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The functional dependence of the observed de Haas-van Alphen effect in zinc has been compared with
the predictions of the free electron theory. The dependence of the period on the magnetic field, and of the
amplitude on the temperature appear to be correctly given. However, the predicted dependence of the
amplitude on the magnetic field is in disagreement with the experimental results. An empirical formula
for the amplitude dependence is given which differs from the free electron formula in that it contains an
additional factor of 1/H. This formula is in good agreement with the experimental results.

INTRODUCTION

HE de Haas-van Alphen effect is an oscillatory
component of the diamagnetic susceptibility of
certain conductors. It has been observed in some ele-
ments such as bismuth,! zinc,? and beryllium?® at liquid
hydrogen temperatures and in magnetic fields less than
ten thousand oersteds. Other elements, such as lead,!
only show the effect at temperatures of the order of one
degree Kelvin and in magnetic fields of the order of
eighty thousand oersteds. In all cases, except possibly
lead, the effect is highly anisotropic. This is true even
in aluminum® where the lattice has cubic symmetry.
No satisfactory calculation of the diamagnetism of
conduction electrons has yet been made. The thermo-
dynamic properties of a free electron gas in a uniform
magnetic field may, however, be calculated to any de-
sired accuracy.®” An oscillatory component of sus-
ceptibility is found which possesses many features of
the observed de Haas-van Alphen effect. In order to
obtain any sort of quantitative agreement, it is neces-
sary to assume values for the electron mass and for
the electrochemical potential which are smaller by
several orders of magnitude than those expected for a
free electron gas having the particle density of a con-
duction band. The use of these quantities as adjustable
parameters is usually justified by an appeal to the re-
sults of the Bloch theory.%?*
The dominant functional dependence of this oscilla-
tory term on the absolute temperature 7" and magnetic
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field H is given by
x(T,H)=AT(1/H)* csch(aT/H)

Xexp(—b/H) sinw[ (1/dH)—%], (1)

where 4, a, b, and d are constants which are determined
in terms of fundamental atomic constants by the
theory.

In the first three mentioned elements, bismuth, zinc,
and beryllium, the experimental parameters which
characterize the effect are of such a magnitude that
almost the whole range of the phenomena from the
strong field case in which the power of 1/H is dominant,
to the weak field case in which the exponential form of
the hyperbolic cosecant dominates, may be observed at
liquid helium temperatures using an electromagnet
capable of producing ten thousand oersteds maximum.
The effect in bismuth and beryllium is complicated by
geometrical factors which will be explained in the
following.

We present here the results of a detailed comparison
of the observed de Haas-van Alphen effect, in a zinc
single crystal containing 0.03 atomic percent aluminum,
with the functional form predicted by the free electron
theory. We find that quantitative agreement cannot be
obtained without using two free parameters in addition
to those permitted by the Bloch theory. These two
parameters are the phase of the oscillations and the
exponent of the factor 1/H. An empirical formula will
be given which is in satisfactory agreement with
experiment.

FREE ELECTRON THEORY

The Landau formula® for the oscillatory part of the
grand canonical potential Q(7",V ¢ H) of a free electron
gas is ’

ose. =

kTV(eH)% w (—1)7 cosm(r¢/BH—1
A7 \ ic/ == yisinh(ra2kT/BH) '

Here ¢ is the electrochemical potential, 8 is ef/2mc, and
the other symbols have their usual significance. This
formula is valid for arbitrary values of the magnetic
field. The error is temperature dependent and is of the
order of exp(—¢/kT).

10 D. Shoenberg, Proc. Roy. Soc. (London) A170, 341 (1939).
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Dingle has shown that if an electron spends a mean
time 7 in a given quantized state before making a
transition to another state under the influence of some
perturbation such as impurity scattering, the rth har-
monic in the above expression is reduced by the factor
exp(—rrh/TBH).

Blackman® has shown that if one assumes a general-
ized form for the energy relation 2mE=p-«- p, where «
is a tensor of rank two whose components in space
coordinates are a;j= (m/h?)(0*E/dk:0k;), the resulting
relations between energy, momenta, coordinates, and
field may be reduced to spherical form by the substitu-
tions p/=adp:; ¢/ =a; 3¢, and Hi' = (e;)?Hy. The
coordinate system has been chosen to diagonalize «a.
To complete the substitution, one must replace V
by V'= (alagas)—§V and H by H’= (a1a2H32+a2a3H12
+azH?)? in Eq. (2) above.

The magnetic moment is then given by

M= —gradxQ(7,V'i,H")

azasHy 3)
= mX(T: V’,{,H’){agale},
a3
where 91 is the total mass and x the susceptibility per
unit mass.

The effect of electron spin is to include the factor
2 cos(rmH/H') in the rth harmonic in Eq. (2).

The complete expression for x thus includes harmonic
terms which have been omitted from Eq. (1). Once the
fundamental has been obtained, it is possible to esti-
mate the magnitude of the error made in neglecting
them.

METHOD OF MEASUREMENT

In general, a body with magnetic moment M in a
magnetic field H experiences a translational force
—(M-v)H and a torque MXH. Either the force or
the torque may be used as a measure of the suscepti-
bility of nonferromagnetic bodies. For a measurement
of the field independent susceptibility, the body force
(Faraday) method is to be preferred, since it is capable
of yielding absolute values of the susceptibility. The
torsion method is capable of measuring only the sus-
ceptibility difference in various directions in aniso-
tropic media. For the measurement of field dependent
susceptibility, the torsion method has the distinct
advantage that homogeneous magnetic fields may be
used. If the susceptibility be strongly dependent on the
field, the body force method will reveal only a value of
the susceptibility averaged over the different fields
along the specimen.

The z component of the torque on a body having a
magnetic moment described by Eq. (3) above is

C.= (MXH),= —IMH*{a21820103} 110120003
+d31¢1320¢1a2}x(T,V'yf,H')y (4)

where the a;’s are components of the matrix which
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transforms the coordinate system from the space co-
ordinates in which the torque is measured in the z
direction and the magnetic field is applied along the
x axis to the body coordinate system in which the
tensor « is diagonal. H’ is now

H{0112a2a3+a212a3a1+0312a1a2} 5,

If ¢ be the angle between the magnetic field and the
line of nodes of the body system, 6 the angle between
the z axis and the 3 axis of the body system, and ¥ the
angle of rotation of the 1 axis of the body system from
the line of nodes about the 3 axis, these components are

@11=C0S¢ cosy— cosf sing siny,
@12=sin¢ cosy-+cosh cosp siny,

@s1= — cos¢ sing— cosf sing cosy, (s)

@29= —sing siny+cosf cos¢ cosy,
a31=sind sing,
az2= —sinf cose.

An hexagonal crystal has sixfold rotational symmetry
in the basal plane. Unless one assumes isotropy in the
basal plane (a;=as), at least three such tensor dis-
tributions arranged so that they go into each other
under a rotation through 27/3 must be chosen. Since
this is the simplest nontrivial case, we shall assume it
for further computation.

The three distributions will each contribute to the
torque. One contribution will be that given above and
the other two may be obtained from it by replacing
functions of ¢ by functions of Y=4=2x/3. In these experi-
ments, we attempted to put the 1 and 3 axes of the
crystal in the plane of the magnetic field. Therefore, let
0=3%m+n and ¢= ¢ where 9,£K<1.

Hy' = H{aa; sin’p—+asas cos?d}?,
H,'= H{aos sin’p+5 (@sas+3asqs) cos’ep
F3V3 (cz03—arse) (£ cos¢—n sing cose) } 2,
Co/MH?= {[ar0a— s Ix (Ho' )+ [ara—3 (o 3asar) ]
‘x(Hy)+x(H-')]} sing cosp
+3V3[aser—asas ][ x () —x (H-')]
-[£ sing cos¢— 1y (cos®p—sinZp) .

We can see that small errors in orientation are
negligible except where ¢ is close to zero or to iw. For
¢=1m the torque vanishes regardless of the value of ¥.
It is this feature which leads Shoenberg! to suggest
that the vanishing of the de Haas-van Alphen effect
be used to determine the position of the 3 axis rather
than the vanishing of the couple at room temperature,
since any anisotropy in the suspension may shift the
angle at which the couple vanishes.

As we shall subsequently show, our experimental
value of the product ayas is so much greater than either
asz or asay that the effect in zinc has a very simple

(6)

1D, Shoenberg, Trans. Roy. Soc. (London) A245, 1 (1952).
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dependence on the angle ¢. It is this feature which
makes the analysis of the temperature and field de-
pendence in zinc considerably less difficult than is the
case for bismuth or beryllium.

THE TORSION BALANCE®

The torsion balance used in these experiments differs
from those previously used in that the torsion head is
replaced by a wall type galvanometer modified by
drilling an extra hole through its base. The quartz rod
holding the specimen is cemented to the galvanometer
coil. Light reflected from the galvanometer mirror falls
on a split photocell. The output of the photcell is
amplified and the voltage applied to the galvanometer
coil in such a way as to oppose its motion. The current
in this feedback loop is thus proportional to the torque
acting on the speciment. This scheme has several ad-
vantages. One is the very high effective spring constant
of the balance so the actual deflections of the specimen
are negligible, of order of a few minutes of arc for the
largest torques. With this small motion, the effect of
eddy currents in the specimen is not noticeable and
equilibrium is achieved almost immediately. Another
advantage is the possibility of using an ayrton shunt
to vary the sensitivity of the balance. The circuit may
be used for automatic recording as in the block diagram
given in Fig. 1.

PREPARATION OF SPECIMEN

The single-crystal specimen, in the form of a sphere
approximately 1% inches in diameter, was grown by the
method of Tammann in a graphite mold. The furnace
was cooled from about 30°C above the melting point
to 20°C below at a rate of about 3 °C per hour. A helium
atmosphere was used to protect the melt from oxida-
tion. The crystal was etched with ten percent hydro-
chloric acid in ethyl alcohol. The strongest etch plane is
parallel to the basal plane (001) and three secondary
etch planes are parallel to crystal planes of type (010).

To achieve the desired orientation with respect to
the specimen holder, the specimen was placed in the
holder on the stage of a metallurgical microscope. The
vertical illuminator of the microscope was used to

‘ Amplifier

920 Phototube

Esterline
Recorting Toroe Meter | "
Recording
T

| Ayrton
Shunt

Coil in Torsion Balance

F1G. 1. Block diagram of circuit for recording torsion balance.

12 The final form of this balance was the result of contributions
by W. F. Love and G. T. Croft as well as the authors.
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Fic. 2. Typical torque vs magnet field current curve for a zinc
crystal at liquid helium temperatures. The angle ¢ between the
hexagonal axis of the crystal and the magnetic field is 40°.

provide light having a known direction. The specimen
was rotated until one of the secondary etch planes re-
flected strongly. The specimen was raised slightly
without altering its orientation and the holder carefully
wet with Duco cement. The specimen was then re-
placed in the holder and the brilliance of the reflection
checked while minor adjustments in orientation could
still be made. After the cement had dried, the reflection
was again observed. If nothing had changed, the as-
sembly of holder and specimen was cemented to the
quartz rod connected to the torsion balance. The error
in orientation could hardly be greater than a few degrees
of arc.

Measurements at room temperature were made pri-
marily to determine the relative orientation of the
crystal axes with respect to the reference scale on the
magnet base. The torque at constant field was measured
at fifteen-degree intervals through three hundred and
sixty degrees of arc. The orientation of the crystal axes
with respect to the reference angle w was determined
by the method of least squares.

As a precaution against the presence of ferromagnetic
impurity, either in the specimen or on the suspension,
the torque was also measured as a function of field at
constant angle. The computed values of the suscepti-
bility difference were plotted as a function of reciprocal
field (Honda plot). If a significant amount of ferro-
magnetic impurity be present, the susceptibility dif-
ference will depart from constancy, and if the impurity
can be assumed saturated, the slope of the Honda plot
gives the magnetic moment and the intercept at in-
finite field gives the true susceptibility difference. Those
specimens which showed ferromagnetic contamination
were discarded.

MEASUREMENTS AT LIQUID HELIUM
TEMPERATURES

A typical result of measurements at liquid helium
temperature is shown in Fig. 2. The zinc-aluminum
crystal weighted 1.6377 grams. There are more points
at the low field end of the graph than could conveni-
ently be shown. The especial virtue of the torsion
balance used is that it permits one to measure these -
small torques with the same relative ease and accuracy
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TaBLE I. Reciprocal field at crossover points, in 10*(oersted)1.

Zinc-aluminum
105° 240°  30°
75°  60°  30°

82.8°
41.2°

45°
70°13" 40°13’

75°
15°

255°
75°

1.193
1.513
1.829
2.154
2.493
2.815
3.142
3.457
3.809
4.133
4.478

1.032
1.250
1.463
1.676
1.892
2.111

as the large torques at high fields. The magnetic field
at the highest point shown (field current 12.19 amperes)
is 9570 oersteds.

PERIOD AND PHASE OF THE OSCILLATIONS

After the results of observation have been trans-
formed, that is, the magnetic field current converted to
field strength, and the torques weighted by the factor
H72 the next and most straightforward step is to deter-
mine the period and phase of the oscillations. A large-
scale plot is made with abscissa proportional to H™!
and ordinate proportional to C.H2. The contribution
of the field independent susceptiblity difference is
taken as the mean of the oscillations. The values of
the reciprocal field at which the graph crosses this mean
value are tabulated. The crossover points should satisfy
the relation

(I/H) crossover = d(n-+¢), 7

where # is an integer and ¢ is the phase in multiples of
w radians. [See Eq. (1).]

The 7 corresponding to the first observed crossover
may be assigned arbitrarily, but has been taken even

TasLE II. Period and phase of oscillations.

T°K ) ¢ d X105 (oersted) 1 & (radian/m)
Pure zinc
4.2° 349° 45° 2.5344-0.007 0.5124+0.037
4.2° 82.8° 41.2° 2.18640.003 0.3084:0.019
Zinc-aluminum
4.2° S 15° 70°13’ 3.2334-0.007 0.4224-0.020
4.2° 45° 40°13’ 2.17740.006 0.5894-0.040
4.2° 105° 75° 3.2824-0.011 0.4084-0.028
4.2° 240° 60° 2.888+0.012 0.3664-0.042
4.2° 30° 30° 1.6554-0.005 0.4144-0.033
4.2° 15° 15° 0.8884-0.005 0.5384:0.104
4.2° 255° 75° 3.2514+0.006 0.36640.014
14.1° 345° 40° 2.186+0.009 0.4244-0.041
18.0° 345° 40° 2.189+0.015 0.47740.059
20.4° 345° 40° 2.2014-0.027 0.494-+0.109

AND F. C. NIX

or odd to conform to the sign convention of the free
electron theory.

Table I gives the values of these crossover points
measured at various angles ¢ between the 1 axis of the
crystal and the magnetic field. Results for two speci-
mens are tabulated, one pure zinc and the other zinc-
aluminum. The results for zinc-aluminum are also
shown graphically in Fig. 3.

The results of the calculations of the period and
phase are given in Table II. The precision indices are
the standard, or root mean square deviations which were
computed according to formula given for example in
Worthington and Geffner.t

We have included in this table the results of measure-
ments of the period and phase at liquid hydrogen tem-
peratures. Within the experimental error, these are the
same as at 4.2°K.

The phase of the oscillations is markedly different
from that predicted by the free electron theory. There
is considerable scatter in the values obtained at various
angles. The average value is about 0.4r radian as com-
pared with —0.257 radian predicted by the free elec-
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T16. 3. Crossover points of oscillations vs integers for various ori-
entations of magnetic field with respect to the crystal axes.

tron theory. This value is in agreement with the results
of Mackinnon* with pure zinc, but not with those of
Sydoriac and Robinson'® who reported a phase of zero.

The square of the quantity d which we have given
for various angles in Table II has been shown to be a
linear function of sin?p. We assume that the values of
d® are known more accurately than those of sin’p.
Moreover, errors in ¢ and not in sin’¢ are assumed
equiprobable. For this reason, we assign a weighting
factor w proportional to (sing cos¢)~2. Because the
standard deviation of d also differs from angle to angle,
we make the weight w proportional to (dog)~2 as well.
The weights so assigned are listed in the column
headed w in Table III. They have been normalized
such that Y_w=09, the number of observations. Figure 4
shows the graph of sin?¢ against @>.

From the intercept at ¢*=0 in principle, one could

13 A, G. Worthington and J. Geffner, Treatment of Experimental
Data (John Wiley and Sons, Inc., New York, 1943), p. 249.

141, Mackinnon, Proc. Phys. Soc. (London) B62, 170 (1949).

15 G. Sydoriac and J. E. Robinson, Phys. Rev. 75, 118 (1949).
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determine the ratio as/a;—as. The parameters are such
that our value for this ratio is —107°+107% The nega-
tive sign is hardly significant in view of the uncertainty,
but it is at least consistent with the known positive
Hall coefficient of zinc. From the intercept at sin’¢p=1,
the effective temperature (aias)*7y may be computed.
The value obtained is 1.9840.01°K which agrees
within the stated error with the value published by
Mackinnon of 1.964-0.02°K for pure zinc. In this ex-
pression T is the degeneracy temperature {/k of the
electrons responsible for the effect.

The calculated errors in angle from the fitted curve
are also listed in Table III. There are no errors in excess
of the expected accuracy in orientation of the crystals.

TEMPERATURE DEPENDENCE OF THE AMPLITUDE

In this section, and in the following, whenever we
refer to the magnitude of an extremum it is under-
stood that the correction for the contribution of the
field independent susceptibility has been made. At con-

TasrLe III. Quantities used to compute (ayas)?7.

¥ d2 X101

w ¢ (oersted) ~2 sinZp w A
Pure zinc
349° 45° 6.419 0.5000 0.009 —3°27
82.8° 41.2° 4.778 0.4339 0.557 +0°59’
Zinc-aluminum
255° 75° 10.57 0.9330 0.982 +1°12’
105° 75° 10.77 0.9330 0.327 —0°47
15° 70°13’ 10.45 0.8854 0.533 —2°32
240° 60° 8.341 0.7500 0.098 +1°27'
45° 40°13’ 4.739 0.4169 0.448 +0°12’
30° 30° 2.739 0.2500 1.069 +-0°44’
15° 15° 0.7886 0.0670 4.977 —0°13

stant field and angle, the amplitude of an extremum
|C.| exs should obey the equation [see Egs. (1) and (6)]:

|Cylext=A'T csch(a’T).

Dividing through by 7" and taking logarithms of both
sides gives

log(|C.| ext/T) =logA’—log sinh(a'T), (8)

which for large enough values of the argument of the
hyperbolic function becomes the equation of a straight
line. Such a plot for the extremum at H equal 5800
oersteds, ¢ equal 40° of arc, for temperatures between
1.5 and 4.2°K is given in Fig. 5. The pronounced posi-
tive curvature of the graph shows that the asymptotic
formula for the logarithm of the hyperbolic function
cannot be used. The graph is a plot of —log sinh(0.37)
with the constant chosen so that the curve passes
through the point at 7" equal 3°K.

The temperature range available through the use of
liquid helium is not great enough to obtain much more
than order of magnitude accuracy for the parameters
involved. Consequently, the measurements were re-
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Frc. 4. Sin% plotted against the square of the period of the
oscillations. A linear relation is predicted by the theory.

peated at liquid hydrogen temperatures. Values were
obtained at 20.4° at 18.0°, and at 14.1°K. All the points
are shown in Fig. 6.

The asymptotic form of the logarithm of the hyper-
bolic sine may be used in the liquid hydrogen tempera-
ture range. In an effort to get a good value for the
parameters of the curve the logarithm of the hyperbolic
sine was rewritten as

log sinha'T'= —log2+log[1—exp(—2a'T) ]
+log exp(a’'T).

The quantity log[1—exp(—2a'T)] was calculated for
each point using the value of the constant o’ equal to
0.26 estimated from the slope in the asymptotic region.
This quantity was then used to linearize the curve and
the slope taken. This procedure yielded a new value of
the constant @’ equal to 0.264. An iteration of this pro-
cedure resulted in a new value of the constant, but
negligibly different from the old. The curve drawn in
Fig. 5 is computed from the fitted parameters.

FIELD DEPENDENCE OF THE AMPLITUDE

By reasoning similar to that used for the temperature
dependence, we expect that at constant temperature

15
14
13
12
1]

10

w0

k}ll"’ (dyne-cm/ °K )

3 | |
1 2

N,

3
Temperature (°K)

F16. 5. The logarithm of the amplitude at constant field minus
the logarithm of the temperature plotted against temperature
from 1.5 to 4.2°K. Positive curvature is expected of the logarithm
of a hyperbolic sine for small values of the argument.
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FiG. 6. Log(amplitude) minus log(temperature) vs temperature
from 1.5 to 20.4°K. At hydrogen temperatures, the argument of
the hyperbolic sine is large so that it may be approximated by
the exponential function.

and angle the equation,

IC,l ext (sin¢

3
) }=10gA"-log sinh(a”’/H sing)
Mcosp\ H

—log exp(b''/H sing),

log [
©)

will be satisfied by the values |C.|exy marking the
envelope of the oscillations, and that the graph will
approach a straight line at large values of the reciprocal
field.

Forewarned by the results of the temperature meas-
urement, we shall expect that considerable curvature
will be shown at small values of the reciprocal field if
the temperature be in the liquid helium range.

The actual results are shown in Fig. 7. The angle ¢
is again 40° of arc. The temperature is the normal
boiling point of liquid helium (4.2°K).

The plotted points do indeed show a pronounced

0.

T T
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PR WY S B S

mcos §
T

1C,1ex

0.0

0.005
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)

~

o«

4 et
I(? (cersteds) !

Hsin®

Fic. 7. Log(amplitude) minus } logH vs H™. The solid curve is
the theoretical relation. The experimental points show negative
curvature at high fields where theory predicts positive curvature.
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curvature, and exactly in the expected region, but the
curvature has the wrong sign.

This negative curvature may be found in the results
of Shoenberg® for the amplitude dependence of the
de Haas-van Alphen effect in bismuth and in those of
Sydoriac and Robinson'® and of Mackinnon" with zinc.
They tended to place more confidence in the high field
points than in the low field points and, in consequence,
drew straight lines through the points taken at high
fields (small values of the reciprocal field) and observed
that the amplitude falls off more rapidly at low fields
than the theory predicts.

EMPIRICAL RELATION FOR FIELD DEPENDENCE

If one wishes to preserve the theoretical form of the
temperature dependence, and we see no reason to
abandon it, the left-hand side of Eq. (9) must be
altered. We have found that the addition of log (H sing)

T T T T T T T

1000

500

UL R RN

8
L IR

o
o

S
T

,,”.,
+

4

(3]

1 | 1 1
3 56
(10*/Hsin ) oersteds)™

(1Clext H"zsin3’2¢/mcos¢) dyne cm oersteds’ gm

ool—

Fi6. 8.Log(amplitude) plus } logH vs H™. The empirical equation
is a good fit to the experimental points.

is sufficient to give to the graph of the experimental
points the correct sign and magnitude of the curva-
ture. Figure 8 shows a log plot of the quantity
(|C.| extH? sin¥¢)/ (M cos¢) as a function of (H sing)~.

To illustrate the agreement more fully, we show in
Fig. 9 a plot of the same set of points as are shown in
Fig. 8 except that the ordinates have been corrected
by the factor [1—exp(—2a”’/H sing) ], where the con-
stant @'’ has been computed from the parameters deter-
mined from the temperature dependence. The graph
has become a straight line.

Since the phase of the oscillations is close to m/2
the series is almost a cosine series. Thus, the second and
all even harmonics tend to alternately increase and de-
crease the magnitude of successive extrema. The fact
that this is not observed in the high field points of
Figs. 8 and 9 may be due to this effect being partially
compensated by a small H? term in the monotonic
susceptibility.
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COMPARISON OF COMPUTED CURVES WITH
ORIGINAL DATA

We have combined the results of the measurement
of the phase and period for this particular angle from
Table IT and have computed the solid curve shown in
Fig. 10, taking the amplitude from the logarithmic plot
of Fig. 8. The envelope taken from Fig. 7 is lightly
dashed. Against this background, we display the points
computed from those shown in Fig. 1 as torque versus
magnet field current.

If we had elected to obtain the 3/2 power parameters
from the high-field measurements, the lightly dashed
envelop would diverge at the low-field end, becoming
too large by a factor of two.

The assumed 5/2 power dependence fits very nicely,
both at high fields where the power is dominant and at
low fields where the exponential dominates. The points
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Fic. 9. Log(amplitude) plus } logH plus a correction factor calcu-
lated from the temperature dependence plotted against H'.

at highest field are beginning to deviate from sinusoidal
behavior. This can be attributed to the influence of the
higher harmonics in the series. The second harmonic is
estimated to be about 15 percent of the fundamental
for these points.

FIELD DEPENDENCE AT OTHER ORIENTATIONS

Figures 11 and 12 show the field dependence of the
amplitude at other angles in the same manner as in
Figs. 7 and 8. The curvature has the wrong sign at
every angle if the 3/2 power dependence of the sus-
ceptibility be assumed. The separation of the curves is
a measure of the scatter in the amplitude. The slopes
of the curves differ slightly. Some of these discrepancies
are no doubt due to errors in determining ¢. Functions
of this angle appear in both ordinate-and abscissa.

We have rectified the curves based on the assumption
of a 5/2 power dependence of the susceptibility on the

EFFECT 1401

o1 T T T T T T

= G=a0°13'
T=4.218°K
S~

+
[¢,)

)
Illl||i|rlllrr]—rlﬁ*

(C,/mH’sin cos(b)xld’(emu/gm)
o)

Lid gt

+
S
-
|
|

a
10° /Hsin

Fic. 10. Field-dependent susceptibility of zinc as a function of
H~1. The solid curve is computed from the empirical parameters.
The lightly dashed curve indicates where the envelope should be
if the amplitude dependence of the free electron theory were
correct. These points were calculated from the experimental
points shown in Fig. 2.

reciprocal field using the constant &'’ computed from
the temperature dependence. The values of the slopes
and intercepts for the various orientations are listed
in Table IV.

The best we can say for the intercept is that within
the possible error of 30 percent it is independent of the
angle ¢. This constant 4 has a value of approximately
330 dyne-cm (oersteds)? per gram per degree Kelvin.
In the absence of a reliable theory to relate this quan-
tity to fundamental constants, we can proceed no
further.

We identify the constant & with the scattering factor
wh/76%*1% From the table, it can be seen that this factor
is roughly constant as ¢ ranges from 75° to 40° of arc.
It reaches a maximum at ¢ equal to 30° of arc and is
slightly smaller at ¢ equal to 15° of arc. Croft, Love,
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Fi1c. 11. Log(amplitude) minus § logH vs H~* shown for other
orientations of the crystal with respect to the field. The negative
curvature at high fields is contrary to the predictions of the free
electron theory.

16 8* i5 an effective Bohr magneton defined such that 8*H =gH".
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Fi6. 12. Log(amplitude) plus % logH vs H™! for various orienta-
tions of the crystal with respect to the magnetic field.

and Nix' observed similar variation with angle in
tin-antimony alloys. The custom is to report this pa-
rameter as an effective temperature X which is '7T/a"".
This effective temperature is also given in Table IV.

ELECTRONIC PARAMETERS

From the measurements of the angle variation of the
period of the oscillations, the parameter (eic2)iT
=1.98°K was obtained. On the assumption that the
parameter o’ appearing in the temperature dependence
relation can be identified with the constants given by
the free electron theory, we compute the value of
(c1c2)? to be 148. This leads directly to a value of 292°K
for the degeneracy temperature 7.

SUMMARY

The predictions of the free electron theory with
regard to the periodicity of the de Haas-van Alphen
effect and its variation with angle have been verified.

Our chief interest has been in the functional form of
the temperature and field dependence of the envelope
of the oscillations. It had previously been reported™
that the variation with field was nearly correctly pre-
dicted, while the variation with temperature was not.
We find, to the contrary, that the temperature variation

( 17 Croft, Love, and Nix, following paper, Phys. Rev. 95, 1403
1954). .

DONAHOE AND F. C. NIX

could be fitted quite well to the predicted functional
relation. Even with very generous allowance for experi-
mental error, we have been unable to account for the
observed field dependence on the basis of the predic-
tions of the free electron theory. We propose an em-
pirical modification of the formula for the oscillatory
susceptibility which we have shown to be consistent
with our experimental results.

x(T,H)=AT(1/H)5"2 csch(aT/H)
Xexp(—b/H) sinw[(1/dH)+56]. (10)

It should be mentioned that a term having this func-
tional dependence has been calculated for the con-
tribution of the surface states of a finite volume of
free electron gas:!®' However, it appears improbable
that this surface term could be used to justify the
empirical formula above since, for the field strengths
employed in this investigation, it is smaller than the

TasLE IV. Slopes and intercepts of rectified 5/2 power plots. The
constants ¢'’ and b’ are given in units of 10™*(oersted).

T =4.2°K
No. of
w @ logA"” a’ b X (°K) logA points
105°  75° 3.069 0.420 0.294 297° 2444 8
255° 75° 3.101 0417 0.333  3.34° 2477 8
15°  70°13'  3.094 0.420 0.249 2.52° 2468 - 12
240°  60° 3.145 0417 0270 2.70° 2.521 5
45°  40°13’ 3.145 0.420 0.282 2.85° 2.520 21
30°  30° 3.250 0417 0378 3.79° 2.626 0
15°¢  15° 3.133 0420 0.354 3.58° 2.508 8
T =14.1°K
345°  40° 3.665 1.404 0.304 3.05° 2.516 9
T =18.0°K
345°  40° 3814 1792 0.297 298° 2.559 7
° T =20.4°K
345°  40° 3.708 2.033 0.137 1.29° 2.406 5

volume term by many orders of magnitude except if the
electrons be confined to volumes whose linear dimen-
sions are of the order of a few lattice spacings.
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