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and

F (srt, rrt) = I (t,t') exp$irrt(t t—')]dtdt'.

By comparing (A24) with (A23), we can express
the coupling constant renormalization (A14) as

g,/g=z, /z, =(Nl, lp).

By using (A20), the same limit becomes

expl isrt(t, —t,)]A& ——gzssF(rtt, rtt) (—co)
—

'(2coQ) —
v,

(A22)

which, together with (A21), gives

Z F(srt, rl) =g '(—co) (2 Q)**(Nl s(0) lP). (A23)

The left-hand side of (A23) is the ratio of the renor-
malization constants, Zs/Zt. The k dependence of the
right-hand side can be eliminated by using the identity:

(Nll ns, HglP)=0.

Sy commuting o.I, with the total Hamiltonian, we have

(Nl~slP)= —g~ '(2~(I) *'(Nlr-IP) (A24)

Thus g,/g, if real, must be less than unity.
These proofs can be obviously generalized to other

renormalizable 6eld theoretical problems. In the
charged scalar theory these identities can be applied
to calculate formally the values of Z& and Z2 by using
both the weak-coupling and strong-coupling solutions. "
They are:

(i) weak-coupling solution:

Zs ——1—
g

' Q (2co'0)—'+
Zs/Zr ——1—g,' Q (2co'0) '+

(ii) strong-coupling solution:

Zs=z expl: —g'Z(2~'ll) 'j+", Zs/Zi=s.
iv G. Wentzel, Helv. Phys. Acta 13, 269 (1940); 14, 633 (1941);

R. Serber and S.Dancoff, Phys. Rev. 63, 143 (1943);S. Tomonaga,
Progr. Theoret. Phys. (Japan) 1, 109 (1946).
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The Fierz-Pauli Geld corresponding to particles of spin 3/2 is quantized, and its interaction with the
electromagnetic field is investigated. It is also shown how the elements of the 5 matrix for collision processes,
involving photons and charged particles of spin 3/2, can be obtained in a simple way.

l. INTRODUCTION

THEORY of particles of arbitrary spin was first
developed by Dirac, ' Fierz and Pauli, ' and since

then several other theories have also been proposed. '
Such theories are of special interest at the present time,
because a number of new particles have been observed in
recent years, and some of them may have a spin higher
than one. However, except in the case of the gravita-
tional field, 4 the interaction of a quantized field of spin
higher than one with other fields has never been in-
vestigated.

%e shall, therefore, discuss in some detail the Fierz-
Pauli theory of particles of spin 3/2. We shall first carry
out the quantization of the Fierz-Pauli field, and con-
sider its interaction with the electromagnetic field.
It will then be shown that in the present case, too, the

' P. A. M. Dirac, Proc. Roy. Soc. (London) A155, 447 (1936).
s M. Fierz and W. Pauli, Proc. Roy. Soc. (London) A173,

211 (1939).
3A specially interesting field equation for particles with two

different mass states has recently been given by H. J. Bhabha,
Phil. Mag. 43, 33 (1952).' S. N. Gupta, Proc. Phys. Soc. (London) A65, 161, 608 (1952).

contribution of any collision process can be obtained
from the 5 matrix by means of simple rules, which are
similar to the Feynman-Dyson' rules of quantum
electrodynamics.

2. FIELD EQUATION FOR PARTICLES OF SPIN 3/2

According to Fierz and Pau1i, ' a field corresponding
to particles of spin 3/2 is described by the symmetrical
spinors

Q pp= 8 trp Mld 61

and the auxiliary spinors c and d". The Lagrangian
density for the field is

L = —(a'"-p p" a""+&*"p-' f p"')

+tc(a*" p fi"p+b" p a"' p)+'(p p d" a"'
p

+Pp" c . b„"P a"
p P„P da fs—„"PPp" c )—

+3(d" P p dP+c* P P cp)+6z(d' c +c' d'), (2)

s F. J. Dyson, Phys. Rev. 75, 486, 1736 (1949).
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only the ordinary space and time derivatives of the
field quantities. We can then write these sixteen equa-
tions as

ot»(BQ/Bxs)++ = Qq (5)

where P is the one-column matrix shown in Fig. 1, and
the o.„are given in Fig. 2.

By actual multiplication of the matrices o.„, it can be
verified that they satisfy the relation

Q (&»&v By))&X&P=01 (6)

~2a

sf2 d

PM2 d

bl I

l

~2 bl2

2
I

2

which gives, on using (6),

n~„(B4$/Bx)PBx,Bx„)+~n,nln„(B'P/Bx, BxlBx.) =0 (8.)

Further, using field equation (5), we obtain from the
above equation

or
x'(B'lP/Bxl') x'P =Q-

(Ps —as)y =0,

where P denotes a sum over all possible permutations
of the indices p, l, X, and p. Multiplying (5) by n, o&,n„B/s

Bx,8x),Bx„, we get

n,cl)n~„(B4$/Bx, Bx),Bx.Bx„)

+Irnpnln„(B'lP/BxpBxlBx, ) =0 (7)

8~2 Cl

5~2 C2

FxG. 1. Components of the matrix P.

whence we obtain the field equations:

which shows that P satisfies the second-order wave
equation.

3. LAGRANGIAN FORMALISM

In order to derive field equation (5) from a Lagran-
gian density, it is necessary to define an adjoint of iP

in the usual way. For this, we note that the nonsingular
Hermitian matrix g of Fig. 3 satisfies the relations

pPe ri»„—p»n clP„p„P—d» p„» dp+2& g„»P=Q, 0!4 Q=Qf4
—1 (10)

—p ~ gp" p pp. $ "P
pp c p cp+2@ g"

p
—0 where an asterisk denotes the Hermitian conjugate.

(3) Further, taking the Hermitian conjugate of (5), we get—Ppp a"' p+3P p dP+6x c„=0, —(BP'/Bx4)n;+ (BP'/Bxf)cr +x/*=0,—pp" b„'p+3p»p cp+61t d"'=0.

IIence, using (10), we have
pll — pl pl p sBI»8+ B!Bx4&

which, on being multiplied by g, can be written as
The field Eqs. (3) can easily be expressed in a form

analogous to that of the Dirac equation. ' For, using the —(Bp'/Bx4)ri(ri 'rr4*n)+ (B4'*/Bx')ri(rf 'cr'*n)

relations +a4 "rl= o (12)

pls= —ps =pl = —p = —zB/Bxl+ B/»s)
(4)

psj= pi = —ps = p = z B/Bxi, B/Bx)s

p22 ps ps p =zB/»s+ B/Bx4)

(g/Bx„)n„llf=Q, —

where the adjoint it denotes the quantity

(13)

(14)

we can express (3) as a set of sixteen equations involving

6 The above procedure for writing the Fierz-Pauli equation in
the Dirac form is due to K. K. Gupta, Proc. Indian Acad. Sci.
A35, 233 (1952).However, our choice of the components of f and
the representation for the Ot's is slightly different.

The field equations (5) and (13) can be obtained by
means of the usual variational principle from the La-
grangian density

I-= cAgu„(B—Q/Bx„)+K/$5 (1.5)
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II zG. 2. The matrices 0.&. In these matrices a dot or a blank space indicates a zero or a block of zeros

Although the field quantity f transforms in a rather
complicated manner under a Lorentz transformation,
we can prove the Lorentz invariance of the above
Lagrangian density by showing that (15) is equal to the
invariant quantity (2) apart from a constant factor.
This also establishes the covariance of all the results
obtained from the Lagrangian density (15).

From (15) we obtain in the usual way for the current
density four-vector j„and the canonical energy-
momentum tensor S„,:

g p
= te+npP, (16)

Spp = cAlPn p (Blg/Bxpg) . (17)

According to (16) and (17), the charge density and the
Hamiltonian density of the field are

p=j4/ic= egn4$= ega, (18)

H= S44=icgn, (—BiJ/Bxo) =ichft(8$/Dxo), (19)

where
ft =Pn4= f*gn4.

4. SOLUTION OF THE FIELD EQUATION

Since P satisfies the wave equation (9), a solution of
(5) must be of the form

f=p+(k) expt'i(k x cuxo—)5
(21)or

iJ =iJ (k) exp) —i(k x—coxo)5,

where k is an arbitrary real vector, and

CO= K (22)

For simplicity, let us first consider the solutions of (5)
corresponding to %=0, which are of the form

P=P+(0) exp( —iaxo) or P=P (0) exp(ixxo). (23)

Substituting (23) in (5), we get

(n4 —1)f+(0)=0 and (n4+1)P (0)=0. (24)



F l E RZ —PAULI TH EORY OF PARTI CLES OF SP I N 3/2 1331

Further, denoting the sixteen components of the one-

column matrix p+(0) as ci, cg, , c16, and making use

of the explicit representation for 0,4, we can decompose
the first relation in (24) into the following four sets
involving sixteen algebraic equations:

Ci+Cg =0,

Ci+Cg =0
&

Cs+ C14——0)

Cs+C14——0;

(25)
u, (Pj~C, , u (P)=C, Il (P&=g

Z 6 ~ Q (0)Rc

V2cg+ erg+ scip ——0,

Cs—8Cg+V2CII =0,

2cs+&2cl1+cig —
8 cis = 0,

2cg+V2C11 Clg C16—Oq

V2C8+Cp+ 8Cg+2C18 ——0,

V2cg —Cs+ Cg —2C16= 0;

C2+ 8 CI+V2CI2 ——0,

&2C4+Cip —gC16= 0,

C2+%2C4 ger+ 2Cip= 0&

c2 v2c4+ cr—2cig= 0&

2C2+ Cyp+V2CI2+ 8 C16= 0&

2CI+ Cip V2CI2 C16= 0.

(27)

(2g)

In order to solve the above simultaneous equations
we have to regard one of the c's in each of the four sets
as an arbitrary quantity. Thus, taking cj, cs, ce, and c»

FIG. 4. The four independent solutions for il'+(0}.

as an arbitrary quantities, we easily find

c&=arbitrary, c&= —c&,

c6=arbitrary, c&4———c6,

c,=arbitrary, c,=V2cg,

(29)

(30)

cyy= c3)

cs——0,

C 18= —&2C6,

cps=0;

c»= arbitrary, c&0=V2c»,

c4— C]2)

c]5—0)

C2 VZC12)

cy
——0.

Hence, there are four independent solutions of the first
relation in (24), which are given in Fig. 4. Similarly, it
can be shown that there are four independent solutions
of the second relation in (24), which are given in Fig. 5.
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j;(0)=ieaP" (0)zion;f(0) =0. (35)

Since j;(0) and icp(0) form components of a timelike
four vector, it follows that under any proper Lorentz
transformation the positive quantity p(0) will trans-
form again into a positive quantity, which shows that

P*(k)gn4$ (k) =positive definite, (36)

where f(k) denotes any linear combination of solutions
of the form (21).

5. FOURIER EXPANSION OF THE FIELD
VARIABLES

Let us consider the equation

(37)

where A and B are Hermitian matrices, P is a one-
column matrix, X is a number, and P"BP)0. We can
regard (37) as a generalization of the usual eigenvalue
equation. Thus, we can call P an "eigenvalue" of the
matrix A corresponding to the "eigenvector" f. It
can then be easily shown that if Pi, fz, , P„are zz

independent eigenvectors of A, we can choose these
eigenvectors in such a way that they form an "ortho-
normal" set in the sense

We Gnd that there are eight solutions of the field
equation for k=O, half of which have a positive fre-
quency while the remaining ones have a negative fre-
quency. But, any solution of the form (21) correspond-
ing to an arbitrary value of k can be obtained from (23)
by means of a suitable proper Lorentz transformation.
Therefore, it follows that corresponding to any arbi-
trary value of k, the field equation has eight solutions,
four of which have a positive frequency while the re-
maining ones have a negative frequency.

It can further be easily verified that each of the solu-
tions, given in Figs. 4 and 5, is an eigenvector of go.4

corresponding to the eigenvalue 1. Therefore, if P(0) is
any linear combination of solutions of the form (23), we
have

P'(0)gn4$(0) f'(0)f(0) =positive definite. (33)

Thus, according to (18), the charge density due to the
component P(0) of the field is

p(0) = jo(0)/c= +*(0)qu4$(0) =positive definite, (34)

where we have taken e as a positive quantity. Moreover,
there being no privileged direction for the vector k=O,
the current density vector due to the component P(0)
must vanish, i.e.,

matrices f *, B, and P, respectively, and the indices
n, P, y can take the values 1, 2, , N.

Substituting (21) in (5), we get

(zkiczi+zkzzzz+zk3Q3 G3(x4+x)P+(k) =0,

(zkini+zkznz+zkznz —&A+4 —x)P (k) =0,
(40)

(41)

and

u, t(k)u, (k) = v„t(—k) v, (—k) =b„„

u„&(k) v, (—k) = v, t(-k)u, (k) =0,
(44)

P„Lu„,.t(k)u„, p(k)+ v„„t(—k) v, p( —k)]=8.p, (45)

where the u, (k)'s are the independent solutions for
P+(k), the v„(k)'s are the independent solutions for
P (k), and

u„t(k) =u, '(k)gn4, v„t(k) = v„*(k)A+4. (46)

Since we have shown in the preceding section that
corresponding to any value of k there are four inde-
pendent solutions for P+(k) as well as for f (k), the
indices r and s in (44) and (45) can take the values
1, 2, 3, 4. On the other hand, the indices a and P in (45)
can take the values 1, 2, , 16.

We can now assume in the usual way that the field
is enclosed in a large cubical box of volume V, and
carry out a Fourier expansion of the field variable P as

P = V 'Pq P„La,(k)u„, (k)e'~ '* "*'i

+b,*(k) v„, (k)e '&" * "~0'] (47)

where a, (k) and b,"(k) are arbitrary amplitudes. We
then also have

+b„(k) v„, ~t(k)e~'" x—~*,i] (48)

6. QUANTIZATION OF THE FIELD

which give, on being multiplied by q,

(zkirlai+zkzgczz+zkzrlnz+t&v)P+(k) =corln4&+(k), (42)

(zkiqni+zkzgnz+zkzrjuz+. xzt)P ( k)—
= —argn4& (—k). (43)

The above equations are of the same form as (37),
where the Hermitian operators i kirlni+ikziznz+ikzqnz
+Kg and vn4 correspond to 2 and B, respectively, cu and
—co are the eigenvalues, and qo.4 satisfies the condition
(36). Hence, all possible solutions of (42) and (43) can
be chosen in such a way that

and we further have

P *BP =b (38) The quantization of the Fierz-Pauli field can now be
easily carried out. The canonical conjugate of P is
given by

Z 4'-, v*BvA', p=&-p (39)

where P, ~', B~, and f, p denote elements of the
7P = i7zgp(n4) p ——ikg z.

8(8$ /Bt)
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{&-(x) A(x')) =f-oA(x —x'), (60)
g.(x,t), Pp(x', I) ) =0, {P.t(x, t), Pot(x', t)) =0, (50)

where the quantity f o has to be determined, and
{4'a(x&I)&At(x &I))=b pb(x x'). (51) A(x —x') is a well-known singular function with the

properties
Substituting (47) and (48) in (50) and (51), and using

(44), we get (61)(i j'—K')A(x —x') =0,

Since fields of half-integral spin obey Fermi statistics, In order to find the required commutation relation
the appropriate commutation relations in the present between P and Po let us put
case are

{a„(k),a,*(k')) =B„,B, , ,

{b„(k),b,*(k')) =B„,bk, x,
(52)

[B&(x x'—)/Bxo]*o *o==b—(x x'—)
(62)

while any other anticommutator involving a pair of the
operators a„(k), a„*(k), b„(k), or b,*(k) vanishes.

Again, substituting (47) and (48) in (18) and (19),
and using (44), we obtain for the total Hamiltonian
and the total charge of the field

[n„(B/Bx„)+K].ofp,A(x x') =—0. (63)

We also observe that

Since/ (x) satisfies the field equation (5), we must have

sc=gx Q„ch4o[a„"(k)a,(k)-b„(k)b,*(k)], (53) .

K Q1n(pB/Bx1Bxp)]6(x x )
pdV=+q P, eLa,*(k)a„(k)+b,(k)b,*(k)]. (54) =Q1np(B'/Bx), Bx,) ( '—K')A(x —x') =0, (64)

Using the commutation relations (52), and ignoring which suggests that fo~ should be of the form

the zero-point energy and charge, we can write (53)
and (54) as g tt

=Cgnpnyn (8 / BX„BXyBX )

X.= Px P„cL)fa,"(k)a„(k)+b,. *(k)b,(k)], (55)

I pdv= Qx Q„esca„'(k)a„(k) b„'(k)b—„(k)]. (56)

It follows in the usual way that the quantities
ai*(k)ai(k), bi*(k)bi(k), ao"(k)ao(k), bo'(k)b, (k), . . .
can have only the eigenvalues 0 or 1, so that the present
field describes particles of positive energy obeying
Pauli's exclusion principle. Moreover, the a„(k) are the
absorption operators for particles of energy cfog and
charge e, while the b„(k) are the absorption operators
for particles of energy ckzg and charge —e. The Her-
mitian conjugates of these operators are the corre-
sponding emission operators. Thus, if no particles of
charge e are present in a state 0', we have

Q+1lp =0,

and similarly, in the absence of particles of charge —e

in a state 0',
f 0=0, (58)

7. COVARIANT COMMUTATION RELATIONS

We shall now obtain covariant commutation rela-
tions between the field variables at different times.
For this purpose it is necessary to use the variables P
and g instead of II and f t. It is, of course, evident that

(59)

where P+ and P+ denote positive frequency parts of
f and f, respectively.

Known—, (B'/Bx1Bxp) ]p„(65)
where C is a constant. We have now to verify that the
commutation relation, given by (60) and (65), agrees
with (51),and for this we shall derive a relation between

P and ft
We note that the relation (6) gives us

n4' —n44= 0 (66)

Q4 Q4+Q4 njn4+Q4Q4Q4 +Q4Q4 Q4Q4 njn4 = 0)

n4 nan, +Q4nan4Q, +Q4nan, n4 —&;pn4 +non, n42 2 2

(67)

+non4Q, Q4+Q1Q4'n; Q1Q,+—(44—k) = 0, (68)

Differentiating (69) with respect to x4, and using (13),
we obtain

K(Q—(B|t/Bx,)n,](1—n4')

= (B/Bx )$Ktl (Blp/'Bx1)no]

)( (Q4 Q~+Q4Q, Q4+Q, Q4 —Q,),

where (i~~k) on the left-hand side of (68) den. otes an
expression obtained by interchanging the indices i and k

in the preceding expression.
Multiplying (13) by n4 —n4', 'and using (66), we get

KP(n, a,') = (BP/—Bx,)n, (n4 n4'), —

which gives, on using (67),

KPQ4(I n4') = (B—P/Bx, )Q4(Q4'n, +Q4Q,Q4+Q,Q4' n, ) (69)— .
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1 rip
n4 — n4 n n4n n4

K t9$'

Thus, from (60), (65), and (73) we obtain the com-
mutation relation:

(a.( ), A(")&
1 cl'lt

nI, n4~n; n4n;n4 n;n42 —n; .
lt.
' Bx,Ox'

Further, using (66) and (68), we can write the above
relation as

t'

n&knp
/P E Bgygg), 8$p

Q2

!Known p'ax, ax, ) .,
X& (x—x'). (74)

1 Bgn4
lt'=lPQ4 + (Q4Q, +Q,Q4)

K Bs'

or

1 O'IItn4

+ (Q4nkni+Qkn4Q4+nknin4 tlikn4 )r
K Bs;8xy

1 rip~
f= ptn4s+ (n—4n;+—n,n4)

From (70) and (51) we get

fP (x,t), Pe(x', t))

8 g2

Q4 +— (Q4Q.+Q4Q4)+
K Bs; K 8$;BXA;

X (Q4nkn;+nkn4Q, +nkn, n4 t'I;kn4s) tI(x ——x')
.- aP

8
n4 —— n4n; nin4

g 8$ . K BX.BXlc

X (Q4nkn, +nkn4Q;+nkn, n4 —~,kn4') ~(»—X') (71)
- aP

1 cl'Ill ~

+— (n nkn, +—nkn n;+n„n,n4 tI,kn ') —(70).
K Bx;BSA;

( I9 ie—ck $ „! ——A„!/+K~, (75)
&ax„cubi

which gives us the field equations:

n„(ct&/Bx„)+eP = (ie/ch) A „n„g,

(Bg'/8xs)ns Klg = ( te/cti) A s'Ij/ns)

O'A „= i eon„g. —
(76)

In order to obtain the rules for writing down the
elements of the 5 matrix in the present case, it will be
very convenient to follow the treatment of Yang and
Feldman. r We first observe that the relation (6) gives us

( ~ lf
nv——K

cix„) E Bx„)
(1 I9' 1

X! —Q~n, —&'+1!= '—", (77)
& K' axicix, K' )

8. ELECTROMAGNETIC INTERACTION OF
PARTICLES OF SPIN 3j2

Following the usual procedure, we can write the
Lagrangian density for the Fierz-Pauli field interacting
with the electromagnetic field as
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On the other hand, substituting (65) in (60), putting so that defi„ing 24'r«(x —x') by
xp = xp, and using (61) and (62), we obtain
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we get

Ln„(rl/cix„)+K]R""(x—x') = —tl(x —x'). (7&)

Similarly, we define a function 8'~ by replacing 6'"
in (78) by A' ", so that E' also satisfies the rela-
tion (79).Comparing (71) and (72), we find that the commuta-

tion relation (60) agrees with (51), provided that we
choose the constant C in (65) as

C= i/K'—
7 C. N. Yang and D. Feldman, Phys. Rev. 79, 972 (1950).

We also refer to this paper for the de6nitions of the functions
(73) n"4 n'4» D"4 and D' which we shall be using here.
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Further, we define "incoming field operators" P'",
p'", and A„'" by the set of integral equations

P(x) =P'"(x)—(ie/cd)

Jt'."t(x—x') dx'A „(x')n „P(x'),

p(x) =p'"(x) —(ie/cA, )

out by Yang and Feldman, ~ in practice one need not
take this trouble. For, if we compare the set of Eqs. (80),
(81), and (82) with similar equations in quantum elec-
trodynamics, it is evident that the rules for obtaining
the elements of the 5 matrix in the present case will be
exactly analogous to the Feynman-Dyson rules of
quantum electrodynamics, ' except that the y„matrices
of Dirac have to be replaced by the e„matrices of Fig. 2,
and the function
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A„(x)=A '"'(x)+ie
f

X D"-(x—x')dx'p(x')n„p(x').

It can then be easily shown that both the incoming as
well as the outgoing 6eld operators satisfy the free-held
equations and the free-6eld commutation relations.

We can now define the S matrix for the interaction of
photons and particles of spin 3/2 as the unitary oper-
ator, given by

pout(X) g—
lpin(X)g

Pout(+) g—i/in(X)g

A „'"'(x)=5—'A „'"(x)S.

(82)

One can obtain the matrix elements of the S matrix
by solving (80) by successive approximations in powers
of e, and then using (81) and (82). However, as pointed

and the "outgoing field operators" P'"', P'"' and A '"'
by the set of integral equations:

p(x) =p'"'(x) —(ie/ch)
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where As(x —x') is Feynman's singular function, as
defined by Dyson. ' It is interesting to note that if we
replace n„by y„ in (84), Rs (x x') red—uces to Sp (x—x') .

Since Rp(x —x') involves third space and time deriva-
tives of Dp(x —x'), it seems at first sight that the
divergencies in the present case are even stronger than
those in the case of charged particles of spin 1.However,
in order to see whether the renormalization theory is
really unsuccessful in the case of charged particles of
spin 3/2, it would be necessary to carry out actual calcu-
lations of the various possibly divergent matrix ele-
ments.

We have seen that the quantization of the Fierz-
Pauli field does not present any special difhculty.
Therefore, it seems to us by no means certain that
particles of spin higher than one do not exist in nature,
and it would be interesting to carry out further in-
vestigations of the properties of such particles. In
this connection it should be noted that the intrinsic
magnetic moment of charged particles of spin. 3/2 has
recently been calculated by Belinfante, ' and shown to
be equal to ek/2mc, where m is the rest mass of the
particles. As pointed out by Belinfante, this seems to
suggest that the intrinsic magnetic moment of every
elementary particle of nonzero spin is given by the
same expression ek/2mc, which depends only on the
charge and the rest mass of the particle.

s F. J. Behnfente, Phys. Rev. 92, 997 (1953).


