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Hall Effect in Ferromagnetics*
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Both the unusually large magnitude and strong temperature dependence of the extraordinary Hall effect
in ferromagnetic materials can be understood as effects of the spin-orbit interaction of polarized conduction
electrons. It is shown that the interband matrix elements of the applied electric potential energy combine
with the spin-orbit perturbation to give a current perpendicular to both the field and the magnetization.
Since the net effect of the spin-orbit interaction is proportional to the extent to which the electron spins
are aligned, this current is proportional to the magnetization. The magnitude of the Hall constant is equal
to the square of the ordinary resistivity multiplied by functions that are not very sensitive to temperature
and impurity content. The experimental results behave in such a way also.

I. INTRODUCTION

' T is well known that the Hall eGect in ferromagnetic
- - and strongly paramagnetic substances shows some
quite anomalous characteristics. In recent years Pugh
and his collaborators' have done much to clarify the
experimental situation. This may be summarized in the
following way: if one uses instead of the external
magnetic field IIO an "effective" field Il„ then the Hall
effect in ferromagnetics behaves very much like the
Hall e8ect in other metals as far as order of magnitude
goes. The effective field is given by

H, =Hp+4zrMzr,

where M is the macroscopic magnetization of the sample
and e is a parameter. The entire anomalous behavior is
buried in o.. Wannier' has shown that one may expect an
effective internal field due to the magnetization of
2zr(1+P)M, where P measures the relative probability
of a conduction electron penetrating into the interior
of a polarized electron. Thus p & 1 at most and one would
expect a constant n of the order of unity. Experimentally
n is extremely temperature dependent and can be con-
siderably larger than unity. In very pure nickel, for
example, n varies from 1 at very low temperatures'
to about 100 at the Curie temperature. It is this huge
magnitude and strong temperature dependence which

has remained a puzzle until now.
It is convenient to express the experimental results a

little differently. From the foregoing, the Hall field eII

per unit current density is

eII ——RpH, = Rp(Hp+4zrMn),
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where Ro is the "ordinary" Hall coeS.cient. We may
write this expression as

err ——RpHp+RtM, (1.2)

where R~=4xnEO is called the "extraordinary" Hall
constant. To separate the anomalous part we write
Eq. (1.2),

err Rp[H p+2zr(1——+p)M)+Rr'M, (1.3)

Rt =Rt Rp2zr(1+p). Rt' describes only the anomalous
effects. We shall be concerned with the calculation of
El', which divers only insignificantly from El at all
but the very lowest temperatures.

In this paper we shall show that it is possible to
understand all the unusual properties of Rt' (or n) as a
consequence of the spin-orbit interaction of the mag-
netic electrons. The principle of the method is very
simple. As a result of the spin-orbit interaction the
stationary states of the system acquire a left-right
asymmetry. When an external electric field is applied
there results a current perpendicular both to the field
and to the mean direction of spin of the particles. This
current will therefore be proportional to the magnetiza-
tion and its coefficient will yield R&' or o.. The result
will depend in an intricate way on the Bloch functions
of the electrons in a ferromagnetic. It is therefore only
possible to make rough estimates of the final answer.
Reasonable estimates, however, give results in excellent
qualitative agreement with experiment.

II. METHOD OF CALCULATION

We now must develop a formalism capable of dealing
with the consequences of spin-orbit interaction. The
Hamiltonian BCz of an electron is a sum of three terms

Kr ——Xp+K'+BC"; (2.1)

GC p
=P'/2zrt+ V (r) is the Hamiltonian of an electron. in

the crystal potential energy V(r); K'= [zr XV V (r)j.p/
4m'c' is the spin-orbit interaction, ' ' a being the Pauli

4 Units have been chosen such that Pi= 1.' See for example D. Bohm, Qzzantzzm Theory (Prentice-Hall,
Inc. , New York, 1951), p. 405. Spin-orbit interaction has been
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matrix vector. If the electrons are polarized (say by
exchange forces) in the direction of the magnetization,
the average value of K' for a magnetic electron is

4m'c'

(Mxvv) p
(2.2)

K4 t= (xo+x')4t= «4 t. (2 3)

The Pt are chosen normalized over the entire crystal;
that is,

(4l,4t') =
J 4t (r)4t'(r)~ x=~tl' (2.4)

0 being the volume of the crystal.
It is now necessary to compute the effect of the spin-

orbit coupling on the transverse conductivity of the
substance. The usual theory of conductivity based on
the Boltzmann transport equation proves to be in-
suScient for our purposes, yielding in fact a vanishing
result (Appendix A). To see the necessary extension
let us consider the interaction BC" with the electric
field in detail. In the representation based on the wave
functions pt, the matrix elements of X"may be written

where M, is the magnetization one would have if the
magnetic electrons were lined up to their maximum
extent. For other electrons BC' averages to zero.
3C"=—em. r is the Hamiltonian of the electrons in the
external electric field E.

Since V(r) is periodic and p is translationally in-
variant, K=Xp+X' will have stationary solutions
which are of the form of Bloch waves, and whose energy
levels fall into bands. Let us label the states of BC by
an index / which tells the band (tt) and the pseudo-
momentum (k), i.e., i=—(tt,k). Call these stationary
states Pt and the corresponding energy et,

It is usually ignored because in the absence of spin-
orbit coupling the only e6ects of it are second order in
the electric field Eb and thus of no interest for the con-
ductivity problem. We shall show that actually it is
entirely responsible for the anomalous Hall effect.
Since it has nonvanishing matrix elements only if k= k',
it represents a periodic potential. Let us write

x"=xr"+x,", (2.7)

where 3C~" is the regular periodic perturbation whose
matrix elements are —iebxx EpJP"'(k) and K," is
the singular operator responsible for the usual conduc-
tivity eft'ects. It is easy to see by direct computation
that in any representation with Bloch functions H,"
has the same form and II~" transforms according to the
usual transformation theory. Hence the decomposition
is unique. We therefore introduce the periodic Hamil-
tonian,

xy x+xr (2.g)

whose eigenfunctions comprise the stationary one-
electron states. II," causes transitions among these
states and must be treated by time-dependent methods
together with the effects of the lattice vibrations,

The electron distribution is described by the density
matrix7 p which consists of two parts,

p=pp(x, )+pr, (2 9)

where pp(X&) is the Fermi distribution at the lattice
temperature T,

pp(Xo) = {exp'(Xo—Er)lk&]+1) ', Tr{po) =1, (2.10)

and pi contains the deviation from thermal equilibrium
caused by the combined effect of K;"and collisions with
the lattice. It leads only to the ordinary conductivity
formula discussed in Appendix A. The Hall eGect must
therefore be contained in the average velocity

(ttk [
K"

~

rt'k') = —eZ, (nk
~

x p
~

rt'k') 8,= Tr{ppv, ), (2.11)

where

8kb

Jp"'(k) = to x*(r) to„x(r)d'x,
n r)kp

Jo""(k)=Jo(l)~0,
(2.6)

where e, is the velocity operator,

s,=i/xr, x.]=i [K,x.]=i [A„)x.] i [x,")x.]. (—2.12)

The first term in v averages to zero because

Tr{pp(K )fx„,x ])=Tr{tpp(x ),K ]x )=0. (2.13)

In the calculation of the second term, which is already
linear in the electric field, one may use the distribution
function pp (K) and the'wave functions Pt in the absence
of the field to calculate the average velocity,

with dt ——e'"'w„(rx) (see Appendix B). This second
term in the expression for X," is completely regular.

proposed previously for this problem by A. Samoilovich and U.
Kon'Kov, J. Exptl. Theoret. Phys. (U.S.S.R.) 20, 782 (1950).
However, their treatment of the spin-orbit interaction which
neglects the fact that it has the lattice periodicity is quite incor-
rect and consequently leads to a temperature-independent n, in
conflict with experiment.

'N. F. Mott and H. Jones, Theory of the Properties ofilletats
aid Alloys (The Clarendon Press, Oxford, 1936), pp. 189 tI.

t-.= —i Tr{po(X)(X,",x.]}= —i Tr{r x.,po(X)]X,"}
= —j p (rtk~ px. ,po(x)][rtk)(mk~xr" [stk)

—ig Q (Nk~Lx. ,po(x)]~rt'k)
nk n'Qn

X (I'k
~

Xr"
(
rtk). (2.14)

See R. C. Tolman, PrimciPles of Statistjca/ Mechanics (Oxford
University Press, New York, 1930), Chap. IX.
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The sum over the diagonal matrix elements in Eq.
(2.14) can be simplified with the help of the formula in
Appendix C and the definition of Ki" to yield (p' = Bp/Bo)

zeE—

baal

po'(ol)v (l)Jb(l). (2.15)

The sum over the o6-diagonal elements, on the other
hand, does not involve any singular matrix elements at
all. If the J"n'(k) are used to express the matrix ele-
ments of x and 3C»", this sum becomes equal to

ieEb P po(«) Q (J ""'(k)Jb"'"(k)
l n/

—J ""(k)J." "(k)) (2 16)

The sum has now been extended to include the term
e'=g which vanishes because J"n is finite. The com-
pleteness of the functions w„l, (r) implies that

p J nn'(k) J n'n(k)

r Bw-.'(r) Bw„l,(r')
(P w„b(r)w„„*(r')) d'xd'x'

~ g Oker Bk

as a voltage per unit current density,

e//= E„/J,= prM—,E,/ J,= p'—rM„(2.22)

we see that the Hall constant R»'= —p2r should depend
strongly on temperature like the square of the resis-
tivity. Such a temperature dependence is actually the
most striking feature of the experimentally determined
Hall constants E». It follows in our theory from the
approximate constancy of r. %e now turn to an esti-
mate of the magnitude of the extraordinary Hall effect.

III. THE HALL EFFECT FORMULA

The 6rst step is to express the J,(l) in terms of the
eigenfunctions lPl=e""'u„l, (r) and eigenvalues oio of the
electrons unperturbed by spin-orbit coupling. The
matrix element in this representation will be denoted
by a subscript zero. First-order perturbation theory on
the energy gives «= ol' (Appendix D), while the wave
function is

w„l, (r) =u„b(r)

p Bw„l,*(r) Bw„l,(r)
d3$

Ba, Bl.

8 82

J,(l)+, w„l,*(r) w„&(r)d'x
~ g Bk~8kg

(2.17)

+ Q u„ l, (r)(u'k~K'~ek)p/o„b —o„l„(3.1)
n/gn

since the periodic character of K' gives matrix elements
only between states with the wave vector k. From now
on all equations will have a common index k which we
shall suppress, writing Eq. (3.1), for example,

Since only the antisymmetric part of the product
enters in Eq. (2.16), the second term cancels and leaves
us with

—oeEbgl pp'(ol) [vb(l) J.(l) —v. (l)Jb(l) j, (2.18)

after an integration by parts with respect to k. If we
add this result to Eq. (2.15), we obtain the average
velocity

8 = —leEbpl pp (ol)5b(l) J (l).

Wn=un+Qn un (rb'~K'~ ) n/ P„OO„. —
Substitution in the definition of J (l) gives

J.(l) =2 P I:-'(u'~X'~u) p/~„„.,
n/gn

where

e 0~ +nn' = &n &n'&
Ann n

(3.2)

(3.3)

Formally speaking, we may say that our effect arises
from the consideration of the interband matrix elements
of the electric interaction and of the velocity operator,
whereas the usual theory only treats the intraband
matrix elements.

In the next section we shall show that the transverse
current contained in Eq. (2.19) is perpendicular to both
the magnetization and the electric Geld and that it
vanishes in the absence of the spin orbit coupling. %e
can therefore write

= —(rl
~ p. ~

u'), /m~„„. (n~rl') (3.4).
I ""'is the same as J,nn' except that it is evaluated with
the functions u„ in the absence of spin-orbit coupling.
It is discussed in Appendix D.

These expressions used in Eq. (3.3) finally yield the
formula,

tr, = —2ieEb p po'(ol) p v.(l) (l~ pb~ e')o
l n/gn

Jy ——rM,E, (2.20) X (e' i%' in) pep„„—', (3.5)
where r is obtained by carrying out the summation over
matrix elements in Eq. (2.14). From its structure we
can see that r depends on temperature only weakly
through the distribution function pp(ol). If we therefore
express the Hall voltage which prevents a current from
flowing in the y direction,

E„=—pJ„(p= resistivity), (2.21)

in which no approximations have been made other than
the use of perturbation theory.

To proceed further with Eq. (3.5) one has to make
additional and cruder approximations. The magnetic
electrons belong to difFerent "d bands" made up of the
fivefold degenerate d state of the free atom. Let n be
in one of these d bands. Then we would expect that
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those n' (Wn) which are also in ni bands contribute
most to Eq. (3.5). If e' represents a higher band (say
the "s band" ) where the electrons are almost free,
(e'~ ps~rs)p is almost zero, since it is exactly zero for n'
representing a band where the electrons are free. On the
other hand for e' in a lower band the matrix elements
are approximately just those for transitions of the iso-
lated atoms, and therefore independent of k. For these
though the sum over k vanishes, since Pi pp'(l) v, (l) =0.
We shall then assume that the main contribution to the
e' sum in Eq. (3.5) comes from transitions between the
"d bands. "Assuming this, we may replace cu„„' by 6',
where iV is some mean square energy separation between
different d bands for the same k at the top of their
Fermi surfaces. Thus Eq. (3.5) becomes

F (i) = + (e/c) fv(l) XH], (4 1)

where II is of the order of the mean value of the mag-
netic field giving rise to the spin-orbit interaction'
times the ratio of the magnetization to saturation
magnetization )see Eq. (2.2)],

We obtain
H=H, , M/M, . (4.2)

IV. CONCLUSIONS

For the 6nal evaluation of the spin-orbit contribu-
tion to the Hall effect one must estimate Eq. (3.10).
The chief difhculty is that the wave functions are so
poorly known that it is impossible to find a really
reliable estimate for F(l). A very rough estimate how-
ever can be obtained by setting

mls «d) n'Wn

X(ri'iK'ie)p, (3.6)

v= — H, , E.LP v(t)pp'(ei)v(l)]XM/M, . (4.3)
lVmc

ere the sum over ) only covers the polarized d bands ComParison with PPendix A reveals that the sum
in Eq. (4.3) is just the same one as that which occurs inU sing
the ordinary conductivity tensor. In a cubic crystal it is

and diagonal and

(e]K'[N') p
—(B'——(K'] ts)p,

we can rewrite Eq. (3.6),

MX&e2

V = — Ha, p.
6'mc

2 pp'(«)s*'(i)
3f, «d)

(4.4)

eEg 2 pp'(1) (NIiL3i",p.] I ~)p»(1) (3.7)
6'm ~(d)

Equation (3.7) may be put into a much more trans-
parent form, since the quantity (meit X,p, ]~ )Iispjust
the expectation value of the force due to spin-orbit
interaction on an electron in an unperturbed state l.
To see this we write the u component of the force F, as

Jy= EdeHy= rM,E, (4 5)

where Ãd is the total number of magnetic electrons con-
tributing to the current; the constant of proportionality
r defined in Eq. (2.20) is

The velocity is perpendicular to both the electric and
magnetic fields. It therefore represents a Hall eGect.
With the electric and magnetic fields in the x and s
directions, respectively, the velocity has only a y
component. Hence the resultant transverse current is

to the erst order in K'. Then

(e[F,[e)p= (n[i)%priv ][e p+(e[i KL',p,][n) p

= (IJ i'', p,][n)p =—F,(l), (3.8)

e' Ãd
H, , Q pp'(d)v, '(l).

mcus' M, ~(d)
(4.6)

The sum can be simplified by the usual methods em-
ployed in discussions of the conductivity. It yields

eE~
Z po'(i)F. (i)s (i),

lcm &(d)
(3.9)

the entire result being expressed by averages within a
band. Equation (3.9) may also be written as the vector
equation,

o ( )LE (l)]F(i)
~+2 t(d)

(3.10)

which shows that the additional current is in the direc-
tion of the spin-orbit force.

since the diagonal matrix elements in the Ko representa-
tion of the commutator of Ko with a regular operator
vanish. Therefore substitution of Eq. (3.8) into Eq.
(3.7) gives

|—Q pp'(l)s. '(i) =8
&(d) d Av

(4.7)

where m* is the effective mass and 8 is the number of
incompletely filled d bands. ' The maximum possible

8 This 6eld can be estimated by the condition that. it should
produce the correct separation for the spin-orbit doublets. Since
for Fe or Ni these separations are of the order of 500 cm ' or
10 "erg, we have II,., IJ„g 10 ", H, .o. 10' gauss.' The effective mass has been discussed in connection with the
large electronic heat capacity of transition metals LF. Seitz,
Modere Theory of Sohds (McGraw-Hill Book Company, Inc. ,
New York, 1940l, pp. 153 if.g In our notation, the eiiective mass
m~ of the electrons near the top of the Fermi distribution can be
written m~=8(m*)qA, or (1/m*)qA, 8/m~ if only a narrow band of
levels is either occupied or unoccupied.



R. KARPLUS AND J. M. LUTTINGER
-10

I0x IQ

NI C KQ L

~ J.-P. Jan
x J.-P. Jan
4 E', H. Butle

what one actually measures. Then Eq. (4.9) becomes

Ei'=0.7X10 "(p/ps)' volt cm/amp gauss. (4.12)

The most striking prediction of our theory is the fact
that the extraordinary Hall coefficient should be pro-
portional to the square of the resistivity. If one takes the
measurements of Jan, "Jan and Gijsman, " and Butler
and Pugh, "Figs. j. and 2, one finds

Ri'=0.7X10 "(pr/p )"4 for Fe,

O.I—

0.OI
O, I

p (pa. urn)

FIG. 1. Experimental results for iron. The equation of the straight
line is E'=0.7)&10 "(p/pb)"', with pb = 10 micro-ohm cm.

magnetization M, is equal to

As a resul
constant APPENDIX A

The transport theory result' for the average velocity

(4 9) of an electron in a crystal subject to an electric field E is

Ei'= 1.3X10 "(pr/po)'4' for Ni.

For iron especially the agreement is excellent, though
for nickel it is only qualitatively right. The agreement is
good enough however to convince us that we have found
the proper mechanism of the extraordinary Hall eGect.
The deviations from straight lines to low Hall constant
values have to do with the fact that R~ and R~' differ
significantly in this region. R~, of course, will be less
than RJ, and may be no more than one-half as big.

YVe should like to thank C. Kittel, who called this
problem to our attention, for many stimulating discus-
sions. One of us (J. M. Luttinger) would also like to
thank the staff of the Physics Department of the Uni-

M.= end/2mcQ. (4 g) versity of California for their hospitality during the

t E (46)
.

ld th, t d H 11
summer of 1953, where this work was begun.

Rg' m t.'II, .,
p2

4&Rp m d AvxmlVRp

m H, .,—0.7X 10 r p'5, (4.10)
m* gA, lVRp

If we know the ordinary Hall constant Rp, we may
compute the field paramerer o.(rr))1) from

86l
8.= eEbr P ps'(—e() v.(l),

8kb

IRON

IOx l010 ~ J,- P. Jon
& J.-P. Jon ond
4 E. H. Butler on

(A.1)

where H, , , 6, Rp, and p are expressed in the usual units:
gauss, electron volts, volt cm/amp gauss, and ohm cm,
respectively. To get an idea of the magnitude of n,
we insert the measured values B,, ~10~ gauss,
&~2 ev,"R,~-', X10 "volt cm/amp gauss, p(0') ~10 '
ohm cm= ps, 8 3 and (m/m*)sb„1/10:

I—
~g
~o
0~ o

K
O.l—

at room temperature, which agrees quite well with the
observed values for Fe and Ni.

Actually from the entire calculation we see that the
quantity 4xMo. is not really an effective field at all,
and the anomalous temperature dependence arises
solely out of our desire to write the eGect as we would

an ordinary Hall eGect. It is therefore more natural

perhaps to compare R~' with experiment, since that is

"G.C. Fletcher, Proc. Phys. Soc. (London) A6S, 192 (1952).

O.OI
O. I IO

p(p~ cm)
IOO

FIG. 2. Experimental results for nickel. The equation of the straight
line is 2t'=1.3&&10 "(p/pb)'e, with ps=10 micro-ohm cm.

"J.-P. Jan, Helv. Phys. Acta. 2S, 677 (1952).
is J.-P. Jan and J. M. Gijsman, Physica 18, 339 (1952)."E.H. Butler and E. M. Pugh, Phys. Rev. S7, 916 (1940).
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where v(l) and eE are the diagonal elements of the ve-
locity and Hamiltonian operators including spin-orbit
coupling in the state i; po(e~) is the Fermi distribution
function at the lattice temperature. It is shown in
Appendix C that

1 8
4mk 4n, 'k'd x

i 8k' g
~n'k'

ei(k' —k) ~ r~ + JSX

0 8k'

'vg(l) = Bei/Bkg (A.2) (5m~'8kk')
()k,'

in the general case of an electron subject to a periodic
Hamiltonian. This applies in our case because the spin-
orbit interaction is periodic. Any spin-orbit eGects on
the current through the velocity in Eq. (A.1) therefore
depend on the energy shifts caused by this perturba-
tion. Since the first-order eGect of the spin-orbit coup-
ling on the energy vanishes (Appendix D), there is
no linear dependence on the magnetization in Eq. (A.1),
and this expression can never contain a Hall eGect.

APPENDIX B. PROPERTIES OF THE VELOCITY
AND COORDINATE MATRICES

The velocity operator is given by the rate of change
of the corresponding coordinate

v.=i [X,,x.]
When K is given by Eq. (4), then

BW~ k
+s ~

e' "' " 'w * d'x, (B.4)
0 Bk '

since the m k are orthonormal. However, the fact that
the w„k(r) are periodic means that the exponential
factor will cause the remaining integral to vanish unless
k=k'. Thus

t9

(Nk
~
x.

~

e'k') =ib.; hkk +iJ.""'(k), (B.5)
Bk

where J is defined in Eq. (2.6).

APPENDIX C

We shall prove that no matter what the nature of the
interaction of the electrons and another system, so
long as Bloch-like solutions,

(C.1)Q~k=e" '+~k,
1 (M &(p'V).pl

'tIe= +
m 4m'c'

(B.2) exist with energy e„(k), then the expectation value of
the commutator of a function f(K) of the electronic
Hamiltonian with the coordinate vector x is given by
the derivative with respect to k„Since p and V both have the lattice periodicity, n,

will only connect states with the same k. Further, all
the operators in Eq. (B.2) are regular in the sense that
they have diagonal matrix elements for Bloch functions.
If we express the velocity matrix in terms of the co-
ordinate matrix, we get

Bf(e (k))/Bk —+i([f(K)~xN]) „(C2)

To show this identity, we recognize that Eq. (C.1) and

(C 3)se(y, r)y.k- e„(k)y„k

X,(y+k)u„k ——e„(k)e„k.
(B 3) imply that

(C.4)

t d'xu~k"e 'k'[f(K(y, r))x,

Consequently the matrix element in Eq. (C.2) becomesfrom Eq. (B.1). This equation is not very convenient
for the diagonal elements, since those of x, do not
exist, strictly speaking. However, for off-diagonal ([f(~) x ]),
elements (that is, interband matrix elements) it is
useful since in this case (l~x, ~P) may be expressed

simply.
In general we may write: —x.f(sc (y, r) )]e'"'e„k

(eke x,
i
e'k')

~-ik. r~ *g ~ik'. r~, ,dag
"o

ik'. r

i8 ''N k
— 'N ~kfdS
i ak.'

1 8
t i r~ek* (eik' ~ r~, ,) eak' r dSX

a i.Bk,' Bk,'

8
i )

d' ~—„x* k[e-'k'f(x(y, r))e'k']n„k
Bk,

8
i d'xu—~k* [f(K(y+k, r))]N,„k.

Bk.
(C.5)

Because the normalization integral J'd'xl„k*l k
——1 is

independent of k, and N„k is an eigenfunction of the
differentiated operator by Eq. (C.4), the derivative
may be taken outside the integral. The matrix element
then immediately yields Eq. (C.2).
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We obtain a well-known special case of the relation- From Eqs. (D.2) and (D.4), on the other hand, we have
ship if we choose

f(K) =x,, f(e„(k))= e.(k). (C.6)
(n'klx'lnl ),=J

x„k*x'x„,kd x

Then Eq. (C.2) states

(yil R,x,]) =(x,)„=(5,)„=B „(k)/Bk.. (C.7)

X. , +k*(—r)X'( —r)X., +„(—r)d'x

In the general case we can then express the derivative
in a simpler way,

=
J X",-k'(r)Se'(r)X„ ,(r)d3x,

B8 -(k)) Bf( -(k))
&a nk

Bk. Be„(k)
(C.8)

or,
(n klx ink)p= (n, —klx ln, —k) . (D.6)

Combining (D.5) with (D.6) we have

APPENDIX D. SYMMETRY PROPERTIES
(n'k

l

x'l nk) p
———(nk la'l n, 'k)0. (D &)

Xn, —k Xn, ky (D 1)

%e consider here the symmetry properties of various
matrix elements with respect to the eigenfunctions

f„k of XD. It follows at once from the reality of Ko that
one may always choose

From this we see at once that the diagonal elements
of 3C' vanish, and therefore there is no first-order correc-
tion to the energy due to the perturbation 3.".

We may also use Eq. (D.1) and Eq. (D.2) to obtain
some properties of the I,""'(k).By writing/„k ——e'k'N„k,
Eqs. (D.1) and (D.2) become

which is equivalent to time-reversal invariance. Further,
if the crystal has a center of symmetry —which is true
for aH cases that we consider —then we also may choose

@n,—W =In&~,

n„, k (—r) =n„k (r).

(D.8)

(D.9)

X..—.(—r) =X-,.(r)
From Eq. (D.8) we have

(D.2)

Since II' (see Eq. (2.2)) is pure imaginary and reQec-

tion invariant, we have

~In I
I~"" (k) =.

J
n~k d x=

J Q„,
I9k~

~In, —k
d $

(D 3)

x,'(—r) =x'(r).

From Eqs. (D.1) and (D.3) we obtain at once

(D.4)
mn' (k) —I n'n ( k)

Similarly from Eq. (D.9),

(D.10)

(n'klx'ink)o —— x„,*x,'x.,d'x= (x'x„.,)*x„,d'x
J

(X Xn'k )Xnkd x
J

(X'X-,—k)X., —.'d'x

f BQ&~k (r)I,""'(k)=
J

u„k*(r) d'x
Bk,

BN„k( r)—
~ n„k*(—r) d'x

Bu.

BN„, k(r)= J' n. , k*(r)
Bk

Thus
J Xe, —k X Xn', —kd x ~ ~un,

(—k.)

(n'klx, 'ink)0 ———(n, —

klan'ln',

—k)o (D.11)

= (n' klx'ln k)o (D 3) Thus the diagonal elements I ""(k) vanish identically.


