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Magnetoresistance Effect in Cubic Semiconductors with Spheroidal Energy Surfaces
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The collision frequency of electrons having a spheroidal energy surface with acoustical modes of vibration
is calculated without neglecting phonon energy. Using an asymptotic form in which the collision frequency
is proportional to the square root of their energy, the electronic current in a semiconductor in combined
magnetic and weak electric 6elds can be calculated in a closed form by the formal theory of conductivity.
The magnetoresistance effect in oriented single crystals of n- and p-type germanium observed by Pearson
and Suhl may be discussed consistently at least semiquantitatively with this calculation in both weak and
strong magnetic fields.

1. lNTRODUCTlON spheroidal energy surface with acoustical modes of
vibration will be calculated along the same lines as in
Seitz's theory. The collision frequency of rather high-
energy electrons may be proved to be proportional to
the square root of their energy; this is the generalization
of constant mean free path in the case of a spherical
surface. Vsing this asymptotic form of the collision
frequency, in the next section, the current density may
be expressed in a closed form as a function of both
magnetic and weak electric fields with the same pro-
cedure as that used by Blochinzev and Nordheim' in
discussing the electrical properties of divalent metals.
Only three typical but special cases are considered:
cubically symmetric families of spheroidal surfaces
may be found along six (100) axes (Case a), along
twelve (110) axes (Case b), and along eight (111)axes
(Case c). In the final section, we show that the observed
effects in p- and ts-type germanium samples may be
semiquantitatively discussed for (Case a) and (Case c),
respectively. The validity of the approximations and
simplifications in this calculation will be discussed
there briefly.

~ ~ ~

FRUITFUL study of the magnetoresistance
effect in oriented single crystals of germanium

was performed by Pearson and Suhl. ' They compared
their results with theories developed by Seitz' for weak.
magnetic fields and by Harding' for strong helds, and
they found certain discrepancies between the theories
and experiment. They pointed out that the theory
based upon anisotropies in the relaxation time alone
did not agree with their observations and that the idea
of nonspherical energy surfaces in the Brillouin zone
should be included in a better theory.

It seems, however, that the theory based upon
anisotropy in the relaxation time would agree with
their observations in p-type samples at least qualita-
tively, if one took into account the proper sign of the
integral I in the electronic theory proposed by Seitz.4

There still remain some discrepancies between theory
and experiment even when the proper sign of this
integral is taken into account. First, Seitz's weak field
theory leads to the result that P is negative and both
y and 8 are positive, whereas in Pearson and Suhl's
experiment 8 is negative in the m-type samples; and
second, large saturation values of magnetoresistance
are observed which cannot be explained with Harding's
strong-held calculations.

Johnson and Whitesell' have recently studied the
effects of both impurity scattering and intrinsic con-
duction upon the magnetoresistance, and found that
the former increases the gap between theory and
experiment and the latter decreases the gap. But there
are no experimental investigations satisfying the latter
condition.

In order to overcome the main discrepancies men-

tioned above, we here assume cubically equivalent
families of spheroidal energy surfaces, the simplest
nonspherical form, in the Brillouin zone. First, in the

appendix, the collision frequency of electrons having a

2. THE MAGNETORESISTANCE EFFECT

As shown in the appendix, the asymptotic form of
the collision frequency is dependent upon the wave
number only through energy. Using this, we can derive
the magnetoresistance of a cubic semiconductor in a
closed form with the same procedure as that used by
Blochinzev and Nordheim~ who discussed the magneto-
resistance in divalent metals.

In the formal theory of conductivity, when the
collision frequency depends upon the wave number K
simply through energy and the energy surface is
ellipsoidal, the solution of the Boltzmann equation in a
weak. electric held E can be obtained in the following
finite form without any assumption about the magni-
tude of the magnetic field H:

f= fs 4(dfsld~)—
y= (2~/Js) (G.V&W),

where

' F. Seitz, Phys. Rev. 73, 549 (1948).' D. Blochinzev and L. Nordheim, Z. Physik 84, 168 (1933).

' G. L. Pearson, and H. Suhl, Phys. Rev. 83, 768 (1951).
s F. Seitz, Phys. Rev. 79, 372 (1950).
3 J. W. Harding, Proc. Roy. Soc. (London) 140, 205 (1933).' The integral I in Seitz's paper (reference 2) should be negative;

Eq. (22c) should read I= ne(97'')/16c—'' V. A. Johnson and W. J.Whitesell, Phys. Rev. 89, 941 (1953).
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in which —e{i'E—i (e/c)L(OK 'E)XHj+(e/c)'(E H)ORH/~~OR~~)

i '+ (e/c)'(ORH H)/()OR((

and

X=B'{Hp+r(H p+H32) }, (g)

P(X)= {-,' —X+m-'X**exL1—Erf(X-')]), (9)

Q(X) = 1+Xex Ei(—X), (10)

in which c is the velocity of light and po is the conduc-

tivity mobility in the case of a spherical energy surface,
that is, with scalar mass mo, already obtained by
Seitz. Ei is the exponential integral and Erf is the error
function integral. In Eq. (7), the plus sign should be
taken for hole carriers, and the minus sign for electrons.

To satisfy the cubic symmetry in the Brillouin zone,
we must introduce several families of spheroidal surfaces
in the case of cubic crystals. Only three special cases
are considered in this calculation.

(Case a): We assume that the band edges may occur
at six cubically equivalent points (&j, 0, 0), (0, &j, 0),
(0, 0, &j), and that at each point we may find a,

spheroidal energy surface of the same kind, whose

rotational axis coincides with each (100) axis, as shown

in Fig. 1.
(Case b): In this case, we assume that twelve

spheroidal surfaces of the same kind may occur along
twelve (110) axes just as in (Case a).

(Case c):In this case, we assume that eight spheroids

may occur along eight (111)axes just as in (Case a).
In order to utilize the results obtained above, we

where OR is the eGective mass tensor and ([OR(( its
determinant. Using this distribution function, we can
readily calculate the current density I:

I= —(e/27r'h) ~ )~f~i,WdK

When the energy surface is given by Eq. (A.1) and
the corresponding collision frequency is given by Eq.
(A.14), the three components of I may be expressed in

the following closed form, fo being Maxwellian:

Ii LVeAr[——Ei+sr'B (E2Hg EEHg)P—(X)
+{B'(EH)Hi —XEi)Q(X)],

I,=~cA [Z,+~'*B(E,H, -rE,H,)P—(X)
+{Br(E H)H, —XE,)Q(X)],

(5)

I.,=&VcAfE,+&~B(rE,H, E,H,)P(X)—
+{B'r(E H)H3 —XE3}Q(X)7,

where lV is the carrier density, r and M& are given by
Eq. (A.5), and three quantities A, B, and X and two
functions P and Q are introduced which are defined by
the following equations:

(6)

B=&3m"A /4 c

assume further that these several families of surfaces
are far apart from one another and that the transition
of electrons from one family to a diferent one is
forbidden. Thus the total current may be obtained by
simply adding the independent currents arising from
each family.

In the preceding calculation, for instance in Eq. (5),
the coordinate axes defined with suffixes 1, 2, and 3
are so chosen that they form a normal right-hand
system in ascending order of suffixes and the 1 axis
coincides with the rotational axis of the spheroid. In
the following calculation another normal right-hand
system with su%xes x, y, and s is introduced, which is
formed with the cubic axes (100), (010), and (001) in
cubic crystals. The final results will be discussed with
this system because of the many advantages which. t
overs.

(Case a). 6 Spheroids along the (100) Axes

In this case, the component of the total current
density parallel to one of the cubic axes may easily be
obtained with the following procedure.

The carrier density of each family is sV/6, and the
current density from the (100) family is equivalent to
that from the (100) family; and the same relation also
holds for the other two pairs. Therefore, permuting
the suffixes 1, 2, and 3 in Eq. (S), with x, y, and s,
with y, s, and x, and with s, x, and y, successively,
summing up the components of current density, and
dividing by three, we can obtain the total current
density. We will write down only the expression for the
x component because the two other components may
easily be obtained by changing the sufFixes x, y, and s
cyclically in this expression:

I = (EeA/3) [(r+2)E
+n**B{E„H,[rP (X,)+. rP (X„)+P (X,)]

E,H „[rP(X,)+P—(X„)+rP (X,)$)
+rB'(E H)H, LQ(X.)+Q(X„)+Q(X,)]

E,[rX.Q(X,)+X„Q—(X„)+X,Q(X,)]], (11)
where

X,=B'$H '+r(H„'+H 2)], (12)

and X„and X, are obtained by cyclically changing the
suffixes x, y, and s in X,. The two functions P and Q
were already defined in Eqs. (9) and (10), respectively.

(Case b). 12 Spheroids along (110) Axes

In this case, the twelve families may be divided into
three groups:

x group: (011), (011), (011), (011),

y group: (101), (101), (101), (101),
s group: (110), (110), (110), (110).
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Now the (011) family is equivalent to the (011)
family as far as the contribution to the total current
density is concerned, and the same relation holds also
for the other five pairs. Thus the contribution from
the x group is obtained when the current density from
both the (011) and (011) families is given. The cubic
components of the current density from the (011)
family will be obtained in the following manner. We
choose three principal axes of this spheroid for con-
venience of calculation as follows:

1 axis; (011), 2 axis; (011), and 3 axis; (100).

The three components of I along these principal axes,
given by Eq. (5) with carrier density N/12, can be
transformed to the cubic components by

I,=Is, I„=2 '*(Ii—Is), and I,=2 '(IijIs). (13)

Also, the components of the vectors E and H in Eq. (5)
may be given as the following linear combinations of
cubic components:

E,,=2 *(E„+E,), Es 2'( E„+—E—,), —E,=E„
(14)

Hi 2'*(H„+H,)——, Hs=2 '( H„+H,), —and Hs H, . ——

As the current density from the (011) family can also
be obtained with a similar orthogonal transformation,
the current density from the x group can readily be
calculated. Those from the y and s groups can easily
be obtained by cyclically changing the sufFixes as usual.
Thus the x component of the total current density in

this case becomes:

I,= (NeA/3) [(r+2)E,+ (B7r**/4)

X {(r+1) (EyH, E,H„)[P(X+—)+P(X )

+P(I'+)+P(I'-)+P (Z+)+P (Z-)j
+ ( —1)[E.H. (P (Z+)+P(Z-))

E.Hw(P(~+)+—P(1' ))+(EwHw E-*H*)—
X(P(X )—P(X ))+E„H,(P(Y )—P(I' ))
—E,H.(P(Z )—P(Z ))])
+ (rB'/2) (E H)H. [Q(X+)+Q(X )

+Q(1.)+Q(l -)+Q(Z.)+Q(Z-) I
—(r+1) (E,/4)[X Q(X )+X Q(X )

+ I'+Q(I'+)+ 1'-Q(l'-)+Z+Q(Z+)+Z-Q(Z-) j
+L(r—1)/43{E.LX+Q(X+)+X-Q(X-)l
+E„[Z+Q(Z~) ZQ(Z )7—

+E.[I'+Q(I'+) —1'—Q(I'-) j)1, (15)

where

Xg= (B'/2)[(r+1)H'+ (r 1) (H '~2H„H, )]) (16)—

and V+ and Z~ are given by cyclically changing the
suflixes. Also I„and I, are obtained with the same
procedure,

v Jf+ i~~+~x)
vn, )

FIG. 1. Schematic diagram of the energy-momentun'1
surfaces in (Case a).

(Case c). 8 Spheroids along (111)Axes

With nearly the same procedure as used in the above
two cases, we can obtain I, in this case as follows,

I,= (NeA/3) [(r+2)E,+ (B7r&/4)

X{(2r+1) (E„H, E,H„)(P +—Ps+ P,+Pd)
—(r 1)[(E—„H„E,H, ) (P,—+Ps P, P~)— —
+H*((EV E.) (P'. Ps)+—(Ew+E.)—(P. Pd))j)—
+ (3rB'/4) (E H)H, (Q,+Qs+Q, +Qg)
—(r+ 2) (E,/4) (X,Q,+Xi,Qs+ X,Q,+XsQ~)
—[(r—1)/4jL(E.+E.) (X.Q.—»Qs)

-(E.-E.) (X.Q.-X.Q.)3, (»)
where P; and Q; (i = a, b, c, or d) are the abbreviations
of P(X,) and Q(X,), respectively, and

X~= (B'/3) [(2r+1)H'
+2(1—r) (H„H,+H,H, +H,H„)j,

Xs——(B'/3) [(2r+ 1)H'

+2(1—r) (H„H, H,H, H,H„)—j, —
18

X,= (B'/3) [(2r+1)H'
+2(1 r) ( H„H,+H—,H, —H,H„)], —

Xg——(B'/3) [(2r+1)Hs
+2(1 r) ( H„H—, H,H,+H,H—„)]. —

Now the current density I in a weak electric field E
may be written in the following matrix form with the
conductivity tensor Z,

L-
Jy,I„.

For the three special cases mentioned above, we have
already obtained the complicated expressions for this
conductivity tensor in a magnetic Geld. The resistivity
tensor VP can be readily calculated, as it is the inverse
tensor of Z. The magnetoresistivity p~ will be calcu-
lated by the following equation with nine components
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TABLE I. Calculated magnetoresistance constants
at low magnetic 6eld.

o/¹A
20t/NeA B7r&

p/NeA B~

y/NeAB2
8/¹AB2
—e'/¹A B'7r&
—X'/¹AB3rr&

-rf'/¹A Ban &

Case (a)

(r+2)/3
(2r+1)/3
—(r~ yr+1)/3

r
(r —1)~/3

(2r~+1)/3
r (r+2)/3
r (r+2)/3

Case (b)

(r+2)/3
(2r+1)/3
—(r+1)2/4

(r2+4r+1)/6
—(r —1)2/12
(3r2+2r +1)/6
(7r2+2r+3)/1. 2
(7r&+2r +3)/12

Case (c)

(r+2)/3
(2r +1)/3
—(r +2) (2r+1)/9
(r+2) (2r+1)/9
—2 (r —1)2/9

(2r +1)2/9
(2r2+1)/3
(2r~ y1)/3

5';; of the resistivity tensor and the direction of the
current vector:

pItI2=W„I 2+W„„Io2+W..I.2+(W „+W„*)IZo
+ (W„,+W,„)I„I.y (W,.y W.,)I,I., (20)

and the generalized Hall constant XII in a magnetic
field is calculated by

Rrl ———(E [I&&H])/(IH)2 (21)

Now we return to our three special cases. Before
discussing the magnetoresistivity and generalized Hall
constant, some properties of the conductivity tensor
are investigated.

The magnetoresistance constants at low magnetic
field strength, introduced by Seitz in his equation

The magnetoresistivity and Hall constant in a strong
magnetic field may be discussed with Eqs. (20) and
(21), respectively, but it is in general very tedious.
However, it becomes somewhat less laborious when H
is parallel to one of the special crystal axes, for instance,
(100), (110), or (111).

When H is parallel to the (100) axis, the conductivity
tensor 2 has the following form, for all three cases:

L12-=0, '

,0,

0,
L2,—Ls

0
I3
L2.

(28)

Similarly the resistivity tensor has the same form, and
thus the longitudinal magnetoresistivity p„, the trans-
verse magnetoresistivity p~, and the Hall constant XII
become:

S'g
8'1, 8'2 .
8'3, 5'1.

(30)

pl[ Wl 1/L1y ps, W2 L2/(L2 +Ls )q
(29)

HRII Ws ——Ls/(L——2'+Le').

It is very interesting to note that in this case both p~
and Rtt are independent of the vector I.

When H is parallel to the (111) axis, the resistivity
tensor has the following form:

I=(rE+n[E)&H)+pH E+y(E.H)H+8 v'E+, (22)
Thus p„, p~, and XII become:

can readily be obtained with an ascending power series
expansion in H of each component of Z. These are
listed in Table I. The normal conductivity and Hall
constant are certainly scalar quantities, but they depend
difterently upon r; thus the relation between the
conductivity mobility p and the Hall mobility @II
becomes

p, i= W1+W2+Ws= (L1+L2+Ls) ',

ps, = W1—(W2+Ws)/2= (2L1—L2—Ls)/
[(L1—L2)'+(L2 —Ls)'+(Ls —L1)'7 (31)

HRII3 *= (W2—Ws)/2= (L2—Ls)/
2[(L1—L2)'+ (L2—Ls)'+ (Ls—L1)'j

tslt 32r 3 (2r+1)

8 (+2)'
(23) When H is parallel to the (110) axis, 2 has the

following form:

and

P+y+5=0 for Case (a),

P+y —5=0 for Case (b),

P+y=0 for Case (c),

for all of the three cases.

(24)

(26)

(27)

When we put r equal to 1, these small field constants
are reduced to those obtained by Seitz in his electronic
theory without anisotropy of the relaxation time.

4 W. Shockley, Electrons and Holes en Senssconductors (D. Van
Nostrand Company, Inc. , New York, 1950).

This relation between the Hall and conductivity
mobilities has already been discussed qualitatively with
the idea of the re-entrant energy surface by Shockley, '
but here we consider it quantitatively with spheroids.

There are also some linear relations among the
constants which we think are due to the spheroidal
approximation. For instance,

L1,
Z, =—L„

.L4,

L3,
LI,—L4,

—L4
L4,
L2.

(32)

pii= (W1+Ws)= (L1+Ls) ',

ps = (W1—Ws) —Z'(W, —W, —W,)
= {L2+Z'(L1—L2 —Ls))/

f 2L,4'+L2(L1—I.,)), (33)

2 tHR = W4 XZ (W—1 W2 W'—s)——
= (L4+XZ(L1 L2 L2))/——

f 2L4'+L2 (L1—Ls) ),
where X and Z are the direction cosines of I to the
(100) and (001) axes, respectively. That is, in this case,
the transverse magnetoresistance and the Hall constant
depend upon the direction of I.

If we make an asymptotic expansion in H of the
components of the conductivity tensor, the saturation
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TABLE II. Calculated saturation magnetoresistance.

H direction

(100)
(110)
(111)

(100)
(111)

(110)

Case (a)

0
(r—1)'/(5r+1)
2 (r—1)'/9r

(r+2) (2r+1)/9r
(r+ 2)'/3 (2r+1)
(r+2)P(r+5)+Z'(r 1)'/—r]

9(r+1)

Case (b)
Saturation values of hp /po when I~~H

(r—1)'/(5r+1)
3 (r—1)'/(3r'+20r+1)
(r—1)~/3 (2r+ 1)

Saturation values of 9mp /32po when I J Ha

(r+ 2) (3r2+ 8r+ 1)/18r (r+ 1)
(r'+4r+ 1)/6r
(r+2)E(11r+1)(r+1)—Z'(r —1)'j

18r(3r+1)

Case (c)

2 (r—1)'/9r
(r—1)'/3 (2r+1)
2 (r—1)'/3r (2r+ 7)

(r+2)~/3 (2r+1)
(r+2) (5r+4)/3 (8r+1)
(r+2)(2r+1)—Z (r—1)

9r

a Z is the direction cosine of I along the (001) axis.

values of the magnetoresistivity, p„, and of the Hall
constant, E„,are easily obtained. To our great surprise,
for all of the three cases the saturation Hall constant
has the same form

R„=(gee)—'. (34)

Thus the same relation as that between drift and Hall
mobilities seems to be kept between normal and satu-
ration Hall constants, with the spheroidal approxima-
tion, as follows:

(&o/& )=( ~/p. ) (35)

Some saturation values of &p /po= (p„—po)/po and
p„/po are listed in Table II. If one takes r=1, these
results reduce to those already obtained by Harding,
that is, the longitudinal e6ects disappear and the
transverse effects becomes as follows:

Ap /po= (32/9ir) —1=0.132, (36)

Ro/8 = 8/ (3m-) =0.849. (3"/)

Several functions of r listed in Table II are plotted
in Fig. 2. One may easily see that in the spheroidal
approximation, spherical surfaces give the smallest
magnetoresistance effect.

Indeed, all the magnetoresistance eGects observed by
Pearson and Suhl are at least qualitatively explained
with our calculation in this section. In the following
section we shall make a semiquantitative discussion
and find some quantitative discrepancy between theory
and experiment due to the many simpli6cations and
approximations made in this calculation.

3. COMPARISON W'ITH EXPERIMENT AND
DISCUSSION

they were true. Therefore we use all 6ve rows in that
table and determine the average values for the con-
stants. The values thus determined are listed in Table
III. One may find there fairly large allowable ranges of
average values, which arise from their experiment. This
shows that either there were some experimental diffi-
culties or the samples used were not actually cubic.

In Table III, we show also three values of P+y+5,
P+y —5, and P+y which are used to decide, as a first
approximation, with which of those cases considered in
the preceding section we may continue to discuss the
experimental data semiquantitatively. From this table
we can see that Case (a) fits best for p-type samples,
and Case (c) fits best for e-type.

TABLE III. Low-6eld magnetoresistance constants calculated
from the experimental data.

10' X
P type

300'K 77'K 300'K
m type

77'K

+0,10 +14—4.73 —300—0.44 —6

+0.017—0,209 —0.009

+ 2.1—66.8 —7.6

4.08 %0.44 274 &20 0.187 &0.025 57.9 & 9.7

(i) P Type

As is seen from Table III, the values of P, y, and 8

satisfy Eq. (24) within the limits of experimental
accuracy. Thus we put P+y+8 equal to zero and we
use hereafter the following values for p, y, and 5,
respectively: —4.66&(10 ', 4.15X10 ', and 0.51X10 ',
in the case of p-type germanium at 300'K; and —300
X 10 ', 2/3 X 10 ', and 27 X 10 ' at 77'K, for the follow-

ing semiquantitative discussion with (Case a).
From the ratio of y and 6 we can determine r, but

First, we recalculate the phenomenological magneto-
resistance constants P, y, and 5 for small magnetic
field, using the experimentally determined values of
hprr/poEP listed in Table I in the paper by Pearson
and Suhl. They determined these constants from the
values in the lower three rows of that table, and hence
their values are too inaccurate to be used in this
discussion; for instance, a magnetoconductive eGect
would be observed in some cases in p type at 77'K, if

0.44 +0.44

+0.98—0.21 —1.32

+0.98-1.09 —1,32

+0.54—0.65 —0.88
—26

+34
-26

+19
27

-22

+53
1 —48

+56
0.118

—0.022

+0.064

—0.063

+0.042

—0.034

+0.029—0.140 —0,022

+0.071—0.162 —0.056

36.6

—8.9

+21.3
—27.4

+11.8
17%3

+10.1—45.5 —9.4

+21.9—54.4 —26.7
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2.(l —IP
Rr

(A)

mobility and drift mobility and also some saturation
values of the magnetoresistivity with the formulas in
the preceding section. Using the experimental values of
the normal conductivity, 8 will be fixed. With this 8
value, we can obtain the normal Hall constant Eo,
which should be equal to the experimental value, for
we already used it in recalculating the magnetoresis-
tance constants. However, unfortunately the discrep-
ancy is large for the case of p-type samples at 300'K.
These calculated values are listed in Table IV with the
experimental values for comparison. Both the oblate
solution and the prolate one explain the observed results
to nearly the same extent.

(Case *)

Prolate
Sph&r'oi d

.5

(C~se c)

(RPao)

I i i g

IO

I

lo

(ii) n Type

The data obtained with e-type samples are also
treated semiquantitatively with Case (c) in a similar
way. The results are listed in Table V. Comparing the
calculated values with the experimental ones, we are
likely to conclude that the prolate solution fits better
for e-type samples.

The experimentally expected saturation values of
magnetoresistance in both p- and ss-type samples are
at least twice as large as the calculated values in this
calculation with r, which is determined from the data
measured in weak magnetic field. The ratio of the Hall
mobility to the drift mobility is given by Eq. (23) in
this calculation, but itis abo. ut 1.8 for p-type samples
at 300'K in the recent experiments at Bell Telephone
Laboratories. ' Closer quantitative agreement between
this calculation and those experiments should not be
expected at this stage, in consequence of the many
simplifications and approximations employed in our
calculation.

We may reproduce almost all the curves obtained in
Pearson and Suhl's experiment with the appropriate

TABLF. IV. Comparison between the calculated values of some
magnetoresistance constants in Case (a) and the observed values
in P-type Ge.

I.o-

(C)

Values used
in this

calculation

300'K
a 2.6
P —4,66 X10 &

4.15 X10 '
0.51 X10 9

Calculated Observed

77'K
4.6—300X10 9

273 X10 9

27 X10 9

Calculated Observed

.5 I l 1 I I ~ \ I

I |0

Fro. 2. (A) Saturation values of Ap„/pe sersus r, when HII.
(B) Saturation values of np /pe versus r, when H J I, in (Case a).
(C) Saturation values of ap„/pe versus r, when H&I, in (Case c).

8X10'
iY0X10"'
8@~/3' p,,
Directions of
H l

(100) (100)
(110) (110)
(111) (111)
(100) IgII
(111) I&II
(110) (001)
(110) (110)

0.55 1.82
4.97 3.33
1.4 1.4
0.97 0.95

~pm/Po

0 0
0.054 0.067
0.082 0.082
0.23 0.23
0.17 0.19
0.23 0;23
0.15 0.16

0.84
1.5

0.1
r 01

0.5

0.5

1.0

0
0.045
0.068
0,21
0.16
0.21
0.15

&P~/Po

0 ~01
0.054 ~.2
0.068
0.21 0.5
0.18
0.21
0.16 0.5

0.58 1.72
30.3 21,1
5.1 5.1
0.97 0,96

the equation which determine r is quadratic so we
obtain both oblate and prolate solutions. Once r is
determined, we can readily obtain the ratio of Hall

e M. B. Prince, Phys. Rev. 92, 681 (1953); and F. J. Morin,
Phys. Rev. 93, 62 (1954).
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values of r and the equations derived in the foregoing
section. This is true, for example, of ApH/ps verses H,
&prr/poH' versus H, and Aprr/ps versus the direction of
8, but is not true for the finite longitudinal effect along
the (100) axis observed in a p-type sample, which
cannot be treated with the Case (a). The magneto-
resistance eGect depends upon temperature only
through the generalized mobility 3 in our calculation.
The qualitative agreement between theory and experi-
ment is quite satisfactory. A small part of the quanti-
tative discrepancies between theory and experiment
will be corrected in future experiments, but a larger
part of them should be corrected in a future, more
elaborate, theory. For this reason, we shall restate the
simpli6cations and approximations used in this calcu-
lation.

In spite of the complicated energy surfaces in actual
crystals, we assume, as one of the simplest nonspherical
energy surfaces, spheroids, and we consider only three
special cases. It seems rather remarkable that with
such a simplification, we have been able to discuss the
effects both in zs- and p-type germanium semiquanti-
tatively. So we think that the triply degenerate surfaces
of complicated form at the top of the valence band
may be approximated with three (100) spheroids in
the first approximation in connection with the magneto-
resistance eGect. We also suppose that the bottom of
the conduction band may be found nearly along the
(111) axis in a future theory of the energy bands of
germanium. Herman and Callaway" calculated the
energy bands in germanium along the (100) axis in the
Brillouin zone, and found a shallow minimum along
this axis for the conduction bands. Calculations along
other axes such as the (110) or the (111) axis are
expected, for the magnetoresistance effect in n type
cannot be explained with Case (a) but with Case (c)
in the present calculation.

We have also assumed that transitions of electrons or
holes from a certain family of spheroids to another one
are forbidden. This assumption may be quite satis-
factory in zz type but not in p type. For the normal
temperature dependence of electron mobility can be
explained with this assumption, but not the anomalous
temperature dependence of hole mobility. Of course,
this anomaly is due originally to the complicated struc-
ture of the top of the valence band; but when we

employ the three spheroid approximation mentioned
above, it may perhaps be interpreted in terms of the
transitions forbidden in this calculation.

The asymptotic form of the collision frequency has
been used. This amounts to neglecting the correct
behavior of slow electrons, on one hand, but simplifies

the calculation a great deal, on the other. The slow

electron contribution to the magnetoresistance seems

to be very important, however, in many respects.
Impurity scattering, which is not considered in this

"F.Herman and J. Callaway, Phys. Rev. 89, 518 (2953}.

TABLE V, Comparison between the calculated values of some
magnetoresistance constants in Case (c) and the observed values
in n-type Ge.

Values used
in this

calculation

r—8X10'—&0X104
8zzrr/3~zz,

Directions of
H I

(100) (100)
(110) (110)
(111) (111)
(100) IJ II
(111) IJ II
(110) (001)
(T10) (110)

300 K
o 0.087
P —198 X10 12

198 X10 &&

h —140 X10 12

Calculated Obser ved

0.078 12.8
7.7 1.60
4.4 2.9 4.4
0.80 0.36 0.87

2.4
0.25
1.01
0.41
1.12
1.50
2.9

~pcolp0

2.4 4.0
1.7 0.5
0.22
2.1 1.0
2.7
1.50
2.9 ~6.0

77'K
0.59—64.7X10 9

64.7X10 9
—45.5 X10-9

Calculated Observed

0.079 12.6
53.3 11.2
4.5 3.0
0.80 0.34

4.8
0.86

2.4
0.24
1.00
0.41
1.11
1.48
2.8

~P~/Po

2.4 3.0
1.7 0.5
0.22
2.1 1.0
2.7
1.48
2.8 ~6.0

study, is large for slow electrons. Further, even in the
case of simple spherical energy surface, using the
asymptotic collision frequency (in other words, with
the assumption of a constant mean free path), the
usual weak magnetic field approximation of expanding
the distribution function in ascending powers in H
diverges, for this expansion is just the expansion in
descending powers of collision frequency which is pro-
portional to the wave number of the electrons. This
apparent divergence difhculty can readily be removed

by considering the actual collision frequency which is
finite for cold electrons whose velocity is smaller than
the acoustical velocity. Although we have not encoun-
tered such a divergence in this calculation because of
the closed form, in spite of using the asymptotic
collision frequency which is divergent at K=O, we fear
that we may have a little under- or overestimated the
magnetoresistance in this calculation by neglecting the
actual contribution of slow electrons. One may see the
diGerence between the asymptotic and actual collision
frequencies in the figures in the Appendix. The actual
collision frequency does not depend simply on I only
through the energy, so even with the model used in
Case (a), the (100) parallel effect seems to be expected,
if we can perform the calculation with the actual
collision frequency.

As already discussed by Wilson, " the fundamental
equation used in this study is inadequate for strong
magnetic field, but at any rate, qualitative discussions
can be made as mentioned above.

Just as was done by Johnson and Whitesell in the
case of intrinsic conduction, we can formally combine
the results obtained in three cases with appropriate
weights, in order to approximate the complicated
energy band structure in actual crystals, but it seems
meaningless to do this without improving the approxi-
mations mentioned above.

"A. H. Wilson, Tlze Theory of 11fetals (Cambridge University
Press, Cambridge, 1936).
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%e can say in conclusion that the major part of the
two main discrepancies between experiment and the
previous theories concerning the magneto resistance
eGect in cubic semiconductors, mentioned in the erst
section, is removed. Moreover, the relation between
drift and Hall mobilities is discussed, using the simplest
nonspherical energy surfaces without introducing any
anisotropic relaxation time.

The writer is much indebted to G. M. Hatoyama
under whom this research was planned and to W. Sasaki
for valuable qualitative discussions. Also he expresses
his thanks to Professor F. Seitz, Professor J. Bardeen,
and Professor T. Muto who gave him some important
comments about the results in Case (a).

APPENDIX (COLLISION FREQUENCY)

The collision frequency of electrons with scalar
effective mass in nonpolar crystals has been extensively
studied by Seitz. He has pointed out that the acoustical
modes of lattice vibration mainly control the collision
frequency in actual diamond-type crystals. Therefore,
taking only acoustical modes into account, we try here
to extend his theory a little further for electrons having
spheroidal energy-momentum surface:

lV= (h'/8or')LEP/my+ (Epo+Epo)/moj. (A.1)

If we permit the high-temperature approximation, and
assume that the unknown matrix component C would
be constant independent of the wave number K, but
do not"'neglect the phonon energy, the collision fre-
quency v can be obtained as follows:

v= —(C'h /T9 precMh) JI ~I d pd8(sm8) (A+B)D '

A+BC 0,
0&0& m. ,
0& @&2',

region near the center of the spheroid, on a (O,Ep,Ep)
plane and on a E~ axis and also in the special case of a
spherical energy surface, however, the integration can
be done analytically. The collision frequency will be
given as a function of the collision frequency vo given
by Eq. (A.4), two effective mass ratios M& and r
which are de6ned by

M1—ml/mp r =m2/ml

and four velocity ratios,

Vo ——2ormpc/hE, Vx= VoMi, Up= Ujr
and

U3= Ugr'.

(A.5)

(A.6)

&s= &OX
2Vo for Uo& 1,

1+Vp' for Vp( 1.
(A.7)

We see in this equation that the collision frequency
of rather high-energy electrons can be approximated
with the constant mean free path assumption but that
of cold electrons is constant independent of the wave
number K.

Case (2): (E,/m, )'+(Epo+E, ')/m, '& (2ppc/h)'

In this case, for cold electrons, their velocity is so
slow that A+B is always positive; in other words, a
phonon-emitting transition is impossible, and 3—8 is
always negative. Thus the range of integration of the

Case (1):A Spherical Surface

In this case, D becomes independent of the angular
variables, so the collision frequency v& of all the elec-
trons in the Brillouin zone can be obtained rigorously,
in spite of taking the phonon term 8 into account:

where

A —B&0,
0&8& m,
0& @&2m,

6-
A = (h /2or ) f (Ey cos8)/my+ (Ep cosqr

+Ep sinpo) (sin8)/mp), (A.3)

B=hc/2pr, D= (h'/8m') f (cos"'8)/m~+ (sin'8)/mp),

and all other constants have the same meaning as in
Seitz's theory. When the phonon term 8 is neglected
and the scalar mass mo is used instead of m~ and m2,

Eq. (A.2) can readily be integrated and gives

v p 327r'C'h pTmoE/9——c'hon pM) (A.4)

which was already obtained by Seitz. But now, if one
takes into account the sects of the phonon term and
the tensor mass in this calculation, the two integrals
in Eq. (A.2) have rather complicated ranges of inte-
gration and cannot be integrated analytically. In a

r
/

0 I I

lf

FIG. 3. The collision frequency and its asymptote in the case of
spherical energy surface.
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where

v2= vpMgVg[1+5(r)], (A.8)

r(r —1) ' arctan[(r —1)&] for r&1,
S(r) = (A.9)

r(1—r) ' arctanh[(1 —r)'*] for r& 1.

second integral corresponding to the phonon-absorbing
process becomes very simple. Accordingly the collision
frequency v2 is readily obtained: Wp-

I20'
I

1

lO-, t

P

Thus the collision frequency of cold electrons having
a spheroidal energy surface is also 6nite and constant
independent of the wave number K.

2-

I
0 lO IS

2

Case (3):On the X& Axis Where V, &l FIG. 5. The ratio of collision frequency and its asymptotic form
along the E2 axis.

r(r —1) & arctan{V3(r —1)&

X[1+(1—r) V32]—&) for r&1,
U(r, Ug) =~ (A.13)

r(1—r) ' arctanh{ V, (1—r)&

X[1+(1—r) V32]—&) for r&1.gp-

In this case, although both the phonon-emitting and
Phonon-absorbing Processes are Possible, the ranges of where
integration become independent of an angle variable q,

2p

lO

l
0 I

V,
{0 l5

F»G. 4. The ratio of collision frequency and its asymptotic form
along the EI axis.

and the collision frequency v& can be easily obtained:

where

vs= voMgr[1+ V,T(r, V,)], (A.10)

Case (4): On a (O, X&,J,) Plane Where V2&1

In this case, after a certain transformation of integral
variables, the ranges of integration become dependent
upon only one angle variable just as in Case (3), and
the following expression can be easily obtained:

v4=voiVxr1'{[1+(1 r)VP]'*+V~V(r, V~)), (A—.12)

~

r(r —1) & arctan[Vg(r —1)&] for r&1,
T(r, V,)=

Ir(1—r) & arctanh[V~(1 —r)&] for r&1.

(A.11)

From these results rigorously obtained above, we
can deduce the asymptotic expression v for the high-
energy electrons:

v~= vp(Bsy1sg ) '(sloE)
X{EP/my+ (XP+EP)/rr12) '*. (A.14)-

That is, the collision frequency of rather high-energy
electrons is approximately proportional, not to their
velocity, but to the square root of their energy.

Indeed it is a very inadequate approximation, for
slow or cold electrons, to substitute the actual collision
frequency with this asymptotic form, but one may be
permitted as a 6rst approximation to use it for all the
electrons in the Brillouin zone in the formal theory of
electronic conduction, because the calculation then
becomes quite simple. Further, the assumption of
constant mean free path is used in all the previous
theory, and that assumption is also inadequate for
slow electrons.

%e shall show in the following 6gures the difference
between the actual collision frequency v and its asym-
ptotic form v . In Fig. 3, v» is plotted as a full line and
vo, which is the asymptotic form of v», as a dotted line.
In Fig. 4, curves of v/v, verses K, with r=0 05, 0.5, 2. ,
and 20, are shown along the E» axis, the rotational
axis of the spheroid, and in Fig. 5, such curves are
shown along any axis perpendicular to the E» axis.
Vfe can see in these 6gures that the larger the eccen-
tricity of the spheroid, the less valid is the asymptotic
approximation for medium-energy electrons.


