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Some special problems of interacting fields that contain removable divergences are treated in detail.
Comparisons with the power series renormalization procedures are made. Examination of the closed forms
of the solutions before and after renormalization shows that, in one special case solved, coupling-constant
renormalization cannot be obtained by any limiting processes that involve only real values of the unrenor-
malized coupling constant.

I. INTRODUCTION

VER since the overwhelming success of the appli-
~ cations of renormalization technique in quantum

electrodynamics, the problem of understanding this
renormalization procedure without the use of perturba-
tion methods has been of great interest. Unfortunately,
in all physically realistic cases the Hamiltonians are
quite complicated in structure, and so far no solution
other than the power series method has been found. Yet
the renormalization methods as developed by Dyson, '
Ward, ' and others can certainly be applied to a large
class of 6eld-theoretical problems that involve remov-
able divergencies. Thus some deeper insight as to the
nature of the renormalization procedure may, perhaps,
be obtained by examining problems that are similar to,
but not as rich as, either the quantum electrodynamics
or the relativistic pseudoscalar meson theory. With this
motive we shall in this paper treat some simple problems
of interacting fields that are both renormalizable and
solvable.

We consider 6rst a problem that involves the inter-
actions between two neutral nonrelativistic fermion
fields and one relativistic boson held. Although the
Hamiltonian of this problem does involve infinities, the
Schroedinger equation can still be solved directly. A
close examination of the solutions indicates that all the
divergent quantities can be removed by both a mass
renormalization and a coupling-constant renormaliza-
tion. The scattering amplitude is then calculated after
renormalization and is indeed found to be finite (i.e.,
not zero). This problem can also be treated by the
application of the customary power series renormaliza-
tion procedure whereby identical conclusions concerning
the nature of renormalization quantities are reached.
Furthermore, even outside its radius of convergence,
the formal sum of the power series can still be used to
give the correct closed form. A rather unexpected and
quite surprising feature is obtained by comparing the
renormalized coupling constant with the unrenormalized
coupling constant. In this particular case it can be
shown that the result of the renormalization process
carrot be obtained by any limiting process that involves
only rect values of the unrenormalized coupling con-

' F. J. Dyson, Phys. Rev. 75, 1736 (1949).' J. C. Ward, Proc. Phys. Soc. (London) A64, 54 (1951);Phys.
Rev. 84, 897 (1951).

stant. This di%culty may, however, be overcome by a
modi6cation of the present rules of quantum mechanics.

Next, the well-known soluble problem of neutral
scalar mesons with fixed nucleons is studied. The closed
forms of the nucleon propagation functions and vertex
functions are listed in Appendix I.

In Appendix II, the charged scalar theory together
with some interesting identities between the customary
matrix elements and the renormalization quantities Zl,
Z2 are discussed.

II. HAMILTONIAN

I.et us consider the interaction between two neutral
fermion fields, V and Ã, and a neutral scalar boson
6eld, 8. The Hamiltonian for the free 6elds is

EIp= rlv Pv tfvd r+ r. rttr ftrtgtrd r

+ s 57r'+ (V p)'+ts' p']d r, (1)

where Pvt, Pv and $&t, f& obey the usual anticom-
mutation relation and represent the field variables of
V and S, p and x are the 6eld variable and conjugate
momentum of the 8 particles. The "observed" masses
of V, Ã, and 8 are denoted by m&, m&, and p. Recoil
sects of V and S are not included.

It is convenient to write

ps=A (r)+At(r),
where

A (r) =Q (2(oQ) -*'ne exp (ik r)

At(r)=g(2&oQ) '*net exp( —ik r).

nJ, and o, J,t are the annihilation and creation operators
of the 0 particle with wave number k. 0 is the volume
of the system and co is (ks+ts')'*. The interaction Hamil-
tonian Hl that represents the reaction

(2)
can be written as

LCv'(r)4~(r)A (r)+4~'(r)4v(r)A'(r)]dr

+8tttv ~PvVvdr, (3)
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Kv+ K~= constant,

Xv+ Xp =constant,
(5)

with Xy, K~, Xtt the total number of V, E, and 8 par-
ticles, respectively. Because of (5) the eigenfunctions of
II contain only a finite number of particles and con-
sequently can be solved directly.

III. GROUND STATES

In the following, we denote the state of a "bare" V
particle and that of a "bare" E particle by l U) and

l Ã&
while the states of the corresponding "physical" par-
ticles are indicated by lV) and lN). Thus lV) and lN)
are eigenstates of the Hamiltonian and satisfy

where 8m~ is used to cancel any change in mass of the
U particle due to the reaction (2).

Upon examining. the total Hamiltonian

H=Hp+Hi,

one sees that this system possesses two simple con-
servation laws:

and
c= —(Vl P y(k)nj, tlN&,

(p&
—p&p)g(k) =g'Zp)t E(k,k')y(k')d'k', (14)

where

E(k&k ) = (mv —
m&v p&p) (4p&p& )

X C8pl (mv mN cd) (mv mN (d )3

One observes that although Z2 ' involves a divergent
sum, the cross section will not vanish if the renormalized
coupling constant, given by

g
2 g2g

is chosen to be finite. Equation (14) can then be easily
solved, and the phase shift 8 for the scattering process is

and furthermore it satisfies the Schroedinger equation,

HlN+O)= (m y, ) lN+e). (12)

On using the special form of H together with (6) and
(7), the Schroedinger equation can be readily solved
and one obtains

HlN)=m~lN&,

H lV)=mvlV).
(6)

tan8=
g,'kp

In order that V be a stable particle we assume m~ —vs~
(p. Using (5), one see that

lN)= Js&,
and

4s (mv —mii —
p~p)

g&; t' 8 k (mv —
mii& —

p&p)

16mP ~ pp(p& —
p&p) (mv m~ —p&)P

I V) =Zp'CI U)+g Z~ f(k)natl&&j (7) where 0' indicates that in the integration the principal
value is to be taken. Thus if g, is 6nite the expression
for the phase shift is indeed free from divergent quan-
tities.

Next we consider the scattering process,

where Zp& is a normalization constant and f(k) is pro-
portional to the probability amplitude for finding a 8
particle with wave number k in a physical V state.

Applying the Hamiltonian (4) on lV) and requiring
that the eigenvalue should be the "observed" mass my,
one finds

(17)

Again, the corresponding eigenstate that satisfies
(8) H

l
V+6&= (mv+cop) l V+e& (18)

9
can be written in terms of the physical one-particle
states as

&mv ———g'P(2~n) '(mv —
mdiv

—~) ',

f(k) = (2~a) '*(mv —mx —~) ',
and

Z = 1+g' Q (2p&n)-'(mv —
mdiv

—p~)
—'.

We remark that the divergent quantity &IImv serves as l
+e&=~ ~(k)n" l V)+ ~ &(k'&k')n"' n~'

l

k k1,kg
the renormalization in mass such that the eigenvalue
mv of the Hamiltonian is now finite. The divergent The Schroedinger equation can also be solved and one
quantity Z2 ' is related to the coupling-constant renor-
malization and will be studied in the next section.

IV. SCATTERING STATE

Ke consider first the scattering process where

(p&
—

pdp)k(pd)&&t (k) =g'Z ) K'(k, k')P(k')nPk', (20)

E (k&k ) = (16&l' ) (p&p& ) '(p&+(d p&p mv+m~)

X '

(p&+ p&' —p& p
—

mv+ mdiv) (mv —m~ —(o')p(o'
l N+8) =g&, y(k)n&, t

l N)+cl V),

IV+8—+/V+8.

The eigenfunction
l N+6& that represents this process k(p&) = 1 g Zp(16' )

can be written in terms of the physical one-particle
states as
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Zs '=d[(Sr ) 'j/nrPs at Ps=mv.

Hence 6m~ and Sg' can be written as

(23)

bmv= —Q (pe= mv) = —g' p (2(oQ)
—'(mv —m~ —ce)

—',
and

where
Sv (ps) Z2Svc(p0) q (24)

Zs '=1+g'Q(2(oQ) '(mv —m~ —
a&) ',

Sv. '(ps) = (ps —mv)

(25)
(2a&Q) (po ma —&e) (mv —ma ce)'-

' G. C. Wick, Phys. Rev. 80, 268 (1950).

and

(cei+ot2 ce0 mv+mN)4 (ki k2)

= —
s (gZs'*)((~r —»)0 (ki)f(ks)

+ (~s—~s)4 (ks)f(kr) j (21)

f(k) is given by Eq. (9). By counting the powers of ce

and a&' in the kernel E' one sees that the solution P(k)
and P(kr, ks) would be free from divergent integrals if
the renormalized coupling constant g, =gZ2' is finite.

V. COMPARISON WITH POWER SERIES METHOD

The above problem can also be renormalized by the
power series method. By constructing the S matrix in
the interaction representation and commuting all the
time ordered operators into S products' ' one finds the
following rules for the Feynman diagram:

(i) Each V line gives a factor (ps —mv+ie)-', where

pe is i ti—mes the fourth component of the momentum
vector carried by the V particle. e is a positive infini-
tesimal quantity.

(ii) Each X line gives a factor (ps —m~+ie) '.
(iii) Each 8 line gives a factor (—k„'—y'+is) ' and

each variable momentum k„gives an integration
J'd4k/(2s)4.

(iv) Each vertex gives a factor g.

Let S~', SI ', and I' denote the sum of all diagrams
that contribute to the propagation function of S, the
propagation function of V, and the vertex function,
respectively. From the nature of the interaction (2),
these quantities can be calculated readily and they are

r
(&') '=ps —mx, (22)

(Sv') '= po —mv —bmv —Z(po),
where

&(ps) =g' ps(2~Q) '(ps —mx —~)-'.
Thus, both I' and S~' need no renormalization. The
renormalization of mass and propagation function of V
are given by

(Sv')-'= 0 at ps ——mv,

If, as in (15), g'Zs is set to be g,s and remains finite,
then the renorma1ized propagation function Sv.(ps)
will be free from divergent quantities. '

For any other physical processes it can then be
shown that one needs only to consider the irreducible
diagrams and use S~„S~,=S~', and g, for the propa-
gation lines of V, Ã, and the vertex, respectively.
Although the number of irreducible diagrams may still
be in6nite, the contribution of each diagram will be
free from divergent integrals. In this case, using (25),
one can compute the scattering processes in powers of
g, and one obtains indeed the same results as discussed
in the previous section.

Thus, identical conclusions concerning both the mass
renormalization and coupling-constant renormalization
are obtained either by the power series method or by
directly solving the Schroedinger equation. A com-
parison between these two methods shows that Z2,
which in the power series method is defined as the
residue of Sz at its pole, is actually the probability' of
finding a "bare" V particle in the state of a "physical"
V particle as shown by (7). It may be of interest to
notice that, for example, in (25) the radius of con-
vergence for the power series expansion of Sv, (ps) in

g,' depends on the variable ps and it is 0 if ps= co. Yet,
the power series can always be summed formally and
still gives the correct result.

and
g'=g. 'I 1—g.' P(2a&Q) '(mv —m~ —s&) 'j ', (26)

Zs ——1—g.s Q (2a&Q)
—'(mv —m~ —ce) '. (27)

Hence, if g, does not vanish and remains finite, the
unrenormalized coupling constant becomes

g=z~ ',

while Z& which, being a probability, should be between
0 and i is actually

Z2= —ao .

This shows that the result of coupling-constant renor-
malization in this problem cannot be realized by any
limiting process if g is restricted to be on the real axis.
Instead, the expressions for cross sections in previous
sections may be obtained by allowing in'the original
Hamiltonian an unre normalized coupling constant

4It is of interest to notice that if g,m is 6nite, then SI, has
another pole besides p0 ——rey. This pole corresponds to another
stable state for the V particle. Identical conclusions can be ob-
tained either by studying the bound state solutions for the state

~
N+0) or by examining the energy of the outgoing S particle in

the scattering state ~V+8).' See Appendix II for a general discussion of this property.

VI. DISCUSSION OF COUPLING CONSTANT
RE NORMALIZATION

The nature of the coupling constant renormalization
may be investigated by expressing g' and Z& in terms
of the renormalized coupling constant g, . Using (10)
and (15) one finds
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which is pure imaginary and which approaches zero
while the upper limit of the sum in momentum space
approaches infinity as described by (26).

This raises immediately the question as to what
changes in the present rules of quantum mechanics we
have made by allowing the Hamiltonian to be non-
Hermitian. As shown in the preceding sections, the
eigenvalues of the Hamiltonian and the matrix elements
of the collision matrix are only functions of the renor-
malized coupling constant g„which is always real.
Thus, even if g is imaginary, the unitarity of the col-
lision matrix and the reality of the energy spectrum can
still be preserved. Consequently, it is possible to
transform this non-Hermitian Hamiltonian into a
Hermitian matrix by a similarity transformation. As is
well known, a similarity transformation preserves all
relations between matrices and vectors; the laws of
quantum mechanics may still be applied to this non-
Hermitian Hamiltonian provided some attention is
given to the formal differences between a unitary trans-
formation and a similarity transformation. In particular,
the transformation between the bare particle states and
the physical particle states is not unitary, which
explains why Zs as shown by (27) is not confined
between 0 and 1.

The author wishes to thank Professors R. Serber and
N. Kroll for discussions.

APPENDIX I'

Another soluble problem is that of the neutral scalar
meson with fixed nucleon. The Harniltonian is Vs+Hi,
where

aI=
J

~p& 4N~ + fL +'(+w) +0 %id

aild

Hi= g I Pxt|P+qrdr+8m) fxtgxdr,

where P~t, f~ describe the nucleon field and w, io the
meson field, g the coupling constant, and nz the physical
mass of the nucleon. While the Schroedinger equation
of the above Hamiltonian 'is well known to be solvable,
it is of some interest to examine the nucleon propagation
function 5', the vertex function F, and the renorrnaliza-
tion quantities bus and Z1, Z2.

The mass renormalization is

bm = —g' Q (2o~'0) —',

where 0 is the volume of the system. The nucleon propa-
gation function can be expressed as

S'(x—x') = T(vac
~ ga (x)govt(x') t vac), (A2)

where ittiv and gs t are operators in the Heisenberg repre-
sentations and T is the T product as defined by Wick. '

'Some of the results obtained in the appendices have been
obtained by other authors: M. Gell-Mann and F. Low (private
communication); S. Edwards and R. Peierls (to be published).' M. Geli-Mann and F. Low, Phys. Rev. 84, 350 (1951).

Using the known solutions in the Heisenberg repre-
sentation, one finds

where

and

S'(x—x') =Zss, (x—x'),

Z, =exp| —g' P (2~'ll)-'3

(A3)

(A4)

APPENDIX II

There exist some interesting relations between the
renormalization quantities Zl, Z2, etc. , and the ordinary
matrix elements. In this section we shall illustrate the
proof of these relations by considering the problem of
the charged scalar meson field with a fixed nucleon.
For simplicity, we shall set the nucleon at the origin.
The Hamiltonian is

II= (m+8m)lt tf+- t Q Lw '+ (Vie )'+p'io ']d7.

where

+ (glv2)P intr'iPy'(0) (A9)

(pp(t) t

(Piv(t))

describes the nucleon field and 7-~, v2 are the Pauli
matrices.

By applying the power-series renormalization method,
one can prove that this problem can be renormalized

by both a mass renormalization and a coupling-constant

This can be obtained by generalizing the arguments used in
proving Ward's identity. The author wishes to thank Dr. C. N.
Yang for informing him of this generalization.

S,(x—x') =P(r r') e—xpL —im(t —t')$
Xe pxLg' Q (2 'o0) 'e '~&' "'j if t) t' (A5)

=0 if t&t'.

It is of interest to notice that Z2 is again the prob-
ability of ending the bare nucleon in the state of a
physical nucleon. ' If tN t', S,(x—x') is always free from
divergent quantities; furthermore it can always be
expanded into convergent power series in g.

For convenience we shall in the following omit the
trivial spatial dependence of S'(x) and denote its
Fourier transform by 5'(ps). The vertex function
F (Ps,Pp ) is related to 5'(Ps) bys

I'(po, po') (po —po') =p" (po))-' —[S'(p,')]-'. (A6)

Following Dyson's notation, ' we write

I'=Z1 'I', .

If we use (A3), I', would be free from a divergent sum if

(AS)

Thus, no coupling-constant renormalization is needed
in this case and Z2 is actually ~ ' for any finite value
of g.
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A~= T&vacl Q~(t~)n~(f3) Qi t(t2)
I
vac), (A19)(A10)S'(p,) =Z2S, (po),

renormalization. The nucleon propagation function (ii) To prove Theorem 2, we consider the quantity
5'(po) and the vertex function P(pp, po') can be written A& defined by
as

r(p„p, ') =z; r, (p„p, ). (A11)

(po tn—) 5, ( po) =1 when po ——~,

The quantities Z& and Z& are determined by the con-
ditions

(A12)

where all operators are in the Heisenberg representa-
tion. We denote by n&(t) the annihilation operator of
a positive meson in the interaction representation and
by ni(t) the corresponding operator in the Heisenberg
representation. Similarly to (A17), we have

I', (m, m) =1, (A13) e~(t=0) =a~(t=0) (A17')

where nz is the physical Inass of the nucleon. The renor-
malized coupling constant g, is connected to the unre-
normalized coupling constant g by

By making similar arguments to those used by Gell-
Mann and Low' in proving (A2), one can prove that

g~2~1 =gc. (A14) A, =g "S'(t,—&)r(&—t,", t' —t")

S.and P, are then 6nite functions of g, and pp.
Let IP) (or IN)) and IP& (or IX&) represent one

physical proton (neutron) state and one bare proton
(neutron) state, respectively. Z2 and Zi are related to
these state vectors through the following theorems.

Theorem 1.

XS'(~'—t,)f(»"—~,)d~d~'d~", (A20)

where F, S' are Fourier transforms of I' and 5'. The
function f(t"—t3) represents the retarded part of the
propagation of a positive meson with wave number 0
from time t" to time t3. It can be written as

z = I&PIP&l'= IV~IN&l', (A15)
Theorem 2.

Zgzi —' ——(Nlr IP), (A16)

where ~ is the operator 2(ri —ir2) which transforms
a bare proton into a bare neutron.

(i) Proof of Theorem 1. The propagation function of
a proton (or neutron) in time can be written as'

S (fi 4) = T(vac
I &&(~&)&&t (t2) I

vac)

in the Heisenberg representation. For convenience one
chooses 3=0 as the time when the Heisenberg repre-
sentation coincides with the interaction representation;
i.e.,

Qp(3=0) =fp(t= 0),

where Q~ is in the Heisenberg representation and Pp in
the interation representation.

S'(ti —t2) can be rewritten as

S'(~~—~2) =2 &»cl imp(0) I~&&~I &p'(0) l»c)
Xexpl —iE„(4—t&)] if fg&t2 (A18)

where In& is eigenstate of the total Hamiltonian with
eigenvalue Z (Z „=0).Thus, '

expLim(ti —4))S'(t,—4) = 1&vac I 4~(0) I
P&

I

'.
tg~oo
t].~+~

1 t' expI ipo(t" —t,)J
f(t" t )=- dpo)

2~ " (pp —(a+ i&) (2o)Q)'*

where 0 is the volume of the system. The factor (2&uQ) &

arises because we use nI, in the definition for A&. Equa-
tion (A20) thus represents the totality of all diagrams in

which a nucleon propagates from t2 to t' and then a vertex
part from t' to f with an emission of a positive meson at
t". The positive meson, then, propagates from 3" to
t3 and the nucleon from t to t~.

As in the previous proof, we wish to examine the part
of Ai that oscillates like expL —im(ti —t2) j as &~~+ ~
and t2—+—~. This can be achieved by two diGerent

ways. On the one hand, we can express the definition

of Ai (A19) in terms of the eigenstates
I e& of the total

Hamiltonian. A~ can then be written as

~~= Z&»c I 0~(o) IN&&~ I
~~(0)

I
~&&~ I

C~'(0) l»c)

Xexp[—iE„(ti—t3)] exp) iZ (t3 t2)—j; if t, &—~,&i,.

Using (A17) and (A15), we have

exp[im(t, t2)5Ai, —Z2&N I+i,——(0) I
P). (A21)

t].~+co
t2~—co

By using (A12) and noticing that S (t) is the Fourier
transform of 8'(po), one has

and I, one has
z=

represents an operator of the type Lim t 'J't'dt such
t-++ao t~+oo

that all oscillating terms can be taken to be zero.

exp(imt, )S'(t,—t) =Z, exp(imt),
ty~oo

exp( —imt2) S'(t' —t~) =Z2 exp( —imt'),
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and

F (srt, rrt) = I (t,t') exp$irrt(t t—')]dtdt'.

By comparing (A24) with (A23), we can express
the coupling constant renormalization (A14) as

g,/g=z, /z, =(Nl, lp).

By using (A20), the same limit becomes

expl isrt(t, —t,)]A& ——gzssF(rtt, rtt) (—co)
—

'(2coQ) —
v,

(A22)

which, together with (A21), gives

Z F(srt, rl) =g '(—co) (2 Q)**(Nl s(0) lP). (A23)

The left-hand side of (A23) is the ratio of the renor-
malization constants, Zs/Zt. The k dependence of the
right-hand side can be eliminated by using the identity:

(Nll ns, HglP)=0.

Sy commuting o.I, with the total Hamiltonian, we have

(Nl~slP)= —g~ '(2~(I) *'(Nlr-IP) (A24)

Thus g,/g, if real, must be less than unity.
These proofs can be obviously generalized to other

renormalizable 6eld theoretical problems. In the
charged scalar theory these identities can be applied
to calculate formally the values of Z& and Z2 by using
both the weak-coupling and strong-coupling solutions. "
They are:

(i) weak-coupling solution:

Zs ——1—
g

' Q (2co'0)—'+
Zs/Zr ——1—g,' Q (2co'0) '+

(ii) strong-coupling solution:

Zs=z expl: —g'Z(2~'ll) 'j+", Zs/Zi=s.
iv G. Wentzel, Helv. Phys. Acta 13, 269 (1940); 14, 633 (1941);

R. Serber and S.Dancoff, Phys. Rev. 63, 143 (1943);S. Tomonaga,
Progr. Theoret. Phys. (Japan) 1, 109 (1946).
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The Fierz-Pauli Geld corresponding to particles of spin 3/2 is quantized, and its interaction with the
electromagnetic field is investigated. It is also shown how the elements of the 5 matrix for collision processes,
involving photons and charged particles of spin 3/2, can be obtained in a simple way.

l. INTRODUCTION

THEORY of particles of arbitrary spin was first
developed by Dirac, ' Fierz and Pauli, ' and since

then several other theories have also been proposed. '
Such theories are of special interest at the present time,
because a number of new particles have been observed in
recent years, and some of them may have a spin higher
than one. However, except in the case of the gravita-
tional field, 4 the interaction of a quantized field of spin
higher than one with other fields has never been in-
vestigated.

%e shall, therefore, discuss in some detail the Fierz-
Pauli theory of particles of spin 3/2. We shall first carry
out the quantization of the Fierz-Pauli field, and con-
sider its interaction with the electromagnetic field.
It will then be shown that in the present case, too, the

' P. A. M. Dirac, Proc. Roy. Soc. (London) A155, 447 (1936).
s M. Fierz and W. Pauli, Proc. Roy. Soc. (London) A173,

211 (1939).
3A specially interesting field equation for particles with two

different mass states has recently been given by H. J. Bhabha,
Phil. Mag. 43, 33 (1952).' S. N. Gupta, Proc. Phys. Soc. (London) A65, 161, 608 (1952).

contribution of any collision process can be obtained
from the 5 matrix by means of simple rules, which are
similar to the Feynman-Dyson' rules of quantum
electrodynamics.

2. FIELD EQUATION FOR PARTICLES OF SPIN 3/2

According to Fierz and Pau1i, ' a field corresponding
to particles of spin 3/2 is described by the symmetrical
spinors

Q pp= 8 trp Mld 61

and the auxiliary spinors c and d". The Lagrangian
density for the field is

L = —(a'"-p p" a""+&*"p-' f p"')

+tc(a*" p fi"p+b" p a"' p)+'(p p d" a"'
p

+Pp" c . b„"P a"
p P„P da fs—„"PPp" c )—

+3(d" P p dP+c* P P cp)+6z(d' c +c' d'), (2)

s F. J. Dyson, Phys. Rev. 75, 486, 1736 (1949).


