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There is only one instance in which the scattering
from one element has been observed at two angles;
this is the case of gold which has been studied for
scattering angles 60' and 96 . It has been previously
observed that the one-quarter point recipe provides a
good estimate for R when &=90'. It then seems reason-

able to trust the estimate for E obtained from this pre-
scription at the neighboring angle of 96'; I arwell and
Wegner find for Au at 96', Drt4 (10.45——&0.25) (10 ")
cm.' When P= 60' it is now interesting to observe that,
although Dtt4 (10.0——5&0.16)(10 ") cm, the experi-
mental curve is straddled by the two theoretical curves
for 2=10.3 and 10.58(10 ") cm. Thus for this single

case, one radius will 6t the data within experimental
error at two angles.

The agreement between the shape of the experi-
mental and theoretical cross section curves over a
range of energy during which the cross section drops by
more than a factor 10 suggests not only that the present
semiclassical strong absorption model has more merit
than its crudity would indicate, but also that it is

possible to think of the alpha particle and nucleus as
possessing fairly dehnite collision radii.

The values of E obtained by the "one-quarter point"
prescription were given and discussed in the previous

paper. ' In general, these values of E yield theoretical
curves whose over-all behavior is in fair agreement with
the experimental cross sections. As mentioned before,
however, the choice of somewhat larger E. gives better
agreement for &=60' and the deviation between these
values of R becomes larger as Z is decreased. It wi11

be noted that, if one assumes a reasonable radius of
the order 2 (10 ")cm or less for the alpha particle, then
the resulting nuclear collision radii can be fitted moder-

ately well with the usual formula, E„=rod', where

re=(1.5)(10 ") cm. This is in agreement with other
estimates of nuclear collision radii and emphasizes the
distinction between the "electromagnetic" and "nuclear
force" radii
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Department of Physics at the University of washington
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publication and with whom the author has had in-
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Some theorems are given which apply to the beta radiation and internal bremsstrahlung emitted by light

nuclei. Use of these theorems simplifms the calculation of approximate spectra and angular correlations. The
principal new result is a simple, explicit relation between the spectra and angular correlations of the internal

bremsstrahlung of K capture and the spectra and angular correlations of positrons.

I. INTRODUCTION

HE internal bremsstrahlung which accompanies
beta emission has been studied by many writers,

both theoretically' and experimentally, ' and for allowed

as well as for certain forbidden transitions. The spectra

and angular correlations of this gamma ray for all cases

agree quite well with the predictions of the semiclassical

theory of Knipp and Uhlenbeck. The spectrum of the
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internal bremsstrahlung of E capture, which has been
given by Morrison and SchiG, ' is also in agreement with
the measured spectra, ' but the theory of this process,
which does not have a classical analog, has been
given hitherto only for allowed transitions. The prin-
cipal object of this study is to examine the properties
of the internal bremsstrahlung of E capture for for-
bidden transitions; in particular, the spectra and the
angular correlation with a subsequent (nuclear) gamma
ray.

|A"e show that one can obtain as much information
about electron-capturing nuclei by studying the gamma
rays they emit as one can obtain about beta-emitting
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nuclei by studying their beta radiation. Experiments
which make use of the internal bremsstrahlung are ex-
tremely difficult, but would provide invaluable infor-
mation, as they are the only source of information
about some of the properties of electron-capturing
nuclei. The calculation of the spectra and angular cor-
relations is greatly facilitated by two techniques, illus-
trated hereafter, which have applications to a much
wider class of problems than that which is the chief
concern of this paper. In Sec. 2 a way of treating the
Coulomb wave functions will be introduced which is
extremely convenient in the lowest approximation
which does not neglect the large spin-orbit coupling
eGect. In Sec. 3, using this method, relationships
between various radiative and nonradiative beta pro-
cesses are given which enable one to obtain the spectra
and angular correlations of the internal bremsstrahlung
from those which have been given for beta decay. ' '

2. COULOMB WAVE FUNCTIONS

Those who have studied the eGect of the Coulomb
field on the processes of beta decay' have proceeded by
expanding the electron wave functions in angular
momentum eigenstates, and then at some point in the
calculation have often made the assumption that Z is
small and have neglected terms of order nZ, while
keeping the dominant terms of order uZ/nzR (m is the
mass of the electron, R is the radius of the nucleus, and
we let A=c 1). This cumbersome procedure can be
circumvented easily if one is not attempting to find
exact expressions, by first making the above approxi-
mation and then summing to find the approximate
solutions which asymptotically have the form of plane
waves (with ingoing spherical waves). More precisely,
we note that it is possible to write

(r;p, o) ='A(r, p) e(p,a),

where +(r;p, o.) is the wave function with asymptotic
momentum p and spin o-, A (r, p) is a matrix function,
and m(p, o) is a plane-wave spinor. If the states are re-
stricted to have positive energy, A has the form

A= fi(r, p)+Pfs(r, p)+in rLfs(r, p)+/f4(r, p) j, (2)

where the f's are ordinary scalar functions. We wish to
find an approximate expression for 3 for r&R and
small Z, which may be done by comparing (1) with the
expansion for a plane wave traveling along the s axis
and then using the fact that 2 must be invariant in
rotations.

One finds

A(r, p)=1+i(p r) —-,'(p r)'+i)(n r)
', P(n r)(p r—)+-. , (3)
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where Piv, P~, f., and f.are the field operators for the
neutron, proton, neutrino, and electron fields, and X ~

is the ath matrix of the kth covariant set of matrices in
the Dirac algebra. The matrix element for emission of
an electron with momentum p, spin 0., and an anti-
neutrino with momentum q, spin p, while the nucleus
makes a transition between the states with, 'wave func-
tions V and U, is

Xp ——u. (p,o)P Gs~ U, y~).."P~e—"'
Ia

=~(p,o)~s(e,p).

XA(r, p)d'x V ~X,"v(tl,p)

(6)

With Q s& i(r) and P s~"'(Z, p, tl) denoting the mth
components of the irreducible tensors' contained in (6),

Xr. &-l(z,p, q). (7)
' W. Furry, Phys. Rev. 46, 391 (1934).
s D. L. Falkoii and G. E. Uhlenbeck, Phys. Rev. 79, 323 (1950).

where P=nZ/2R. To obtain Eq. (3) we have discarded
terms strictly of order eZ or smaller, as well as terms
which contribute only to third or higher forbidden
transitions. We have also supposed that the velocity of
the electron is greater than nZ, and that the radial
wa, ve function of a component with orbital angular
momentum / is adequately represented inside the nu-
cleus by a term of the form ar'. The wave functions
inside and outside of the nucleus have been matched in
the naive fashion of equating this term ar' to the value
of the Coulomb wave function at r=E, which is
equivalent to the usual procedure. We remark that (3)
can also be obtained from the Furry wave function. v

The matrix (3) applies to both spin states, and to states
with either ingoing or outgoing scattered waves. It also
applies to states with either positive or negative energy;
we remember that the negative energy states are related
to positive energy states by the operation of charge
conjugation and observe that

A (r, p,Z) =CA*(r, —p, —Z)(.—'.

In this equation the asterisk denotes the complex con-
jugate and C is the charge conjugation matrix. The
utility of the matrix A (r,p) arises from the fact that it
enables one to perform all spin sums by the standard
method of projection operators and spurs and thus
exhibits the effect of the spin-orbit coupling in a par-
ticularly convenient forzn.

The interaction Hamiltonian density for beta decay
may be written as

~~=K G.V ).V.) (~.).V.)
+Hermitian conjugate, (5)
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the scalar interaction gives

QB(r) =Pr,

Ps(Z, y, q) = i y —iq+—i(n
=Ps(Z=O)+z(Pr&' &(Z=O). (Sb)

For all first forbidden transitions, the terms in the I"s
which are proportioned to t are the same as other first
forbidden P's for Z=0. The transition probabilities for
all processes, which involve the I"s quadratically, can
therefore be obtained easily as linear combinations of
corresponding transition probabilities for Z=O, in this
approximation. Note that (8) and the similar relations
for the other interactions give directly the well-known
results that Dl=O, +I (yes) transitions will almost
always have allowed spectra and allowed angular corre-

k:

g:~.' x. ep')

/

/q
1

/

~f

For first forbidden transitions, for example, the tensor
interaction gives

0""'(r)=Pn P""'(Z y q) =n Q'"'(r) =~n r

Pr &P) (Z) = -', (—iy —iq+ iran) e
=Pr &P) (Z= 0)+i)PP'(Z=-0)

QT(1) —Pn)( r

P~ o) (Z) = ——,(—iy —iq+'gn) Xn
=P &')(Z=O)+&P ~' &(Z=. O), (8a)

Q,"r&') =P(-,'o,~+ 'a ~,—-—',n. r5;;)

P "r&') = -'(—iP.;—iq,+i',)o,

+ ', ( ip, -i q,
—+i(n—;)a, P'") (.Z—)8;,

P T(2) (Z —0) ~

lations, and that the AI=&2 (yes) transitions are not
so greatly af'fected by the Coulomb field. Second for-
bidden transitions are not quite as simple. The transi-
tion probabilities for small Z cannot always be expressed
in terms of the transition probabilities for the same
process in the limit Z=O. Ke easily find, however, that
the P terms in

~ Xp ~' are always the same as the terms
associated with the matrix elements A;, and A;;~, with
the neutrino momentum doubled, and the fact that;
there is no large Coulomb effect in AI= +3 (no) transi-
tions appears as a consequence of the anticommuta-
tivity of the Dirac matrices. Similar relations hold in
nth forbidden transitions.

1

3. INTERNAL BREMSSTRAHLUKG FOR LIGHT
ELEMENTS

From Fq. (6), the beta-emission transition prob-
ability is proportional to

t (. iY qiEl&sl'=-'Tr g) &f 'vp-
q

m+iypE iy y-
XAdQp (9)

m+iypE iy y-
=-', Tr &V(y, q, ()

The Dirac matrix S' which is thus introduced is a
function of the nuclear quantum numbers and the
coupling constants, as well as of y, q, and (. Note that
the matrix element (6) may be defined by diagram I
of Fig. 1; through the use of the matrix A we may, in
this approximation, consider the eGect of the Coulomb
6eld to be included in the interaction term A rather than
in the propagation function of the electron, thus we
consider the electron and neutrino to be both in plane
wave states.

In the processes of radiative and nonradiative E
capture we assume, in addition to the assumptions used
in deriving (3), that the binding energy as well as the
spread in momentum space and the small components
of the E-electron wave function can be neglected, and
that the gamma-emission matrix element is given by
its value when Z=O. The errors thus introduced are all
of order eZ or smaller compared to the terms which are
kept, if in all continuum states the electron has a
velocity w))nZ. P If P„' denotes the 4-momentum of an
electron at rest and p(0) the Schrodinger wave function
of the E electron evaluated at the nucleus, the matrix
element for the ordinary I capture, which is described

FIG. 1. Feynman diagrams for several beta-decay processes. The
nucleus is supposed to be inGnitely heavy and at rest.

The Coulomb Geld in intermediate states depends on whether
there is an electron or a positron present. This also gives a small
effect, which we disregard.
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by diagram II, is

X&=u„(q,p)Au, (0,0)y(0), (10)

where A=A(0, —q, $); so that the transition prob-
ability is

where 8' is the total energy liberated in the transition,
The radiative capture, described by diagram III, has

the matrix element
$Ppgp

—fP
Xrr~ ——ie(2') 'P(0)u„(q,p)A e&"'yu, (0,0), (12)

g„'+m'

where g„=p„'—k„, co—=ko, and e&"& is the polarization
vector of the emitted photon. Squaring and summing
gives

2m' iy~
[e(0)3'l T

M g +m

=2zrn&u im z[g(0)]z~~ Tr{(iyo—iy u)1V},

where u=cv 'k. Referring to (9), we see that this is just
equal to 2zrn&o 'm '[p(0))' times the corresponding
expression for emission of a positron with momentum
k and zero rest mass. The density of final states is also
the same for a p ray and such a positron, so the above
calculation can be summarized by the following rule:
Let I'~ be the probability for emission of a p ray with
momentum k in E capture, and Iet I'e+. be the prob-
ability for emission of a positron with the same mo-
mentum [and energy E= (mz+P) &) when the nucleus
makes the same transition. The expression for P'p+

will of course involve the mass of the positron explicitly.
To obtain P„set the rest mass equal to sero ie Pp+, aed
multiply by 27m~ 'm 2(&(0)j2 For exam. ple, consider
an allowed transition. Provided there is no Fierz inter-
ference,

1V=4zriyo(Q O'IMvpI'), (14)

which with (13) gives the result of Morrison and Schiff, '
and which with (9) gives the well-known allowed beta
spectrum.

All radiative corrections to beta decay can be treated
in a similar fashion by this method, when the same
approximations are made. Consider for example the
radiative beta emission, which is given by diagram IV.

The matrix element is
Zgpgp

—18
Xe,=ie(2ao) &u, (p,o)y e&"' hw„(q, p). (15)

g'+m'

The summed square has the form

PIXe, Iz=2zrn(o '', Tr{BE(p+k) q, P)}) (16)

where, after some manipulation, one finds, with the
notion p k=pk cosp, 0~=1—pE ' cos8:

8=E 'o& '0~ '{mp' sin'8+iy0[(E+co) p' sin'8

+EoPO~] —iy p[p' sin'8+Ko0$
—zy u[(E+co)KoO —m'(o)}. (17)

The dominant term is (with e=p/E):

v' sin'8 (m+iyoE iy —pq

&o'(1 nc—os')' ( E )
which shouM be compared with (9). The probabilit
for emission of a low-energy photon, in this approxi-
mation, is thus

e' sin'0
dPp~ —— dordQ&dPp,

4m' ~(1—v cos8)'

as has been shown for some special cases. ' The calcu-
lation leading to (19) gives a quantum-mechanical
verification that the classical theory gives a good
description of this process. The corrections to (19) can
be determined easily from (17).

The method explained above has been used to cal-
culate the spectra and angular correlations of the
E-capture bremsstrahlung for first and second forbidden
transitions and for a mixture of the scalar, tensor, and
pseudoscalar interactions. These results are not given
here because their tabulation would require a great deal
of space and because most of them can be obtained
easily from the results of others as indicated above. Of
more importance than these particular results is the
method used, which was found to be simpler than that
of Fuchs, ' whose results have been checked. The
approach of Sec. 2 enables one to see easily how the
spin-orbit coupling alters the character of many for-
bidden transitions, and the theorems of Sec. 3 provide
a complete description of the internal bremsstrahlung
of E capture and beta emission for light nuclei.
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