) gives the differential equation

Here it=eh/rn is the acceleration, r the collision time,
and

dn p 3(1—cos8) ttoo

+ no=
dc mca'7-'

const(cos8 —1)
(13)

F„(c,c') = P (cos8)F(c,c', cos8)dQ, (4) This equation has the integrating factor

where F(c,c', cosH) is the probability that in an electron-
phonon interaction an electron of velocity c' is scattered
through the angle 8 with final velocity c. The pair of
equations, (2) and (3), are just those given in Wannier s
paper for the motion of electrons in a gas.

At room temperatures in Si or Ge very few optical
phonons are excited, so an electron will almost always
lose energy in an interaction with the lattice vibrations.
F(c,c', cos8) then takes the form

F (c,c', cos8) =b(c—(c"—2Itro/rn) ')g (c,8)/c', (5)

where J'g(c,8)dQ= 1, 8 is the Dirac delta function, and
u is the frequency of the optical mode which, in the
following, will be assumed constant. Fp(c,c') is now
given by

Fp(c,c') =8(c—(c" 2h—/nato) &)/c o,

and Eq. (2) becomes

8 (dni 2ni) np f ( ( 2~to
8~ c-~ "—

3(dc ci r & 0 ( rni &

(6)

np(c') c"dc'
X — . (7)

r(c') c'

After performing the c' integration, advantage may be
taken of the fact that 2Itoo/rnc' is generally small com-
pared to unity by making a power series expansion in
this parameter. The result, to lowest order, is

tt (dni 2nil takeo d /no) noc-
34dc c ~ rnc' d 4cr)

tt d Ato d fcnpi

3 dc nt dc 0 r ] (9)

To the same order of approximation, i,e., neglecting

By multiplying through by c', this equation can be
written in the form

I
3(1—cos8)Italo dc

exp
ma'v' c

(14)

with which it is possible to construct the general solu-
tion, but the result is so complicated as to be almost
worthless for practical purposes. At this point, there-
fore, the approximation of constant mean free path
will be made (r=X/c) In addi. tion, the velocity de-
pendence of the factor (1—cos8), which should not be
great, will be neglected. With these simplifications the
solution of Eq. (13) is

where
no Ae ~'~+ ', B——e E'~Ei(F—/os),

(ehl~)'
W=

3(1—cos8)Ato

(15)

(16)

and A and 8 are constants of integration. The Ei func-
tion used here is that defined and tabulated in the WPA
tables. "

A qualitative understanding of why S' is the im-
portant parameter can be obtained by considering the
average rate of energy gain by electrons in a spherically
symmetric velocity distribution. After being accelerated
for a time v, an electron with initial velocity c cos8
along the field will have a speed c cos8+e8r/rn in this
direction. The average energy gain in time T, obtained
by squaring this expression and averaging over 8, is
then (ehX)'/2rnc'. On the other hand, an electron loses
energy Ace in this time. At equilibrium the rates of
energy gain and loss must be equal, which gives the
condition

(ebX)'/4E It(o, or F/W 1, (17)

which is exactly the result one would obtain from a
consideration of the distribution function, no. From
this argument one sees that the form of the velocity
distribution and the average energy of the electrons are
determined by a competition between the process of

"Tables of Sine, Cosine, and ExPonentiat Integrals (Work
Projects Administration for City of New York, New York, 1940),
Vol. 1.
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energy gain from the field and that of energy loss to Combining this result with Eq. (20) then gives
the phonons.

IV.

In the high-velocity region, the equations which
determine the distribution function are

and

a d her d c'no
nac' =——c'no-

3dc mXdc T'
c'sy sy

ozzo' ———(1—cose)
T

(18)

(19)

where T is the mean free time for pair production, With
the exception of the terms involving T, they are identical
with Eqs. (9) and (10). These terms describe a con-
tinual loss of high-energy electrons. For each electron
so lost it is assumed that another enters the distribution
at zero velocity, thus keeping the total number of
particles constant. Of course, this is somewhat of an
oversimplification, since, in producing a pair, an elec-
tron will not drop exactly to zero energy, although,
almost invariably, it will have quite a small energy
after such an ionization. The gas discharge calculations'
have shown that such an approximation hardly changes
the values of ionization rate that one calculates. Its
only effect is to cause an unimportant singularity in
the distribution function at c=0.

As was pointed out earlier, the solution of Eqs. (18)
and (19) for all values of c is very dificult because of
the presence of the velocity dependent term 1/T. This
is particularly true near the threshold for pair pro-
duction, where the percentage change in 1/T with
velocity is large. For higher values of c, however, the
sit:uation is simpler, since the 1/T term changes fairly
slowly and also becomes big enough to control the
behavior of ep and e~. In this range both np' and e~'
are very large, so that in terms such as (d/dc) (c'ni) it
is permissible to neglect the derivative with respect to
c' since czzi'/zzi~c/aT))1 if one uses values of the mean
free path for pair production estimated in Sec. II and
field strengths below 10' volts/cm. With this approxi-
mation Eq. (18) becomes

This equation has a solution of the form ep= e"~ where,
because of the slow percentagewise change in 1/T for
energies more than a few tenths of an electron volt
above threshold, S"( (S')'. Using the quadratic thresh-
old Iaw discussed at the end of Sec. II, one estimates
that this approximation is valid for energies greater
than 0.3 ev above threshold. In this range S is then
determined by the equation

G~T Au 1
(S )' (S )+ =0

3 mX T
(25)

From this formula, S' is found to be

where
S'= 6/T, —

1 3iza& 9 (h(u) ' 12 l

+ —
( f+—

2 ma9, a4EmX) a'

(26)

(27)

The quantity 1gp is then given by the relation

t" dc)
zzo ——D exp)

&.. T)' (28)

where cp is the velocity at the matching point and D an
integration constant. It will be recognized that the
method of solution used here is entirely analogous to
the WKBJ method, T/6 representing a large and rela-
tively slowly varying "wavelength. "

Having found forms for the velocity distribution, the
final step in the calculation of e; is the matching of these
solutions at c=co. The constants 3, 8, and D must be
determined such that mp and ni are continuous through
the matching point and such that the total number of
particles is unity. Calling the two independent solutions
in the low-velocity region Pi(c) and f&(c), respectively,
one obtains the following set of algebraic equations to
determine 3, 8, and D:

8 h(d 11o

S] — Sp
l

3 1' T

The other equation is

CR] 1Zy 11y
azzo' = (cos0—1)

T T

Differentiating gives the relation

ei'——aTep" —gT'eo',

(20)

(21)

(22)

A/i(cp)+Biz(co) D=0

A/i

(co)+Blitz

(co)+AcpD/X= 0, (29)

co pCp

cQi(c)dc+8 ' c'Pz(c)dc=1.
6 p 0

The contribution of the high-velocity region to the
normalization has been neglected in the last equation
since no falls very rapidly in this range (see Fig. 1).

The ionization rate per unit time, I, is given by

'Jly = QTÃp (23)

which, to the same approximation as used above, can
be written

f c 1zpdcI—
)

~cp T
(30)



E LE CTECON M ULT I PL I CATION 1419

which, from Eq. (18), equals

&coI= cp'Np(cp) —co—'N, (co)
mX 3

(31)

to numerical calculation, namely,

(cp pC

cgi(c)dc+8 cfi(c)dc . (40)
p

Using formulas (10) and (15), this expression becomes

a 7CpI= 8= B.
3(1—cos8) 3(1—cos8)

(32)

n;, the ionization rate per unit distance travelled along
the held, is obtained by dividing I by the drift
velocity, t.". This quantity is given by

1
t

1 }argo'c'dc
c=— Nic dc=

3 " 3 " (1—cos8)
(33)

or

2 I' XQBpcdc

3 ~ (1—cos8)

2 t"0 Lacc=- ' [A&i(c)+Bgi(c)]dc.
3 ~

p (1—cos8)

(34)

(35)

A and 8 are given by the following expressions obtained
from Eq. (29):

1 t'Ps(cp) Acp(1 —cos8)
+lt s'(cp) I, (36)

(det. ) 0 X )
—1 (pr(cp)hcp(1 —cos8)

+Pi'(cp)
I

~

(det. ) 0

The factor (det. ) is the determinant of the coeflicients
in Eqs. (29). Both of these formulas can be simplified

by noting that

(OEo q
8 co(1—cos8)/X =

(
—i,

&Wcp)

where 0 is the dimensionless parameter

0= L1+(1+4(1—cos8)W/}'in') '*j, (37)

and W is defined in Eq. (16).The following expressions
for A and 8 are obtained:

a-z, 1
A =——(0—2g's(cp)+ 1

cp W (det.)

(0—2)Eogi (co)

Wco(det. )
(39)

The formula for o,, now takes a form which is amenable

where, for simplicity, the small number of electrons
having velocity above cp is neglected in evaluating c.
Integrating by parts then yields

Notice that to evaluate o.; it is not necessary to calcu-
late the denominator of A or 8 since this term enters
in the same way in I and c and thus cancels in the ex-
pression for n, . With Eq. (40) the calculation for n, is
complete and it is only necessary to compute to obtain
its values. These will be presented and discussed in the
next section.

Before using Eq. (40) to evaluate n, it; is necessary l:o
choose a value for Ep, the energy at which the high and
low velocity solution of the Boltzmann equation are
matched. The discussion of Sec. II indicates that Ep
should be taken a few tenths of an electron volt greater
than the threshold for pair production. Unfortunately,
however, this threshold is a quantity whose value is
dificult to ascertain with any accuracy. It is true that
if one assumes spherical, nondegenerate energy bands
with equal masses for electrons and holes that the
conservation laws for energy and crystal momentum
require that the threshold should fall at one and a half
times the gap width, but the band structures in Ge
and Si are certainly more complicated than this and,
in addition, such a calculation takes no account of
umklapp or phonon processes. The latter certainly
permit some pair production at somewhat lower energies
but they probably have little importance in deter-
mining the energy of principal importance here, namely
the energy at which the mean free path for pair pro-
duction becomes smaller than that for the electron-
phonon interaction. On the other hand, the form of the
energy bands has a marked inAuence on this value as
can be seen by repeating the energy-momentum argu-
ment mentioned above with different band shapes or
different effective mass ratios. In silicon (the element
on which most of McKay and McAfee's work has been
done) the shape of the energy bands is in doubt.
Calculations of Herman and Callaway" suggest that
the valence band has a triply degenerate maximum at
&=0 and that the conduction band edge occurs away
from k=0, but the details of this structure are still
obscure. This lack of knowledge makes any estimate of
the pair-production threshold quite risky, but calcula-
tions using the Herman-type bands with the minimum
in the conduction band halfway to the edge of the
Brillouin zone suggest that, unless the effective masses
have rather special values, the threshold obtained from
the conservation laws will be somewhat greater than
one and a half times the gap width, perhaps somewhat
over 2.0 ev in Si. Clearly, this 6gure is not a very reliable
one but, without more information about the bands in

»Frank Herman and Joseph Callaway, Phys. Rev. 89, 518
(1953}.
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FiG. 2. Ionization rate versus electric field for silicon.

Si, it is hard to do better. The value of over 2.0 ev
seems high but there is a certain amount of experi-
mental evidence to support it. McKay and McAfee'
have done experiments in which they bombarded Si
with o. particles and observed the amount of energy
required to produce a hole-electron pair. The result
was 3.6 ev per pair, a surprisingly large figure com-
pared to the gap width of 1.0 ev, suggesting that the
pair-production threshold is, indeed, abnormally high
in silicon. As was mentioned earlier, the value of Eo is a
few tenths of an electron volt greater than the pair
threshold and consequently will be taken to be 2.3 ev.
The shape of the n; ~s h curve is not too dependent on
this value of Eo, but a change in it would aGect the
value of X deduced from the experiments.

Using the value for Eg of 2.3 ev, the best fit of
Eq. (40) to experiment is obtained with a mean free
path, ), of about 200A. This value is uncertain mainly
because of lack of knowledge of Eo. An estimate of
what sort of error to expect can be made by fitting to
experiment with various values for Eo. Outside limits
for this quantity are 1.5 ev&EO&3.5 ev from which
one obtains the mean-free-path range, 160A &)«260A.

The o., versus 8 curve is shown in Fig. 2. Agreement
between theory and experiment is good in the high-field
region but considerably poorer for lower values of 8.*
Experimental error is large in this region but, in addi-
tion, there may be another factor which makes the
observed o.; values larger than those calculated. In the

*Note added em Proof In a private conver. —sation Dr. McKay has
informed the author that his latest experiments give somewhat
smaller values of o.; at low fields than those plotted in Fig. 2.
This change will considerably improve the agreement between
theory and experiment.

experiments of McKay and McAfee it was assumed that
the electric field could be calculated from the average
donor and acceptor densities. However, small local
fluctuations in these quantities cause considerable
deviations of the field from the mean, and, since o.;
varies so rapidly with h, it is possible that the observed
n; values are typical of an electric field that is larger
than the average. Unfortunately, any quantitative
estimate of this effect is exceedingly difficult since
variations in donor density, besides being caused by
statistical fluctuations, may also be produced during
the growing of the junctions.

Although there is no simple expression for e; as a
function of 8, the numerical calculations show that the
general form of the curve is determined by the factor
e s'w which appears in Eq. (15).Physically this means
that n; is limited by the inability of electrons to go
rapidly from low to high energy against the drag of
the phonon 6eld. In the neighborhood of 8=6&10'
volts/cm, however, the field becomes large enough that
there is an appreciable chance for an electron to be
accelerated from zero velocity to the pair-production
threshold before it makes a collision with a phonon.
At this point the phonon 6eld ceases to play an im-
portant role and o,, is approximately given by the in-
verse of the distance an electron has to travel in the
electric field to go from zero energy to 2.3 ev. In this
high-6eld region the variation of o.; with 8 is linear as
compared with the exponential dependence at lower 8.
This fact explains why the n, curve rises rapidly for
low b and then appears to saturate for field strengths
in the neighborhood of 6)&10' volts/cm.

VI.

In the preceding sections of this paper, gas discharge
theory has been used to describe the breakdown process
in Si and Ge junctions. These calculations explain the
course of the n; vs 8 curve and thus support the inter-
pretation McKay has placed on his data as well as
giving one con6dence in the application of gas theory
to the solid-state discharge. A by-product of this in-
vestigation is the value of the mean free path for
electron-phonon scattering in Si at 2.3 ev. The figure of
200A quoted in the text is uncertain mainly because of
lack of knowledge of Eo and could be in error by about
30 percent. Finally, it is suggested that certain devia-
tions of theory from experiment are explainable in
terms of fluctuations in donor or acceptor density within
the junctions.

In conclusion the author would like to express his
thanks to Dr. K. G. McKay and Dr. D. J. Rose with
whom he has had numerous fruitful conversations on
the topics set forth here. He would also like to express
his thanks to them and to Conyers Herring for reading
and commenting on the manuscript.


