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represents, can therefore be rotated by these fields, in
particular to a direction perpendicular to the scattering
plane considered, so that the magnetic diGraction
vanishes. Short-range ordering, being transient and
dependent on shorter-range exchange interactions be-
tween nearby atoms, is substantially independent of
applied fields. Thus just above T„ the instantaneous
pattern of spins is one of small regions in which spins
are partly aligned, but not subject to re-orientation by
a magnetic field. The diffuse diffraction peak is then
independent of applied fields.

These conclusions are largely qualitative and likely to
be general for various magnetic materials. More quanti-
tative results on the interatomic magnetic coupling
may be expected from more detailed studies of the
shape, intensity, and temperature dependence of the
diffuse magnetic peak for particular cases.

The authors wish to express gratitude to C. G. Shull,
L. Van Hove, J. A. Goedkoop, and members of the
JENER and BNL staGs for illuminating discussions in
interpretation of these results, and to Mr. Aabakken
for assistance in performing experiments.
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The calculation of impurity levels in crystals is set up in terms of a linear combination of Wannier func-
tions. The coefhcients of this linear combination are shown to satisfy a set of difference equations. These
di6erence equations are solved for two simple linear chain impurity problems. The difBculties encountered in

solving the di6erence equations are explored on the basis of these examples and a general method of solving
diGerence equations arising from impurity calculations is presented. This method seems to have advantages
over previous methods of solving the impurity problem in crystals.

I. INTRODUCTION

HE customary approach to treating the eGect of a
perturbation on a perfect periodic lattice consists

of expanding the perturbed wave function in terms of
the wave functions of the unperturbed crystal. In
almost all cases a one-electron approximation is used

and instead of expanding the wave function in terms of
the Bloch functions of the crystal, the complete set of
Wannier functions' is used. These functions have the
desirable property of being localized. This makes them
most convenient for discussing a localized perturbation
and the localized states arising from this perturbation.
If the matrix of the total perturbed Hamiltonian is set

up using the Wannier functions as a basis, it will be
shown that coeKcients of the Wannier functions in the
expansion of the perturbed wave function satisfy a set of
diGerence equations. One common way of treating these

difference equations is to convert them to an approxi-
mate differential equation. "In this paper, we shall

attempt to deal with the difference equations directly

*Supported in part by the U. S. Ofhce of Naval Research, in
part by the Army, Navy, and Air Force.

t G. F. Koster and J. C. Sister, Letter to the Editor under same
title in Phys. Rev. 94, 1392 (1954). M. Lax, this issue LPhys. Rev.
94, 1391 (1954)j.

f Staff member, Lincoln Laboratory, Massachusetts Institute of
Technology, Cambridge, Massachusetts.

~ G. H. Wannier, Phys. Rev. 52, 191 (1937).
s J. C. Slater, Phys. Rev. 76, 1592 (1949), and various other

papers. See however, for instance, P. Feuer, Phys. Rev. 88, 92
(1952), in which the difference equations are tres, ted directly.

and shall present a general procedure for solving them in
the hope of avoiding the assumptions and approxima-
tions involved in using the diGerential equation ap-
proximation. We shall first set up the difference
equations involved in the impurity calculation and dis-
cuss some simplified cases. These simple examples illus-
trate with little calculation points which are typical of
more realistic impurity calculations. The methods used
to solve these simple problems will be seen to be
inadequate to solve more complex problems. We shall

then give a method for solving the difference equations
which overcomes some of the difficulties illustrated by
our simple impurity calculations.

II. A DIFFERENCE EQUATION FOR THE
PERTURBED CRYSTAL

We describe our unperturbed crystal in terms of a
one-electron Hamiltonian Ho. The eigenfunctions of this
unperturbed Hamiltonian are N„, a(r). st denotes the
band to which this Bloch function belongs and k is the
propagation vector such that when the wave function is
translated through R„(one of the primitive translations
of the crystal) the Bloch function is multiplied by
exp(ik R ). The energy of these Bloch functions is
denoted by Z„(k). From these Bloch functions one can
define the Wannier functions for a given band:

a„(r—R„)= JV-i Q(k)tt„, s(r) exp( —ik R ). (&)

(Ã is the number of primitive translations in the
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macrocrystal over which periodic boundary conditions
are defined. ) It has been shown that the Wannier func-
tions associated with a given band satisfy a set of
simultaneous diGerential equations, '

Hpa (r—R ) =g (R;)h„(R;—R )a (r—R,), (2)

where the h„(R&) are the coefficients of the energy of the
Bloch waves in its Fourier decomposition, and

E„(k)=g(R&)h„(R&) exp( —ik R~). (3)

These Fourier components of energy are also given by

h (R()= a„*(r)Hpa„(r Ri)—dv

This can most easily be seen by multiplying Eq. (2) by
a„*(r) and integrating over all space using the orthogo-
nality properties of the Wannier functions,

a„*(r R;)a —(r R))dv—=a„„a;,

We now have de6ned sufhcient notation to describe
our impurity problem in terms of Wannier functions.
We wish to 6nd the eigenfunctions associated with the
Hamiltonian Hp+Hi. Hi is the perturbation to our
unperturbed Hamiltonian IIO. The perturbed wave
function is described in terms of the complete set of
Wannier functions

P(r) =g(m)g(R;) U„(R,)a„(r—R,).
The unknown coefficients U„(R,) and the energy of the
perturbed state are determined by the condition that

(Hp+Hi)P=EP.

Multiplying both sides of this equation by a (r—R,)
and using the properties of the Wannier function given
above, we are led to the simultaneous equations:

P(m, R;)(8„(R;—R;)a„+V„(R,,R;)jU (R,)
=EU„(R,). (8)

Here

V (R;,R;)= a *(r R~)Hia (—r R;)dv (—9).
The solution of these difference equations gives us the
solution to our perturbed periodic potential problem.
We notice that if we let our perturbation go to zero we
are left with the equation

P (R;)Lh„(R;—R;)$U„(R,) =EU„(R;),
which can be solved by letting U„(R;)=exp(ik. R„.).
This gives as the energy

E (k) =P(R,) exp( —ik R,)h„(R,), (10)

which is correct.
' G. F. Koster, Phys. Rev. 89, 67 (1953).

The differential equation approach to this set of
difference equations arises from considering the coeK-
cients U„(R,) as a con.tinuous function of some variable
r. It is then noted that if k is replaced by p/h where p is
a pseudo-momentum, and if y is then replaced by

iH—' (where 7' acts on r) in the usual quantum-
mechanical manner, that

E„(p/Ti) f(r) =P(R )h„(R )f(r—R„),
where f is any function. If we in addition restrict our-
selves to one band and make the additional assumption
that V(R, , R,) =5,,V(r) where R; is replaced by the
continuous variable r, we can rewrite Eq. (8) to be

E(—iW)U(r)+V(r) U(r) =EU(r),
which is like an ordinary Schrodinger equation. Ke
notice that if V(r) vanishes, U(r) =exp(ik r) is a solu-
tion to this equation giving the energy (10). In the
event that V(r) does not vanish, E(k) is usually ex-
panded about its minimum up to terms of the second
order in k which converts Eq. (11) into a second-order
differential equation. If we call kp the point where the
minimum of E(k) lies, it is convenient to rewrite U(r) as
W(r) exp(ikp r). The exponential function takes out the
rapidly varying part of U(r) leaving R' (r) to be
smoothly varying. If this is done and a rotation of the
axes in ordinary space is performed to remove the cross
second derivatives in the expansion of E(k), Eq. (11)
can be written, up to terms of the second order, as

h' ( 1 a'w 1 a'w 1 a'w)
+ +—

8~'&m, ax' m„ay' m. as')
+PEp+ V(r))W=EW, (12)

where

, etc. , Ep ——E(kp).
Bk,'

This is the form which the impurity problem takes in
most treatments of impurities in semiconductors. Addi-
tional assumptions are also made in this case„namely:
that m, =m„= m, and that V (r) is a Coulomb potentiar
in a dielectric medium. In the case of germanium, for
instance, with a dielectric constant in the neighborhood
of 16and effective masses of the order of half the electron
mass, this leads to wave functions extended over a good
many angstroms, with energies which are a very small
fraction of a volt.

These widely extended wave functions, which can be
formed by solution of (12), allow us to examine the
justification of the assumption that third and higher
derivatives can be neglected in the expansion of E(k) in
Eq. (11).The energy, as we know, can be expanded in a
Fourier series and ordinarily the first few terms of this
series, are the important ones. Thus we see that the
successive derivatives of E(k) with respect to k will be in
the ratio of the powers of R,, the lattice spacing. If the
function W is falling off like an exponential exp( —ar), as
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we should have for a hydrogen-like case, the successive
derivatives will be in the ratio of powers of a, inversely
proportional to the linear dimensions of the wave func-
tion. In other words, we may expect the terms in (11) in
successively higher derivatives of W to fall off in the
ratio of the lattice spacing to the linear dimensions of
the wave function. If the wave function extends over
many lattice spacings, as in the case of germanium, we
may expect successive terms to get rapidly smaller, so
that the reduction of the equation to the Schrodinger
form is legitimate. On the other hand, if it does not
extend out very far, as is the more usual case in a
material of smaller dielectric constant, it is not legiti-
mate to neglect higher derivatives. In such a case, we
can try to retain additional terms in (11),but it is much
better and more straightforward to return to the differ-
ence equation and try to solve this directly. The writers
suspect that the number of actual cases where the
approach by means of the differential equation is
justified is very limited, and that in most cases we are on
much 6rmer ground to use the diQ'erence equation. The
differential equation may, however, be useful in pointing
out the general form of the solution to be expected.

In order to familiarize ourselves with the methods of
treating the difference equations directly, we sha. l in the
next section solve the difference equations in a one-
dimensional case. Even though these one-dimensional
crystals are not met with in nature, the mathematics
involved gives us insight into the more complex three-
dimensional cases.

III. A ONE-DIMENSIONAL IMPURITY CALCULATION

In this section, we treat the eGects of a perturbation
on a one-dimensional crystal of equally spaced atoms.
We further restrict ourselves to a single band describable
in terms of a Wannier function which has reQection
symmetry with respect to a plane passing through the
atom about which the Wannier function is located. In
this case, the difference equation (8) can be written in
the form

Z(q) Lh(p —q)+ V(P,q) 7U(q) =&U(q) (13)

The index p denotes the pth atom in the chain. The
simplest case of an impurity in a linear chain is the case
where the Wannier functions only have nearest-neighbor
interactions and the impurity only extends over one
lattice site. The first of these restrictions means that
h(p) =0 for p)1. The second of these assumptions
means that V(p, q) is zero unless both P and q are equal
to zero. In this case, our difference equations (13) can be
rewritten

&(0)U(P)+ @(1)Ã(P+1)+U(P —1)7
=EU(p); p& 1,

@(0)U(o)+ &(1)(U(1)+U( —1)7
(14)

=La—v(o)7U(o); p=o.
The usual way to solve the general equations in (14)

(the first set) is to make the assumption that U(q) = b+&.

If we substitute this into the first of Eqs. (14) we see
that this is indeed a solution provided that

h(0)+h(1) Lb+ 1/b7= K (15)

If we let b= exp(i'), where 2 is the lattice spacing the
condition (15) becomes

8(0)+2h(1) coskR=E. (16)

We note that in this relation k may be either real or
complex. In fact, we can at once say that if E is such
that

~
[8 8(0)7/2—$(1)

~
)1 then k must be pure imagi-

nary. If the inequality is in the other direction, then k is
pure real. We recognize the latter case as the states
lying in the band. These are of course the states for
which the coeKcients of the Wannier function are all of
unit absolute value, or the propagating states. The
states where k is pure imaginary are those for which the
coeKcients of the Wannier function increase expo-
nentially for either large positive or negative values of p.

We are now left with the necessity of solving the
second of Eqs. (14). Let us set up periodic boundary
conditions such that U(p+2Ã)=U(p), and start by
discussing the case where our energy falls in the band (k
pure real). We notice at once because of the symmetry of
the problem that our solutions must be either symmetric
or antisymmetric about the central atom. In the first
case U(p) =U(—p); in the second U(p)= —U( —p).
For the antisymmetric state, the wave function has a
node at the origin and therefore our perturbed problem
just reduces to the unperturbed problem. This can most
easily be seen by putting the condition of antisymmetry
into the difference equations and noticing that the effect
of the perturbation disappears completely from the
equation. For this case we take as the solution U(p)
=sin(kEP), which satisfies the boundary conditions
provided that kElV=n7r LSin(kEP) is o.f course a linear
combination of our two solutions b+" and b &.7 We see
that there are S—i antisymmetric solutions.

The most convenient form in which to take
the solution of the symmetric states is in the form
cosLkR(p —X)7. This form of the solution automatically
satisfies the boundary condition at p= Z. The energy is
given at once by Eq. (16).Substituting this form of the
solution in Eq. (14) for p =0 we arrive at the condition

—tan(kRX) sin(kR) = V(0)/28(1). (17)

In arriving at this condition, we have made use of the
fact that E is given by Eq. (16).There are X solutions
of this symmetric type. We can solve Eq. (17) graphi-
cally by plotting the left side as a function of k, and
finding the k's for which this equals V(0)/28(1). A plot
of this function for S=6 as a function of kR, is given in
Fig. 1.We see that the axis of abscissas cuts this curve in
seven places. For the other horizontal lines, where there
are only six intersections the missing state is a state for
an imaginary value of k. This state gives a total of %+1
symmetric states and S—1 antisymmetric states giving
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Fro. 1. Function tan(k—RfV) ain(kit), for )7=6.

in total the required 2Ã states. We shall now go on and
study in detail the state corresponding to the imaginary
value of k.

If k is imaginary, then let us denote ik by y. This is
the case where E is such that it lies outside of the band.
In thin is case, our solution to the difference equation is
given by exp(&YPR). The coefFicients of our Wannier
functions are thus seen to increase exponentially in one
direction. We could proceed as before setting up a bound
state which satisfies our periodic boundary conditions,

ut for large E it can be easily shown that proceeding in
this manner gives the same resu1t as demanding that our
wave function go to zero for p infinite. If this is the case
then the solution to the first of Eqs. (14) is taken as
V(P) = V(—P) =exp( —YRP). We have of course the
condition from the first of Eqs. (14) that

E= 8(0)+28(1) cosh(pR).

In order to satisfy the second of Eqs. (14), we must
satisfy sinh(yR) = V(0)/28(1). This determines a value
of y corresponding to a given value of V(0). With this
value of Y, the energy is given by Eq. (18). We can, of
course, substitute for the cosh in terms of the sinh and
get the relation that

R= h(0)+28(1)(1+t V(0)/2h(1) j')'. (19)

This shows that for small values of the perturbing
potential the bound state leaves the band quadraticall
in V(0).

n qua ratica y

In all the preceding discussion, we have tacitly
assumed that the sign of the perturbation is the same as
the sign of the nearest-neighbor interaction. This means
that the bound state pushes out of the band at the point
where E= B(0)+28(1).If the signs of the perturbing
potential and the nearest-neighbor interaction are
diferent then the bound state will push out of the band
at the point where 8= 8(0)—28(1). In this case, it can
easily be seen that tl e solution to the difference equation
is given by (—1)& exp (—&Rp). The energy of the bound
state is then given by Eq. (19) where the plus sign
outside of the square root is replaced by a minus sign.

We have now accounted for our 2E states. We have
one bound state, E—f antisymmetric states in the band,

d%" 1 d48'
8(0)W(x)+28(1) W+—R' +—R4

2~ dx' 4f dg4

+V(x) W(x) =EW(x), (20)

where V(x) is the perturbative potential, which is zero
exceot when x is zp ero, so that except when x is zero we
can omit the term in V. The simplified Schrodinger
equation corresponding to (12) is obtained by omitting
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FIG. 2. Energy of perturbed energy levels, as a function of
perturbatIve energy

and X symmetric states in the band. In Fig. 2 we plot
the energies of these states for the case Ã= 6 as a func-
tion of the perturbing potential. We have also included
for comparison the energies of the antisymmetric states
which are not affected by the perturbation. The inter-
esting thing to notice is the way in which each of the
energy levels within the band is displaced by the
perturbation, only far enough to approach the mid-point

etween neighboring antisymmetric states, with the ex-
ception of the limiting state which becomes detached
from the band, and forms the separate impurity state
which we have discussed earlier. The case which we have
shown is that of positive B(1),in which case it is the top
o the band where the separate level appears for positive
V(0). We have shown the case for a small X value; but
if E is very large, it is clear that the displacements of all
levels but the one which becomes detached from the
band will be negligible.

We have seen that a single energy level pushes away
rom the energy band under the action of the perturba-

tion V(0), and that its wave function falls off ex o-
ia y as we go away from the perturbing atom. As

o expo-

V(0) becomes very large compared to the band width,
t e exponential fall off becomes very rapid, tho h t
small for small V(0). At this point we can give an
elementary check of the procedure of the precedin
section in which "ich the difference equation was replaced by

o e prece ~ng

a differential equation. We start with the energy ex-
pression (16) and replace k in it by the operator id/dx. —
We then use this operator to set up a differential
equation. In this case, this leads to
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everything beyond the second derivative in (20). Now
we can, in this simple case, solve either the approximate
or the exact problem by assuming W=exp( —yx), the
only diGerence being in the relation which we find be-
tween y and'E. If we substitute this expression in (20),
we 6nd a solution of the exact equation if

E= b(0)+2&(1)L1+ (7R)'/2!+ (VR)'/4!+
= h(0)+28(1) coshyR,

in agreement with (18). If on the contrary we neglect
fourth and higher derivatives, we have E= $(0)
+2h(1) [1+(pR)'/2!] which is a satisfactory approxi-
mation only if (pR)' is small in comparison to unity.
This is the case in which the wave function exp( —yx)
falls oG by only a small amount in the distance E., which
agrees with the condition for the applicability of the
second-order differential equation in the last section. If
the perturbation is greater, so that the wave function
falls oG more rapidly, and the extra level is further from
the band, the second-order differential equation is
inapplicable, and we must use the difference equation, or
the diGerential equation of infinite order, which is of
course rigorously equivalent to it.

Before leaving this simple example it is informing to
look at the'states within the band in a somewhat
different manner. For the symmetric states in the band,
we can take a solution of the form U(p) = U( —p)=cos(kRp —ce). (We are no longer using periodic
boundary conditions here. ) If we do this, once again the
energy is given by (16) and Eq. (14) gives a condition
on o.,

tance = —V (0)/[2h (1) sinkR]. (21)

This is instructive because it shows us that in the band
there is a perturbed state corresponding to every energy
in the band. The perturbation only has the effect of
determining the phase factor n. We could of course do
scattering theory in the band which would be closely
related to this phase angle 0,. We can also notice that as
V(0) becomes infinite the phase angle approaches m/2.
In this case, the symmetric state in the band approaches
zero at the perturbed site. This means that whereas the
perturbed states in the band avoid the impurity site the
bound state which pulls out of the band becomes
concentrated about the impurity site. We can see that
this must be so in a very fundamental manner.

Let us consider the case of periodic boundary condi-
tions. We are building up wave functions as linear
combinations of the 2Ã Wannier functions on the atoms
of the fundamental period. These Wannier functions are
an orthonormal set of functions, as are the final linear.
combinations, so that the U(p)'s, which are the trans-
formation coefficients from one set of functions to the
other, form a unitary matrix. This is a matrix with 2S
rows and columns: we have 2X energy levels, and
2N p's. If we now form the sum of the quantities
U*(p) U(p), for a given p value, summed over the 2N
energy levels, we know on account of the unitary

property that this sum must be unity. Let us carry out
this sum for p=0 corresponding to the impurity atom.
For the separated state, with large perturbative po-
tential V (0), we know that the wave function will fall off
as exp( —yRp) where y is very large, so that the
coeKcients U(p) will be very small for p/0. Since the
wave function must be normalized, we must have the
sum of U*(p) U(p) over p, for a given energy level, equal
to unity, which means that the contributions to the sum
for pAO are very small, the term for p=0 must be very
nearly equal to unity. We now return to our statement
that the sum of U*(p) U(p) over all levels, for a fixed p
must equal unity. For p= 0, we have just seen that the
contributions from all other levels must be very small,
showing that with a large perturbation, the wave
functions of the states in the band avoid the perturbing
atom almost completely. This general type of proof is
important, for it can be used in more complicated cases,
where we cannot get explicit solutions.

We can introduce further complications into this one-
dimensional impurity problem. It is possible to intro-
duce next nearest neighbor interactions into the problem
and still find solutions. We shall do this and introduce a
perturbation which, once again, only extends over one
lattice site. For this case the difference equations become

[8(0)—E]U(p)+ h (1)[U(p+1)+U(p —1)]
+h(2)[U(p+2)+U(p —2)]=o, (22)

for p greater than zero and

[8(0)+V(0) —E]U(0)+8 (1)[U(1)+U(—1)]
+h(2) [U(2)+ U( —2)]=0 (23)

for p equals zero. By substitution of a propagating
solution we find that the energy band is given by

E(k) = B(0)+28(1)cos(kR)+28(2) cos(2kR). (24)

It is informing to choose the parameters in this energy
expression so that the minimum of the energy falls
away from k=o. In order to do this, it is necessary that

~
8(2)

~
)

~
8(1)

~
/4. Figure 3 shows a plot of the energy

as a function of k in this case. It should be emphasized
that this is an imaginary problem since it is well known
that the minimum of the energy for a one-dimensional
crystal cannot fall away from either the center or the
edges of the first Brillouin zone. ' However, it is possible
for the minimum of the band to come at an arbitrary
point in the Brillouin zone for three-dimensional crys-
tals. Because of the importance of this case in the theory
of semiconductors, we thought it profitable to follow
through this imaginary one-dimensional case in order to
study the mathematics involved.

We follow the same method that we used in the
nearest-neighbor example to solve this diGerence equa-
tion. We make the substitution U(p) = b&. When this is

' W. Shockley, Eleclrorls end Holes Az Serrricondlclors (D. Van
Nostrand Company, Inc. , New York, 1950), p. 406.



1172 G. F. KOSTER AND J. C. SLATER

(n) kR

(a)

(b)

Fro. 3. Energy vs kR, for second-nearest neighbor interaction.

substituted into Eq. (22) we obtain an equation for b

L8(0)—8)+8(1)tb+b ')+8(2)Lb'+b ')=0. (25)

This is an equation of the fourth order in b. From its
form we notice that if b is a solution to this equation so
is b '. Since all complex roots of this equation must
occur with their complex conjugates, b* must also be a
solution. This means of course that if b is taken in the
form exp(ikE) then if k is complex all four roots are
related by being all possible combinations of the com-
plex conjugate and the inverse. By making the substitu-
tion c= fi+fi ', Eq. (25) can be reduced to an equation
of the second order:

8(2) (c'—2)+8(1)c+ 8(0)—2=0. (26)

By studying the solution of this equation as a function
of the energy E, it is possible to determine whether k in
b =exp(ikE) is real, complex, or pure imaginary. For the
energy (d) in Fig. 3, k has two values both of which are
pure imaginary. For the energy (c) k has two values, one
pure real and the other pure imaginary. The energy (b)
gives k two values both real. Finally for the energy (a)
there is a complex value of the propagation constant.
Ke will not discuss all of these cases in detail, but shall
focus our attention on the case (a), since this is the case
that corresponds to a bound state coming out of the
bottom of the energy band.

Our solution to the diGerence equations will. be some
linear combination of the four solutions to Eq. (25). The
constants in this linear combination are to be deter-
mined by the special Eq. (23). )The solution of (25)
insures the solution of (22).) We can as before make use
of the symmetry or antisymmetry of the solution to the
difference equation to simplify our work. This will once
again tell us that for the antisymmetric solution the
eGect of the perturbation vanishes. This means that the
antisymmetric states in the band are unperturbed. For
the bound state )case (a)), we need only study the
symmetric solution. If we make the assumption of
symmetry in Eqs. (22) and (23), we find that these two
special equations are to be satisfied

L8(0)+V(0) —E)U(0)+28(1)U(1)
+28(2) U(2) =0, (27)

[8(0)—&)U(1)+8(1)I U(2)+ U(0))
+8(2))U(3)+U(1))=0. (28)

For the case (a), we therefore take the solution of our
diGerence equation in the form

U( —p)=U(p)=e»(Ae'"~+A*e '"") (29)

where A and A* are the unknown constants to be
determined and k=a+iy T.he energy is of course given
by (25) and takes the form

E=28(1) cos~ coshy+28(2) cos2z cosh2y. (30)

We are in the position where we have just enough
constants to solve the pair of Eqs. (27) and (28). (The
boundary conditions which are assumed here are that
the wave function go to zero at infinity. ) The mathe-
matics of 6nding the energy as a function of the
perturbation V(0) is rather tedious and the results will
be described instead of worked out in detail. For small
perturbations, the bound state pulls out of the bottom
of the band quadratically with the perturbation. As the
perturbation increases the energy 6nally becomes linear
with the perturbation. This is of course similar to the
nearest-neighbor case worked out above. For small
values of the perturbation the imaginary part of k is
nearly zero and the real part is very nearly equal to kQ,

the value of the propagation constant at the minimum
of the band. As the strength of the perturbation in-
creases the magnitude of the imaginary part increases,
which means that the solution to the diGerence equation
falls oG more rapidly with distance from the central
atom. We have the case where the wave function of the
bound state becomes more localized. This means, in turn
that the remaining states in the band avoid the im-
purity.

For a perturbation of the opposite sign to that which
pulls a state out of the bottom of the band, a bound
state will appear at the top of the band. This is the case
(d). In this case, there are solutions to the difference
equations with propagation constants which are pure
imaginary. The solution of the diGerence equation which
satisfies the special equation at the origin will consist of
a linear combination of two terms both of which fall oG
exponentially with the distance from the origin. The
two coeKcients in this linear combination are deter-
mined by the two Eqs. (27) and (28). This state pulls
out of the top of the band quadratically with the
perturbation. The remaining two cases (b) and (c) are
unbound impurity states in the band. The case (b) is
the case of two real propagation constants and could be
treated by the method of phase shifts introduced in the
case of nearest-neighbor interactions. In this case there
would be two phase shifts, one for each propagation
constant. The case (c) is the case where there are two
propagation constants; one pure real and the other pure
imaginary. This means that the solution to our diGer-
ence equation would consist of two terms one of which
is a propagating term extending out to in6nity coming
from the ordinary band state. The other term is an
exponentially damped term which dies out at infinity.
Once again the special Eqs. (27) and (28) can be used to
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determine the unknown coefficients in this linear
combination.

It is important to note, for this case, that even though
we are in the band it is not legitimate to throw away the
exponentially damped part of the solution to the diGer-
ence equation and only consider the ordinary energy
band state. The additional root to the Eq. (25) must be
taken into account in addition to the propagating solu-
tion which makes up the ordinary Bloch state. This is an
additional feature of the case of next-nearest neighbor
interactions which was missing in the simple case of
nearest-neighbor interactions. In the case of nearest-
neighbor interactions, the only solutions to the analo-
gous equation to (25) were the ordinary energy band
solutions. Whereas this additional complication can be
taken into account in the case of next-nearest neighbor
interactions, we may imagine cases where it is necessary
to take into account interactions with more distant
neighbors. If we must do this the equation we get
analogous to (25) will be of order twice the order of
neighbors taken into account. It can readily be seen that
the solution of this equation will become very dificult
because of its high order. This factor is what makes the
method we have been using to solve our difference
equations in these simple cases inapplicable when it
comes to more complex cases. In the next section, we
shall try to formulate a method which does not have this
drawback.

IV. A GENERAL METHOD OF TREATIÃ6
DIFFERENCE EQUATIONS

In treating the impurity problem for more dimensions
we might try to proceed as we did in the last paragraph.
If we were to do this we would again have general and
special equations arising from Eq. (8). The general
equations would consist of the unperturbed equations
which would be valid outside of the region where the
perturbation acts. We would try to find solutions to
these general equations of the form exp(ik R„). Upon
substituting this into the general equation we would get
Eq. (9). Now however 8 is not restricted to be in the
band nor is k restricted to be real. We must find all

possible solutions to this equation solving for k as a
function of K This includes the exponentially damped
solutions we ordinarily throw away while searching for
the energy bands. After having found these general
solutions to our unperturbed difference equations we

must form linear combinations of solutions of a given
energy so as to satisfy the special difference equations
which involve the perturbation. We put in enough
adjustable linear coe%cients to be able to satisfy these
special equations. This would lead to a set of simultane-
ous equations in the unknown coefficients. The number
of equations would be of the order of the number of
lattice sites over which the perturbing potential acts.
As was mentioned in the last section we can see at once
the great drawback of this method. It is in the finding of
all the propagation constants which give rise to the

energy E when substituted in Eq. (9) which forms the
stumbling block. We saw that even in the case of higher-
order interactions in the linear chain this could be a
dificult task. In the case of a three-dimensional crystal
where our propagation constant will have three com-
ponents it seems hopeless.

If we reject this approach, we might think that we
could treat our difference equations (8) simply as a set
of linear equations, the determinant of the unknown
coeKcients U(R„) being set equal to zero in order to
determine the eigenvalues. The order of this secular
equation in this case would be of the order of the
number of lattice sites we choose to include in our
crystal. This would in general far exceed the region over
which the perturbation acts, since we know that the
solution to the difference equations extends beyond the
region of the perturbation. This approach might be
quite hopeful in the case where we were looking for a
highly localized bound state which falls oG near the
perturbed region. In the case where we have no reason
to believe that our perturbed wave function is so
localized, this approach would give rise to a pro-
hibitively large secular equation. What would be de-
sirable would be to deal only with the states which are
the propagating energy-band states and still only be
forced to solve a set of simultaneous equations no larger
than the number of sites over which the impurity acts.
We shall now show that this can be done by expanding
our perturbed wave function in terms of the known
Bloch functions.

We try to solve our perturbed problem by a linear
combination of Bloch functions from various bands,

P(r) =Q(e,k') f„(k')u„,g. (r), (31)

where the Bloch functions are the eigenfunctions corre-
sponding to our unperturbed Hamiltonian,

Hpu„, g(r) =E„(k)u„g(r) (32)

We wish to solve the problem

(Hp+Hi)$ =Ef. (33)

Substituting (31) into (33), multiplying by I &(r),
integrating, and using the properties of the Bloch
functions we arrive at the result that

f (k)t'E (k) —E]+Q(n,k') V„,„(k,k') f„(k')=0, (34)

where

V, „(k,k') = I, g (r)Hie„, g. (r)de. (35)

It can easily be seen using the definition of V„, (R;,R;)
that (35) can be rewritten as

V„, (k,k')

= (1/E)P(R;, R;)V„~(R;R;)e '~ "'e' '
& (36')'.
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Substituting (36) into (34) we arrive at the equation

.-""'V.
, „(R;,R;)

f„(k)+—P(ii, R,,R,)
N E (k) —E

XP(k')e'"''"~'f~(k') =0, (37)

where we have divided by E (k) E. W—e now multiply
both sides of this equation by exp(ik R„) and sum over
the values of k in the first Brillouin zone,

the number of bands between which it has matrix
elements. This is the form in which we propose to do the
impurity calculations. We see that all that is necessary
is a knowledge of the energy as a function of k for the
energy-band solutions. The size of the determinant to
be solved is limited to the size of region over which the
eGect of the impurity is felt.

We can now state in words what is involved if this
formalism is used in an impurity calculation. We must
first find the quantities

U (R,)+—P(m, R,,R;,k)
~ik R)

Z(k)
E (k) —E

(40)

eik (Ry—Ri)

V „(R;,R;)U„(R;)=0. (38)
E„(k)—E

We have, in this equation, made use of the fact that the
transformation between the coe%cients of the Wannier
function and those of the Bloch functions are given by

U„(R~)=N—i Q(k)e'~ R~f (k) (39)

This constitutes a set of simultaneous equations be-
tween the coefficients of the Wannier functions. We
notice that there are as many equations as the number
of lattice sites in the crystal times the number of bands
under consideration. In order to satisfy this set of
simultaneous linear homogeneous equations, the de-
terminant of the coefficients must vanish. There is a
simplifying feature to this determinant. Let us put
those U's for which the perturbation has nonvanishing
matrix elements in the earliest part of the determinant.
If this is done, the determinant has the form in Fig. 4
where the shaded region is a region of nonvanishing
elements and the unshaded region is the region which
has vanishing elements except for the indicated i's. We
can see at once that all that is necessary for the vanishing
of the determinant is the vanishing of the upper left-
hand corner which is enclosed by the heavy lines. This
is a determinant of size equal to the number of lattice
sites over which the perturbation extends multiplied by

as a function of the energy. This summation may be
replaced by an integration over the first Brillouin zone
if the allowed k values are dense. We must then solve
the set of simultaneous equations (38) for those U's for
which there are corresponding nonvanishing matrix
components of the perturbation. This involves the
vanishing of the determinant

haik

~ (R p—Ri)

5, .5„,;+—Q(R;,k) V, (R,,R,) =0. (41)
N E„(k)—E

If we are looking for a bound state, the values of E for
which this determinant vanishes are the energies of the
bound states. For an energy for which this determinant
vanishes we solve the set of simultaneous equations for
the U's for which there are nonvanishing matrix ele-
ments of the perturbation. Having found these values of
the U's the remaining values, outside of the region of the
impurity, are given in terms of those within the region
by (38). It is clear from the formalism that this method
is very similar to a Green's function method of solving
diGerential equations. Here we have a Green's function
solution to the difference equation, the quantity (40)
acting as the Green's function. This can be arrived at by
considering the Green s function solution to the di6er-
ential equation, as is shown in Appendix (1).

It is instructive to solve as an example the case in
which we consider only one band and limit the eGect of
the impurity to one site. [V(R,,R,) =8; 08; o&(V(0)j.
Equation (38) becomes

1 ~ik Rp

U(R„)=—V(0) P(k) U(0).
E—E(k)

(42)

The determinant (41) in this case has only one row
and one column and gives directly the energy as a
function of the perturbation,

FIG. 4. Schematic diagram of secular equation used to solve the
impurity problem.

(V(0)/N) 2(k)
E—E(k)

To show the power of this method, we shall use it to
discuss the one-dimensional chain with nearest-neighbor
interaction. For the one-dimensional case, we know that
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E(k) = h(0)+28(1) coskR. We must then evaluate the
sum P(k)1/LE —E(k)] in (43). In the case we are
dealing with the discrete state, so that 8 lies outside the
unperturbed band, we can convert this sum into an
integral without trouble. Ke find that kE goes by
equal steps from —m to m or from 0 to 2x, there being
S intervals. That is, we can replace g (k) by
1V/2~ Je' d(kR). Thus (43) reduces to

I V(0)/X][sV/2~j

t E 8(0)——2b(1) cosnj 'dn= 1. (44)

This can be integrated by elementary means, and gives

When we solve (45) for the energy E, the result is
identical with (19) which we obtained by straight-
forward solution of the difference equations. The inte-
gral in (42) can also be evaluated simply and gives the
proper exponential falling off of the solution.

This solution of the problem of the single lattice site
impurity which is embodied in Eqs. (42) and (43) also
gives us additional insight into the solution of the
problem with a more general impurity. In the case of a
more general impurity, Eq. (38) instructs us to sum up
the eQects of single lattice site impurities at the various
lattice sites over which the perturbation extends in
order to get the total eGect of the impurity. This most
clearly illustrates the Green's function nature of our
solution.

In simple cases, we can use (42) to obtain results
about the wave function in an analytic way. Thus, let us
consider the problem of a three-dimensional lattice, in

which the energy E(k) can be expanded about a mini-

mum or maximum energy which we take to come at
k =0, in a power series starting with the terms

a(k, '+k„'+k„-2), where a= k'/8sr'm, m being the effective
mass. Let us have a perturbation at the atom at the
origin, such that the discrete level lies at an energy 8,
below the bottom of the band (and hence negative if the
bottom of the band is at zero energy). Then E—E(k)
can be approximated by E—a(k,'+k„'+k,2), which is
numerically small near k= 0, but increases rapidly as we

go away from this point. The significant contributions to
the sum or the integral in (42) will then come from
small values of k, and we shall not make serious errors if
we integrate, not merely over the unit cell in k space, but
out to infinity. The quantity 1/[E—E(k)] will depend
only on the magnitude of k, to the approximation we are
using, so that in carrying out the integration over k we

may first average over angles, in which case the ex-

ponential e' ' ~ can be replaced by the spherical Bessel
function sin(kR„)/(kR~), where k and R„stand for the
magnitudes of the vectors. Thus the sum in (42) be-

comes proportional to

t."2~k' sin(kR„)

(E uk—') kR„
e—yBy

CRp

where p= (—E/a)'*= (2m/k) (—2')*'. But this simply
tells us that the quantity U(R~) is proportional to
e 'r"&/R~. This turns out to be the same result which
would be obtained from the diGerential equation ap-
proach to the difference equations even down to the
value of y we have obtained.

We can, in other words, reproduce the results of the
free electron approximation for the wave function very
easily; but at the same time we have the machinery for
easily improving the approximation. We merely have to
investigate the change in the sum or the integral in (42)
or (38) when we take a better approximation to the
energy E(lr). In the limit, as we have very large per-
turbation, so that the energy E departs widely from
the energy band, the constant term in the Fourier
representation will outweigh any of the other terms;
this means that U(R„) is much larger for R~=0, or on
the perturbing atom, than on any other lattice site, as
we know should be the case from our earlier qualitative
discussion. But it would be an easy thing, with any
given function E(k), to obtain numerical values for the
other components, of the other U(R~)'s, to any desired
degree of approximation. By (42) or (38), we have
reduced the problem of any lattice with a single per-
turbing or many perturbing atoms to quadratures, and
a's more examples are worked out, the wave functions
and energy levels of the discrete states in such problems
can be completely investigated.

In all of the treatment above, we have assumed that
we have the exact energy bands and Bloch functions.
That is, we have assumed that we have already found
the eigenfunctions of our unperturbed Hamiltonian.
The finding of the exact eigenfunctions for the periodic
potential problem is a task in itself. In many cases the
exact eigenfunctions of the periodic potential problem
are approximated by a linear combination of Bloch
functions made up of linear combinations of atomic
orbitals. ' If this is the case, the unperturbed part of the
Hamiltonian has matrix elements between the Bloch
combinations of the atomic orbitals. Sometimes the
perturbing part of the Hamiltonian has matrix elements
which are better known between the original set of
atomic orbitals rather than in terms of the Wannier
functions. For these reasons it is profitable to find a
formulation of the impurity problem which does not
make the assumption that the eigenfunctions of the
unperturbed Hamiltonian have been found.

We imagine that we have some set of mutually
orthogonal atomic orbitals P„(r—R,). From these we
define Bloch functions

n„, ~(r) =X '* Q(R;)e"'"'"'P (r—R,). (47)
' J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
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With respect to these, we assume that our unperturbed
Hamiltonian has matrix elements given by

H., (k)=) pp„, k*(r)Hpu„, k(r)de. (48)

We now proceed as we did in Eqs. (31) through (36).
Every definition involving the Wannier functions is
replaced by a corresponding one involving the P's.
Instead of Zq. (37) we arrive at the result that

g (m) f„(k)[H„,.(k) —E]

We notice that in this formulation it is the inverse
of the matrix H (k) —E which has the same role as
1/[E„(k)—E]. It might be mentioned in passing that
both Eqs. (52) and (41) will be considerably reduced in
size by considering the symmetry of the perturbed state
which is desired.

APPENDIX

We could also solve for the impurity levels by a
Green's function applied to the differential equation. In
order to find the Green's function G(r, r') for the
unperturbed Hamiltonian, we must solve the equation

+—P(syR;yR;)e '« "'V'8(R,)Rs)
E (Hp —E)G(r,r') = —5(r—r'). (A1)

XQ(k')e'k' R f, (k') =0. (49)

If E is outside of the bands, it is possible to de6ne an
inverse to the matrix H„,„(k)—E. Let us call this
inverse A„,„(k). If we multiply Eq. (49) by A~, „(k),
sum over e, and make use of the properties of the inverse
of a matrix, we arrive at the result that

f~(k)+—P(e,s, R;,R;)e '«'"'A„, (k) V, ,(R;,R,)
Ã

I„,k*(r')I„,k(r)
G(r,r') =P(e,k)

E„(k)-E
(A2)

We can then express the solution to the perturbed
Hamiltonian with energy E,

It is well known that the solution to this inhomogeneous
differential equation is given in terms of the eigenstates
of the unperturbed Hamiltonian by

XQ(k')e" Rif, (k') =0. (50)

We can as before multiply by e'k "' and sum over k:

(Hp+Hg)P =EP,

in the form of an integral equation:

(A3)

U„(Ri)+—P(pp, s,R;,R;)V„,,(R;,Rs)E
X[+(k)e'" &"&-a"A,

, „(k)]U,(R,). (51)

Here of course the U's are the coeKcients of the P's. In
order to satisfy this set of equations, by the same argu-
ment as in the case of the Wannier functions, we must
have the determinant of the coeS.cients vanish. This can
once again be reduced to a determinant where the
indices only go over those lattice sites and atomic
orbitals which have nonvanishing matrix elements of
the perturbation. In this case the determinant which
vanishes is the following:

1
f, .5 i, ,+ Q(e, R~) V.„(R—;,R~)

X[/(k)e'k & ~
— '&gy „(k)] =0. ($2)

f(r') =,"P(r)H,G(r, r')dr

Nn, k (r )ae, k(r)
=) P(r)Hi Q(e,k) . (A4)

E (k)-E

If we let p(r) =p(/, R;) Ui(R~)ai(r —R,) and let I„,k(r)
=IV &P e'«'R~'a„(r —R,) we can substitute these ex-
pressions in (A4) and multiply by a *(r'—R„) and
integrate over all space to give the result that

U (R )+—P(n, R;,R,,k)

eik ~ (R p
—Ri)

V, (R;,R;)U.(R,) =0. (As)
E (k)-E

This is of course identical with the result in Eq. (38).


