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when the sample is inside, by (a) a shift to the right of
the position of the 176-kev peak as a result of its co-
incidence with the 27-kev x-rays; and (b) a marked
increase in intensity for the peak at 622 kev due to the
coincidence between the 176-kev and the 425-kev y
rays. Such indications, however, are de6nitely lacking
here. If the good energy fitting of this decay scheme is

to be preserved, one must assume that the energy level
at 470 kev is metastable with a half-life longer than
several microseconds. However, 7 rays originating in
this level have been reported to have low e/y factors.
An alternative solution is to place the 176-kev transi-
tion elsewhere. This would require a fourth P transition
from Sb"', which has not been reported.
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The ft value for an allowed unfavored P transition, calculated on a deformed core+single-particle model,
is &3 times the single-particle value and about 4 percent of the observed value. The deformations of initial
and 6nal states were based on their quadrupole moments. The calculation indicates that for this model core
orthogonality generally does not account for the difference between allowed favored and unfavored ft values.
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FIG. 1. HistograIns of the ratio R= L(ft),vg/L(ft), vg for
allowed unfavored transitions of the like-core (L) and unlike-core
(17) types.
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I. INTRODUCTION

'HERE exist many nuclei whose quadrupole mo-

ments are much larger than can be expected from
the shell model. For example, the quadrupole moments
of two In (Z=49) isotopes and two Sb (Z=51) isotopes,
which, according to that model, have single-hole and
single-particle proton configurations, are approximately
three times the theoretical values. It is noteworthy,
however, that the signs of quadrupole moments are
quite generally (as for In and Sb) those predicted by
shell theory, and further, that no anomalous quadrupole
moments appear for those nuclei which have both closed
neutron and closed proton shells&one nucleon. In
order to explain the high quadrupole moments observed
in some regions, deformed core models have been
introduced. '

Another discrepancy between shell theory and experi-
ment appears in the f1 values for allowed P transitions.
The shell model calculations indicate that all allowed

transitions should have ft values of about the same

order of magnitude. ' Actually, nearly all fl values for
allowed transitions fall into two groups: Favored,
logft=2. 9 to 3.6, and unfavored, logft=4. 5 to 6.0.
Empirically, it appears that only transitions between
states which, according to the supermultiplet theory,
should belong to the same supermultiplet, are favored.
Nearly all of these transitions appear for light nuclei
(with mass number 2 &40). On the other hand, nearly
all allowed transitions for heavier nuclei, as well as
many for the light nuclei, have unfavored ft values. It is

for the heavier nuclei that anomalously high quadrupole
moments appear, and one might suspect that a deformed
core model which accounts for these would also account
for the high unfavored ft values. There is no indication
at all, however, that substantial core deformations exist
for light nuclei, so that the unfavored ft, values which

appear in that region would remain unexplained. It will

be seen below that the most obvious interpretation of
the deformed core model, in terms of a wave function
in configuration space, fails to account for the whole

difference between favored and unfavored transitions
even in medium heavy nuclei. This need not be con-
sidered as a convict between the deformed core models
and experiment because the deformed core model's

wave function in ordinary configuration space has not
hitherto been specified closely enough to permit definite
conclusions to be drawn. On the contrary, it may be
hoped that the Qexibility of the model is sufhcient to
avoid the apparent diKculty to which we are. drawing
attention.

In a deformed core+one particle model (for odd-A

«E. P. Wigner, Proceedings of the Harwell Nuclear Physics
Conference (Ministry':Iof Sup ly, Harwell, Berks. , 1950). Also,
I. Talmi, Phys. Rev. 91, 122 1953).
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nuclei) p transitions fall into two groups s The like-core
transitions, for which the neutron and proton numbers,
X„Z„of the initial core equal the ones of the final
core, and the others, unlike-core transitions. An ex-
ample of the like-core type is the following transition:4

Ge"
X,Z= 43,32

As"
42,33

ft=160000

J= —', (from shell theory) J'= ss (measured)

Q= (0.3&0.2)X10 s4 cm'

The core for both nuclei has Jt't„Z, =42,32. Both the ft
value and Q are typical for this region. The assumption
of a single particle P transition (piis~psts) leads to
ZG*.6=8/3, and (ft),v=1990. G is the Gamow-
Teller matrix element, and the summation is over final
states with di6erent components J,' of total angular
momentum. (ft),n is based upon constants' obtained
for transitions between nuclei which, according to the
shell model, have single-particle and -hole configura-
tions. The calculated ft value is too small by a factor
of 80. Ge" has Q=O if its spin is 1/2. In the present
calculation, its core will be assumed to be spherically
symmetric. Spin 1/2, corresponding to a Pris single-
particle state, is predicted by the simple coupling rules
for 43 odd nucleons. Spins 5/2 and 3/2, corresponding
to fs~s and pcs, have not been observed for any nucleus
in this shell with more than 37 odd nucleons.

As an illustration of an unlike-core transition, let us
consider Gars(P )Ge". For the initial nucleus, Z,Zs
=42,3j. ; for the final one, 41,32. The initial core thus
has g„Z,=42,30; the final one has 40,32. One might
expect that the core factors in P-decay matrix elements
(see Sec. II) would differ for the two types of cores.

All data4 for the set of ground state to ground state
transitions between odd-A nuclei in the regions where,
according to the shell model, allowed transitions may
appear were examined. There are 22 such transitions
with definitely known ft values and 4.5&logft&6.0.
Two additional transitions, which may have AJ=O or
1 and no change in parity, probably are of the /-

forbidden type; they are Ni s(P )Cu" and Ni"(P )Cu".
Their ft values both equal 3.6X10s; the initial spins
are not known. The remaining transitions in this set
are of the favored type with logft&4. 0.

The ratio R= (ft),n/(ft), „n of the theoretical single-
particle ft value divided by the experimental one, was
calculated for the 22 allowed unfavored transitions.
Histograms of R of these transitions, divided into like-
core (J.) and unlike-core (U) groups, are given in Fig. 1.

3 L. W. Nordheim, Report on the Indiana Conference on Nu-
clear Spectroscopy and the Shell Model (University of Indiana,
Bloomington, 1953).

4 Data are taken from: King, Dismuke, and Way, Oak Ridge
National Laboratory Report No. 1450, 1952 (unpublished), and
P. F. A. Klinkenberg, Revs. Modern Phys. 24, 63 (1952).' G. L. Trigg, Phys. Rev. 86, 506 (1952). Also, A. Winther and
O. Kofoed-Hansen, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 27, No. 14 (1953).

E. is proportional to the square of the matrix element.
It is plain that the matrix element is, on the average,
larger for the 1. transitions; the average value of E for
these is 2.3 times that for the U transitions. However,
the diGerence seems to be much smaller than we would
have expected on the basis of a deformed core model
with on1y one particle outside the core. The ratio E was
also calculated for the favored transitions in this set.
This time there are ten transitions each of the I.and U
types. The average of R for the I. transitions is 1.02
tiynes that for the U transitions. This is consistent
with the generally accepted hypothesis that the core
plays at most a very slight role in the favored transitions.

It may seem surprising that there are, in fact, four
transitions among the like-core ones with 0.002&X
&0.006. (See Fig. 1.) Two of these transitions are
0"(P )F" and Si"(P )P" The single particle has been
assigned an s~~2 state for both transitions; this leads
to an especially low R. Probably a several-particle
configuration would describe the situation better. No
reason for the low E's of the other two transitions,
Ca4'(P —)Sc" (with single-particle transition f7ts~frts)
and Te"'(P )I"' (with dst&~dsts), seems apparent.

II. MATRIX ELEMENTS FOR THE DEFORMED
CORE MODEL

Let us calculate the matrix element for a like-core
transition on the foIlowing model: A —i particles are
contained in a box, which is a sphere for the undeformed
core, and an ellipsoid for the deformed one. The last
nucleon is in a state with angular momenta j and l in
a system fixed in the core (strong coupling). If xi de-
notes the space and spin coordinates of the kth particle
in the laboratory system, and $ is the set (xi, ,x& i)
and further, x~= x, then the wave function is

4'sr„&(),x) =a(Jj,w) ' K) (R)„~„t'(Rx)C'(Rp)dR. (2)

C and P„&' are core and single-particle wave functions;
X) (R)„sr is a representation coeff'icient R is an ele-
ment of the rotation group; u is a normalization factor.
It can readily be checked that %sr„~'($,x) belongs to
M'th line of the representation $~(R). 4' has definite
parity equal to that of f. The parity of C is even, since
there are two particles to each space state in the core.
The integration is taken over the parameters of all ele-
ments of the rotation group. The core state may be a
superposition of states with several angular momenta,
J(', but it is assumed to have Jz.('=0. z, is the z axis
in the core system, and Jz,&' is the component of core
angular momentum along this axis.

The matrix element of the v component of an irre-
ducible tensor operator T~ of order k -which operates
only on the coordinates and spin x of the outer particle

See, e.g., E. P. Wigner, Gruppentheorie und ihre Anmendung
alf dt'e Qualteemeehaezk der AtomsPetttreN (F. Vieweg und Sohn,
Braunschweig, 1931).
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can readily be calculated. It is

(J'~'j'"'
[ r; ( m~w)

4'~ „.~'&'(t,x)* T„~ @~„~&($,x)dgdx, (3)
J

where the integration includes a summation over spin
components. Then, with 4 and 4' wave functions of
the spherical and deformed cores,

a'(J', j',n')*a(J,j,l)
'

dR
' dSn~'(R)„.~.*n~(S)„r

The matrix element equals 0, unless J=j and J'=j'.
The irst condition is obvious: Since C is spherically
symmetric, it describes a core state with angular
momentum J(') =0, and the nucleon's j coupled to it
can give only J=j.The second condition follows from
an expansion of 4 ' in terms of core functions with
definite angular momenta, pe&'&$. The core integral
equals 0 unless y(0) appears in this expansion. This
will occur only if J'=j'.

~ a(j,j,e) t' may be calculated from (4) and (8) by
substitution of J'=J=j, T„~=To'= 1 and O'=C. Then
(a(jje) ('= (2j+1)'k '.The expression for (a'(j', j',e') ~'

is more complicated. From (4) and (6), with V=SR ',

1 k «In" (I')- - I'
I "(i',i',"') I' 2j'+1"

"(Rx)~T„Q„'(Sx)dx
'(~)*~'(V.)d" (9)

p„&' belongs to the eth line of n':

~'(R~)*~(S~)«. (4) An upper limit to the integral in g is 1 for all V. Then
~a'(j', j',n') ~') (2j'+1)'k '. It should be noted that
only this lower limit, not a'(j'j', n') itself, is inde-
pendent of e'. Substitution in (8) gives:

p„'(Sx)=Q n'(S)„,'p, '(x).

Substitution of (5) into (4) and the transformation
R$=g lead to

dRn~'(R) „~*Q n&'(R)

) dSn~(S).~ Q n'(S),*
) p, &'(x)*T„Q,& (x)dx'

I
&J'~'j'&'l r, 'I mj~}I'& )

'P". '(x)*V'„"y~ (x)dx

'( )*~( )d . (1o)

The lower limit of the factor in the matrix element due
to the core thus has absolute value

~

J'4'(g)*C (g)dg ~.

III. A CALCULATION OF THE CORE FACTOR

The orthogonality relation for the representation co-
ef6cients is, with k=fdR,

dRn" (R).g*n"'(R). g

In order to obtain an orientation concerning the
@''(g)*@(SR 'g)dg. (6) magnitude of the core matrix element, we have chosen

the previously mentioned Ge~5 transition as an ex-
ample. Cube-shaped and para) lelopiped-shaped boxes
of equal volume were substituted for the spherical and
ellipsoidal ones. It is most likely that the matrix ele-

ment between the last two states does not diGer sub-

stantially from the one to be calculated here. The edge

8(k,k')8(u, a')b(b, b'). (7)
2k+1

C is spherically symmetric, so that (6) and (7) lead to

(J~ &"
~
r„~J~&N}="(J',&,")*~(J,~,")

~ ——,'

P~.&'(x)*T„Q~&(x)dx
(2j'+1)(2j+1)~

'i~'+~'+ng'

18
17
14
12
11
9
6
3,

YAar.z I. States for a cube-shaped box.

Number of states
for one par-

ticle type
(spin $)

6

12
2
6
6
6
2

Cumu-
lative

number

46
40
34
22
20
14
8
2
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TAnLE II. I(e,m; f) for m+e. (4=1.0275). states will be calculated next:

I(e,rn; 4)
I(n,m; 4')

0.3) (3.1)

—0.020 —0.021-0.038 -0.043

(2.4)

—0.035—0.066

(4,2)

—0.038—0.078

A—1
C"(~)'C'(n)de=(~(n} I p(n})=II ( n'I pn')

where
=0) )x))d,

fn2rx )
E2d)

cos(n2rx/2d), if n is odd

sin(norx/2d), if n is even.
(12)

The states for the three-dimensional cube-shaped box
are given in Table I.Three quantum numbers e„e„,e,
determine each state, and its energy is given by
(n 2+n 2+n 2) . fZ2x2/8etd2

The deformation, e, can be calculated from the con-
tribution to Q by the core of Asr'. This contribution
will be assumed equal to 0.67)(10 '4 cm', a value
about twice the largest observed in the region around
As. The operator is

Q=P (2z,'—x —y;),
2=1

(13)

where the summation is over protons only. The tota1.
wave function is the antisymmetrized product of
single-particle wave functions, and application of a
well-known formula' leads to

of the cube (state n) will be taken as d=2242. The
parallelopiped (state p) has a square base with edges
2a and height 2e'u.

The wave functions are products of those for a one-
dimensional square well with infinitely high walls at
x=d and x= —d:

1 (nor XI (x)= ti i, ix) &d,
gd i, 2d )

+terms containing at least one factor

(4m;~ pns)(trna ~ pn;), with 2& h. (16)

Each scalar product for one particle is a product of
three integrals:

(nn;
~ pns) = I (n;.,ns„e)I (n;„,n2„, e)

XI( ns„n,„e)sb (s;„ss,)5 (t,r, ter) (17.)

The I's are de6ned as follows. Let 2d=a particular
edge for one state, and 2' the corresponding edge for
the other state. Then

1 t'" (n2rX) f et2rX)
I(n,m; g) = «( [t( jdx,

ding& e 42') & 2d )
(18)

which depends only upon the ratio $ of the two edges
and on n and es. From parity considerations, I(n,et; p)
=0 if n —et is odd, and direct integration for n —et/0
and even gives

4 (—1)"'-' t'norq

m~gP (n/mg)2 —1 E2g)
I(n,et; g) =

fn2rX'l
sin~

~

= sin(1+5)v= sinv+5v cosv
l, 2(d)

(5v)2 (hv)2
sinv — cosv+ . (20)

2 6

where o=et, if et is even, and v=et+1, if et is odd.
Numerical results are given in Table II. )= e for the
x and y directions and $= e' for the z direction.

For e=m, the integral can be calculated as a series
in b=g' —1, which is a small quantity. One can ex-
pand, with v=norx/2d,

~C A similar expansion can be made for cos(n2rx/2)d)
(P{n}~Q(P(n})=p (Pn;(2zts —xt2 —ytslPn;), (14) Simple integrations lead for both even and odd n to

2=1

where the j's denote proton coordinates and Z,=32.
n, = (n;„n,„,n;„s;„tg); it denotes the quantum num-
bers of' a single-particle state. s;, and tg are spin and
isotopic spin components. (n} is the set nt, , n~ 2,

with A —1=74. p denotes the deformed state. From
the volume of the cube-shaped state,

8d'= (42r/3) 74 1.42X10 "cm',

d is calculated as 4.74&(10 " cm. Substitution of the
assumed Q and of d into (14) leads to 2=1.0275.

The integral of the wave functions of the two core

' See, for example, 6'(9), of E. U. Condon and G. H. Shortley,
The Theory of Atomic Spectre (Cambridge University Press,
Cambridge, 1951),p. 171.

[ (42(n} [P(n})]2= (0.559)'=0.31.

TAnLE III. [1—I(e)e; ()gX10'. (4=1.0275).

(22)

[1—I(e,e; e)]X10'
[1—.I(e,e; 4')jX104

13
49

3

27
107

48
187

I(n n $) =1—g'P(1+-'n22r2)+-252 — . (21)

Table III contains numerical values of 1—I(n,n; $).
From the results of Tables I to III it follows that the

first term in (16) equals 0.584, and the sum of terms
containing just two integrals I(n,es; $) with npet
equals —0.025. The remaining terms contain more
factors of these integrals and their sum is much smaller.
Therefore,
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IV. CONCLUSION

From (10) and (22), by using the constants of refer-
ence 5,

(ft)„,~,o(1990j0.31= 6420.

This calculation yields an upper limit only 3 times
the single-particle ft value, despite the fact that it was
based upon a quadrupole moment equal to about twice
the observed one. The experimental ft value for Ge"
is 25 times larger than this upper limit. It is evident
from the nature of the calculation that the result for
other like-core nuclei in this mass region will be similar.
For lighter nuclei, the core matrix element (n(rt)

~
P(st))

will be still larger, even though the measured ft values
for unfavored transitions are not substantially lower.

Formula (8) indicates that, in fact, the matrix ele-
rnent equals 0 if J'Q j'. A modification of the model in
which at least one of the core states contains a large
admixture of states with j'P J' could therefore yield
an arbitrarily small matrix element. A regularity found
by Kopfermann, ' however, seems to indicate that, for
several isotope pairs at least, the single particle appears
in just one state: On graphs of quadrupole moment ns

magnetic moment, the two experimental points for odd-A

'H. Kopfermann, Naturwiss. 38, 29 (1951).

isotopes and the theoretical point for the pure single-
particle model are approximately collinear. Another
possibility of explaining the large ft values within the
framework of the deformed core model would be by
assuming that both the initial and 6nal cores are de-
formed. The core functions would have to be substituted
in formula (6). It does not appear, however, that this
would change our result drastically. It should be men-
tioned, finally, that the results of calculations' based
upon the collective model in the form given by Bohr
and Mottelson, a form which assumes that both cores
are deformed, are of the same magnitude as the one
obtained here.

An alternate explanation of the unfavored ft values
for allowed transitions in terms of the original shell
model would postulate instead the predominance of
different configurations in the initial and final states.
The fact that all the allowed transitions between nuclei
with double closed shells+one nucleon fall into the
favored group is consistent with this explanation. It is
not clear, however, how to explain the grouping of the
allowed ft values which is observed. (There are very
few with 3.6(logft(4. 5.)

' S. Suekane, Progr. Theoret. Phys. Japan 10, 480 (1953).
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The energies of fragments from 6ssion of U2", U~', and Pu~" by 14-Mev neutrons, from fission of U"g by
2.5-Mev neutrons, and from Gssion of U"' and Pu'" by thermal neutrons have been measured in a single
Frisch grid ionization chamber. The energy distributions for fast neutrons are similar to those previously
obtained for 6ssion by thermal neutrons. The most probable energies of the light and heavy fragments for
Gssion by 14-Mev neutrons do not change significantly from their values for slow-neutron induced 6ssion.
The valley between peaks is higher for Gssion induced by 14-Mev neutrons than for low-energy neutron-
induced 6ssion.

A double Frisch grid chamber has been used to measure simultaneously the energies of both fragments
from Gssion of U2'5 by 14-Mev neutrons. The main change in the distribution of Gssion modes from that for
thermal-neutron-induced 6ssion is the increased probability for symmetrical fission.

INTRODUCTION

S INCE the erst work of I'"risch' many measurements
of the energy distributions of 6ssion fragments

have been made, on a number of fissionable isotopes,

*Work done under the auspices of the U. S. Atomic Energy
Commission.

t Submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in the Graduate College of the
State University of Iowa.

f. Present address: Schlumberger Well Surveying Corporation,
Ridgefield, Connecticut.' O. R. Frisch, Nature 143, 276 (1939).

and at various neutron energies. ' The purpose of the
present work was to make measurements at a neutron
energy of 14 Mev for comparison with measurements
at other energies.

The experiments reported fall into two classes: (a)
measurements of the energy of one of the fragments

s See, for example, (a) J. L. Fowler and L. Rosen, Phys. Rev.
72, 926 (1947); (b) D. C. Brunton and G. C. Hanna, Can. J.
Research A28, 190 (1950) and Phys. Rev. 75, 990 (1949); (c)
D. C. Srunton and W. B. Thompson, Can. J. Research A28, 498
(1950)and Phys. Rev. 76, 848 (1949); (d) J. Jungerman and S. C.
Wright, Phys. Rev. 76, 1112 (1949).


