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The thermoelectric power of a metal depends on the details of how the current carriers in the metal are
scattered by the various deviations of the crystal from a perfect lattice. A semiempirical theory of thermo-
electric power in metal alloys is described, which is based on a formula due to Mott and others. The theory
relates absolute thermopower to the energy dependence of the scattering cross section Q;(e) of a lattice
imperfection, and deduces numerical values for the first few "scattering coefficients" in a Taylor expansion
of Q;(~) about the Fermi level p0 in the pure solvent metal. The few known empirical "rules" of thermo-
electric power in binary alloys of Cu, Ag, and Au, of alkali metals, and of Al are interpreted in terms of
these scattering coefficients. The correlation with high-temperature thermoelectric properties of such alloys
is shown to be quite satisfactory, but the low-temperature properties present several difhculties which cannot
be properly discussed without further extensive experiments at very low temperatures. The usefulness of
thermoelectricity as a tool for studying the nature of lattice imperfections is discussed briefly.

INTRODUCTION

''T has long been known" that the thermoelectric
~ - power of a metal depends upon the details of how
the current carriers in the metal are scattered by the
various deviations of the crystal from a perfect lattice.
The most important of these deviations are thermal
vibrations and potential perturbations caused by foreign
atoms, vacancies and interstitial atoms in the lattice,
and dislocations. In contrast to this the electrical re-
sistivity of the metal is determined by the gross or
"total" scattering and is relatively insensitive to the
precise details of how a scattering center might dis-
criminate between fast and slow electrons. Hence,
although a number of papers have been written on the
quantum kinetics of thermoelectric power, few of
these have carried the theory to the point of making
actual numerical calculations for a variety of metals
and alloys. One of the main difficulties in the field of
thermoelectricity is that there has been found very
little "empirical consistency" in the variation of thermo-
power from metal to metal and from alloy to alloy.
(Thermoelectricity has no "Matthiessen Rule, " no
"Wiedemann-Franz Relation. ") There have been at-
tempts to formulate "additivity rules" for thermo-
power, for example by Kohler, ' and in this case the
additive quantity is the ratio of thermopower to thermal
conductivity. Kohler emphasizes the importance of
using absolute thermopower instead of relative thermo-

* Supported by Signal Corps Engineering Laboratories, Fort
Monmouth, New Jersey.

t During the 6nal typing of our manuscript our attention was
called to a recent paper by J. Friedel, J. phys. et radium 14,
561 (1953), on much the same problem as we discuss here. There
seems to be at least one very important difference between our two
points of view. Friedel assumes that for small impurity concentra-
tions the Fermi level of the metal remains fixed upon alloying;
in contrast to this, we attribute the main features of thermopower
behavior to precisely this variation of Fermi level upon alloying,
even for very small impurity concentrations. It is interesting that
both we and Friedel have speculated on the existence of an "in-
ternal Ramsauer effect."

' A. Sommerfeld, Z. Physik 47, 1, 43 (1928).
s L. Nordheim and C. J. Gorter, Physica 2, 383 (1935).' M. Kohler, Z. Physik 126, 481 (1949).

4 G. Borelius, Handbuch der Metallphysik, edited by G. Masing,
(Leipzig, Akademische Verlagsgesellschaft m.b.h. , 1935), Vol. 1,
part 1, p. 404.

s A. L. Norbury, Phil. Mag. 2, 1188 (1928).
6 J.L. Thomas, J.Research Natl. Bur. Standards 16, j.49 (1936).' See W. H. Keesom and C. J. Mattijs, Physics 2, 623 (1935).
8 '@le have begun an experimental study of the systems Cu —Mn,

Ag —Mn, Au —Mn, Cu —Ti, and Cu —Cr.
9 A. L. Bernoulli, Ann. Physik 33, 690 (1910).
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power in such additivity relations. Unfortunately, a
disadvantage of such relationships is that they involve
other parameters besides thermopower, so that a com-
parison with experiment necessitates having simul-
taneous thermopower and thermal conductivity data for
the same specimens.

Introducing the Wiedemann-Franz relation into his
formulas, Kohler deduces the following rule: If two
noble-metal alloys A and 8 are formed into a thermo-
couple, metal A is thermoelectrically positive against
8 if the residual or impurity resistivity of 8 is greater
than that of A, and this results from the fact that the
noble metals (Cu, Ag, Au) have positive absolute thermo-
powers. On the other hand, Kohler's formula predicts
the reverse polarity for the relative thermopower of the
thermocouple if the solvent metal is one of the alkali
metals which has a negative absolute thermopower.
It is found experimentally' that if almost any foreign
atom is added in small amounts to Cu, Ag, or Au,
the resulting alloy is thermoelectrically negative rela-
tive to the pure solvent. Manganese dissolved in copper
is one exception" and the absolute thermopowers of
n-phase (Cu-rich) Cu —Mn alloys attain values higher
and higher above that for pure copper as the tempera-
ture increases (at least as far as data are available,
namely, +700'K). Ti and Cr in Cu appear to be addi-
tional exceptions, ' but the thermopower data available
for these alloys are not extensive. ' Apart from these
three cases, we know of no other exceptions to Kohler's
rule. In the Ietereatiomal Cntica/ Tables the compila-
tion by Caswell gives the thermopower of Ag —Tl
alloys as positive relative to pure silver, but the sign
convention of Bernoulli, from whose work Caswell's
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data are taken, is the reverse of that commonly used
nowadays.

Another fairly general trend was found by Norbury, '
who pointed out that the initial slopes of thermopower
vs composition curves increase with increasing valence,
for various elements dissolved in copper.

We propose to show that present quantum theories
for thermoelectric power can lead to interesting and
important information about electron scattering in
solids. The formulation of Mott" is particularly con-
venient for our purposes inasmusch as his formula for
absolute thermopower is given in terms of the energy
dependence of resistivity. Ke shall concentrate pri-
marily on dilute, substitutional, binary alloys of various
foreign atoms in Cu, Ag, or Au, but the general ap-
proach should be useful in other alloy systems as well.
In fact, we hope soon to extend the study to ternary
alloys, and to scattering by lattice vacancies, inter-
stitials, and dislocations. The arguments given here
should be applicable to alkali metal-base alloys, and
do indeed seem to apply to very recent results of Mac-
Donald and Pearson. "However, the solubility of most
nonalkali atoms in the alkali metals is extremely small.

A. FORMULAS FOR ABSOLUTE THERMOPOWER
AND RESISTIVITY

According to Mott" the absolute thermopower 5 of
a metal or alloy is given by

8= (zr'O'T/3
~
e~)LB lnp(e)/z3ej, „.

Here k is the Boltzmann constant, e is the electron
charge, T is the absolute temperature, e is the energy
of the electrons at the surface of the Fermi distribu-
tion, and p is the actual value of e in the particular
metal in question. The formula is valid for pure metals
for temperatures T)&O&, where 8D is the Debye tem-
perature; and for T((Tp, Tp being the "degeneracy"
temperature of the free electron gas in the metal. The
values of Tp for Cu, Ag, and Au are of the order of
50000'K, whereas for Fe, Ni, Pt, Pd, etc. (transition
metals), Tp is probably an order of magnitude smaller,
roughly speaking. The formula is valid for any func-
tional relation between energy and wave number,
e= e(k), provided that the scattering is isotropic.
Finally, the formula is applicable to alloys even at low
temperatures, provided that the impurity resistivity
p, is much greater than the resistivity p~ resulting from
lattice vibration or phonon scattering.

The significance of the derivative in (1) is as follows.
If the energy e of the "surface electrons, " i.e., those
which actually carry the current, could be varied with-
out otherwise altering a given metal or alloy, then the

"N. F. Mott and H. Jones, Theory of Melals amd Alloys (Oxford
University Press, London, 1936)."D. K. C. MacDonald and W. B. Pearson, Proc. Roy. Soc.
(London) A221, 534 (1954). The most often quoted experimental
work on the thermopower of alkali metals is that of C. C. BidweH,
Phys. Rev. 23, 357 (1924). More recent work is that of E. Heiber,
Ann. Physik 23, 111 (1935).

p, (e) = L (2zss) &zs%'rsp je&Q;(e), (3)

where m, e are electronic mass and charge, e; is the
density of impurity atoms in the alloy, and esp is the
density of "free electrons" in the lattice. It should be
emphasized that Eq. (3), and therefore our entire
theory, is based on the one-electron approximation.
If we let x be the fraction of impurity atoms in the
alloy, P be the number of conduction electrons con-
tributed per impurity atom, and suppose for simplicity
that each solvent atom (Cu, Ag, Au, Na, or K, etc.)
contributes a single conduction electron per atom, then
the ratio rs, /rip in (3) becomes x/[1+ (P—1)x) and (3)
becomes

p, (e) = 21.1 e&Q;(e), pn —cm,
1+(i3—1)x

(4)

zs F. Spitz, Moderzz Theory of Solids (McGraw-Hill Book Com-
pany, Inc. , New York, 1939), p. 541.

'z The assumption that mean free path (or cross section) is
energy independent is valid only for very special scattering poten-
tials. For example, the "hard-sphere approximation" leads to
al/ac=0; but for more realistic scattering potentials there results
in general an energy dependence of mean free path l on energy.
For simplicity we assume throughout this paper that the eRective
electron mass is simply the free electron mass.

resistivity p(e) would vary. The way in which the re-
sistivity would vary thus determines the thermopower,
according to Eq. (1), the logarithmic derivative being
evaluated at the actual Fermi level e=p of the electrons
in the lattice. There is no way in which the level p, can
be varied in an actual metal without simultaneously
introducing other changes. For example, if one dissolves
foreign atoms in Cu, the Fermi level will usually change;
however, in so doing we also introduce new scattering
centers whose cross sections have their own peculiar
energy dependence, so that we should then need to
separate these scattering eGects from one another.
Iikewise, by squeezing the metal we can change the
Fermi level, but we will at the same time alter the
effective potential distribution around each atom and
thereby change not only p, but also the function p(e)
itself. However, we can use relation (1) by postulating
some reasonable energy dependence for the resistivity p,
then comparing the deductions from the formula with
the known thermoelectric properties of metals.

We write the total resistivity p(e) of the binary
alloy in the usual form,

p(e) =pr(e)+ p'(e), (2)

where pr (e) represents the "thermal" resistivity arising
from phonon scattering of the electrons and p, (e) repre-
sents that arising from perturbations of the solvent
lattice potential caused by the presence of the impurity
atoms. In the cases that it is possible to speak of a mean
free path one can express the impurity resistivity p;(e)
in terms of an eGective, total scattering cross section
Q;(e) which is in general a function of the energy of
the current-carrying electrons:" "
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the energy e now being expressed in electron volts,
Q, (e) in A' units (i.e., in units of 10 "cm'), and p, (e)
in microhms-cm. The actual residual resistivity of the
alloy is given by (4) evaluated at e=p. We assume that
the alloys are relatively dilute (x(0.1 approximately,
i.e., & 10 atomic percent); and since the Fermi energy p
of an ideal free-electron gas varies with the —, power of
the electron density, we see that, if we neglect lattice
parameter changes upon alloying, the Fermi level
varies with composition x in the following manner for
small (t' —1)x:

p= p.[1+(~—1) ]-:-=po[1+-.'(e—1).]. (5)

Inserting this into Eq. (4) and again using approxima-
tions appropriate to small (P—1)x, one finds for the
actual resistivity of the alloy

p'(p) =21.»[1—
a (I'—1)x]po'Q (u)

=0.211p 1—
—1

p poQ;(p); (6)
i50

l=[Bp'(p)/Bp]. =o=o 211uo'Q'(po)

the units here are of course the same as in (4), and 'the

atomic percentage p= 100x.
It is customary" to define the so-called "atomic

resistivity change" l as the initial slope of the resistivity
ms percent impurity curve, so that if we assume in

Eq. (2) that pz is independent of p, we f'nd from
Eq. (6) tha, t

It has been found that l can be expressed in the form

f=ki+k2s', (8)

where k& and k& are nearly constant for dilute binary
solid solutions of various atoms in Cu, Ag, or Au,
and s=lV —11, X being the group number (column
number) of the added element in the column-of-eighteen
periodic table of the elements. Equation (8) represents
the empirical rule found by Norbury" and Linde" and
explained by Mott."

Now it is clear that what is needed is the energy
dependence of the scattering cross section Q;(e). Sup-
pose that this function be expanded in a Taylor series
about the Fermi energy e=po in the pure metal. We
can write this expansion in the form

Q'(e) =Qo[1+ai(e—po)+~r(e —po)'+".], (9)
where

Q.=Q,("), Q.- =[BQ.()/B ]",
2Qo 2=[B'Q'()/B"] o, "

We shall see that in most cases only the linear term
(in ni) in (9) is needed for the thermopower calculations,
while in some cases the O2 term is also necessary. In
Sec. E we shall correlate the terms in (9) with an an-
alytic expression derived by Mott" for calculating
resistivities of binary alloys.

If we substitute Eq. (2) into (1), we find

(3 I el/m'k') (S/T) = [B lnp(e)/Be]„
= (pm+ p,) '[Bpz (e)/Be+Bpg(e)/Be]„. (10)

The second term in the brackets is p;[B lnp;(e)/Be]„,
and from (3), (5), and (9) we find

B lnp, (e) 1 1BQ,
=p' —+-

2e Q~ Be

ni+2n2po(p —1)p/150
(11)

2po[1+ (t' —1)p/150] 1+nitro(t3 1)p/1—50+Q2po'(p —1)'p'/(150)'

At temperatures T))OD we have, from Mott's formula (1)
applied to the pure metal,

S,=[n'u'T/3lel]LBp, (.)/Be]., [p, (p,)]-',
so that

[Bpr(e)/Be]"o=3lel»( o)5'o/(x'&'T) (12)

in which So is the absolute thermopower of the solvent
metal at temperature T. The first term in the brackets
in (10) is the derivative pBr/Beevaluated at e=p, the
Fermi level in the alloy, whereas in (12) this derivative
is evaluated at e= pe, the level in the pure solvent metal
There are several reasons for supposing that these two
derivatives are almost exactly equal. First, if we make
the reasonable assumption that the phonon scattering
is of the same nature in the three similar metals Cu,
Ag, and Au, we can suppose that the derivative Bpr/Be
is practically uniform over a large electron-energy
range, since these pure metals have very nearly equal
thermopowers despite the large di6'erences in Fermi

'4 G. Borelius, reference 4, p. 336.

energy pp. Thus whereas the level po changes by a
factor of approximately 2 in passing from pure Cu to
pure Au, the Fermi level p in noble-metal base alloys
varies only slightly from po (in the pure metal) as we
dissolve even up to 10atomic percent of a foreign atom
in the solvent. Secondly, the absolute thermopowers of
all the pure metals extended over a range of only some
50 pv/deg despite the large variation in crystal struc-
ture, Fermi level, and phonon distribution functions;
this indicates that the quantity Bpz/Be does not vary
rapidly with energy. This situation is to be contrasted
with the very great eGect on the thermopower of the
noble metals when only minute amounts of impurities
are added to the solvents. Thirdly, from the quantum-
mechanical point of view one would expect the purely
phonon scattering itself to be determined primarily by
the distribution-in-energy of the phonons, and this

'5A. L, Norbury, Trans. Faraday Soc. 16, 570 (1921); A. L.
Norbury and K. Kuwada, Phil. Mag. 4, 1338 (1927).

i' J. O. Linde, Ann. Phyaik 10, 52 (1931);14, 353 (1932); 15,
219 (1932).

'7 N. F. Mott, Proc. Cambridge Phil. Soc. 32, 281 (1936).
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would surely not change radically as a result of the intro-
duction of a small percentage of foreign atoms; it fol-
lows that the rate of change of this scattering with elec-
tron energy would be quite small. "For these reasons
we feel justi6ed in assuming that the derivatives of

pr(e) in Eqs. (10) and (12) are equal or very nearly

so; i.e., we set

[~S r (e)/~ej~= [&sr (e)/&ej. o. (13)

Upon substituting (11), (12), and (13) into (10) and
solving for 5, we 6nd

ur+2usyo(P —1)P/1507r2k2

S= [pr+pi] S~opr+ p;T (14)
3

I
e I

-2ps[1+ (p 1—)P/150j 1+ui go(p 1)—p/150+u»os (p —1)'p'/(150)'

ui+2uspo(p —1)p/150
S= [pr+ p;)

—' Sop r+0.0243p;T , (»)
-2po[1+ (P 1)P/150$ 1+uilio(P 1)P/15—0+us@0'(P —1)'P'/(150)

where S is the absolute thermopower of the alloy containing p atomic percent of a foreign atom in solid solution
in Cu, Ag, Au, Li, Na, , So and Ior are, respectively, the absolute thermopower and resistivity of the pure
solvent metal at temperature T'K, and p; is given by Eqs. (6) and (9). Inserting numerical values for the con-
stants in (14) one finds the formula

in which now S, So are in microvolts/deg K, pr and p;
must be in microhm-cm in order to be consistent with

Eq. (6), m'k'/(3[e) =0.0243 (ev-microvolt)/deg, '
po is

in ev, ui in (ev) ', us in (ev) ', and p is atomic percent.
Equation (15) is the basis of our discussion of the
thermopower of noble-metal base alloys at temperatures
above the Debye temperature of the solvent metal.
It should be emphasized that (15) is valid only for

T)BD, because of our use of Eq. (12) for the pure
metal. We shall discuss in Sec. F the formulas which

apply at low temperatures.

B. APPLICATIONS TO DILUTE BINARY ALLOYS OF
Cli Agy AQ Ll Na, etc., F&)0& g)

Equation (15) for the absolute thermopower of an
alloy, together with the relations (6) and. (9) for p;
and Q;, contains the following parameters:

(1) po, the Fermi level at T'K in the pure metal.
This parameter is almost temperature independent in
"ideal gas" metals if there is no expansion of the lattice.
We shall neglect these changes with T, although the
variation resulting from thermal expansion can be very
signi6cant. In fact, this latter variation may have a
great deal to do with deviations from linearity of 5
with T at very low temperatures.

(2) P, the number of conduction electrons contributed

per atom by the solute. For this parameter one should

attempt to be consistent with the arguments of Friedel, "
Jones, ' and Haworth and Hume-Rotherys' although
it appears that the "best" value for P depends in many
cases upon the particular physical property with which

one is concerned.
(3) Qo, the "zero-order" approximation to the scatter-

ing cross section in Eq. (9). We shall see that the terms

' In this respect it might be mentioned that the transition-
metal base alloys require special consideration, in contrast to those
alloys with Cu, Ag, or Au as solvent.

'o J. Friedel, Phil. Mag. 43, 153 (1952).
~ H. Jones, Phil. Mag. 44, 907 (1953).
~' J. B. Haworth and %'. Burne-Rothery, Phil. Mag. 43, 613

(1952).

Qo=qo+qiz', Qo, qo, qi in A' units, (16)

in which 2' has the same meaning as before and qo and qj
are generally taken to be approximately constant for a
given solvent. Actually, it is known from resistivity
data on noble-metal base alloys that qo and q& vary by
as much as a factor of 2 from one solute atom to an-
other. " At temperatures above 400'K the absolute

in ui and us in Eq. (9) are generally only very small
fractions. Thus, while the resistivity is determined by
the "zero-order" approximation Qo, the thermopower
(15) is strongly dependent on the way in which the
cross section varies with the speed of the current-
carrying electrons. From Eqs. P) and (9) we see that
the atomic resistivity change t is determined by Qo, and
this fact allows us to deduce values of Qo from experi-
mentally-found values of f, for example from the exten-
sive measurements of Linde. "The parameter Qo enters
into the S expression (15) through the factor p, in the
numerator and denominator.

(4) ui and us, the first- and second-power coefficients
in the expansion for the scattering cross section (9).
These parameters can in principle be computed by an
elaborate program of curve 6tting, in which the expres-
sion (15) is made to fit lmown experimental data. Such
a program would be of questionable value, since most
available thermoelectric data on alloys is subject to
fairly large errors and since the alloys themselves have
contained varying amounts of unspeci6ed impurities.
It will always be possible of course to fit a given S es p
curve if one is willing to use additional terms in the
cross section expansion (9). For these reasons we shall
show how the scattering parameters Qo, ui, and us

determine the thermopower by giving curves for some
hypothetical alloys, and we shall give only a few ap-
plications to actual binary alloys, namely Cu —Zn,
Cu —Si, Cu —Sn, and Cu —Ni.

Following Linde and Mott we introduce the quanti-
ties qo, q~, and s,
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Andrewartha and Evans, " who give mean relative
thermopowers against copper between 283'K and
373'K, and after conversion to absolute thermopower
we have then shifted the curve upward to coincide with
So——2.38 pv/C' at 400'K for P=O. These data are
shown by the crosses in Fig. 2. There are no thermo-
power data available for Cu —Ge, and Pb has only a
very small solubility in Cu. Thus two of the four IV-8
atoms Si, Ge, Sn, and Pb when dissolved in Cu show
the behavior illustrated in Fig. 2. This behavior requires
the use of the ns(e —po)' term in Q, (e), Eq. (9), and the
values of the scattering coefhcients 0,~ and o,2 for Si in
Cu are given in the figure. The data of Norbury' for
Sn in Cu up to 700'K give a somewhat steeper drop
in 5 than is shown in Fig. 2, with increasing Sn content,
but his alloys contained up to only 2 atomic percent Sn.
We have therefore chosen to use instead the results of
Andrewartha and Evans.

The actual experimental values for Cu —Zn alloys'
are compared in Fig. 3 with the calculations using
Eq. (17).

The metals Fe, Co, and Ni have unusually large
eBects on the thermopower of Cu, Ag, and Au, and their
behavior is typified by the S vs P curves for Cu —Ni
at 400', 500', 600', and 700'K in Fig. 4. As before, the
value of Qo used was determined from f' values found
experimentally. The initial slopes of the experimental
S ss P curves can in principle be used to determine

e&, however, there seems to be little information on very
dilute alloys at higher temperatures, so that it is better
to use "hypothetical" curves such as those in Fig. 1
as a guide, and to adjust the scattering parameters
slightly to get a good 6t with experimental curves.
The parameters necessary for describing the impurity
scattering in Cu —Ni, Cu —Fe, and Cu —Co are too
large to permit the use of Eq. (17), and one must return
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FIG. 4. Thermopower vs nickel content at various temperatures.
All four curves are theoretical.

to the original expression (15).The theoretical curves in
Fig. 4 were calculated to 6t some very meager data on
Cu —Ni obtained in our laboratory. The shapes of the
curves are identical with those of Norbury, ' but
Norbury's thermopowers have larger negative values
than ours.

Coles" has compared the electronic structures and
physical properties of the systems Cu —Ni and Ag —Pd
and has pointed out the striking diGerence between the
S ss P curves for these two systems. Palladium reduces
the absolute thermopower of Ag, but at a slow rate, of
the order of 0.3 pv/deg per atom percent Pd; on the
other hand, Ni reduces the thermopower of Cu at a
rate of roughly 3 pv/deg per atom percent Ni. This
means that the n~ for Pd in Ag is much smaller than the
o.g for Ni in Cu.
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C. RESISTIVITY

We come now to the question of how the scattering
parameters n~ and o2 aGect the resistivity p;. From
Eqs. (6), (9), and. (5) it is seen that for Cu-, Ag-, and
Au-base alloys

(P—1i
p =0.214 'QoP '1—

I IP( 150 j

0 ~ . , 1. . . I

0 5 lo l5
Atomic percent Zinc in Copper.

FIG. 3, Thermopower vs zinc content at various temperatures, All
four curves are theoretical. Circles show experimental data.

"G. G. Andrewartha and E.J.Evans, Phil. Mag. 51, 265 (1941).

X 1+rrtpol IP+crspo I I P . (20)
150 E 150

It is found for many dilute, noble-metal base alloys, that
the p; vs P curves increase approximately linearly with

"B.R. Coles, Proc. Phys. Soc. (London) B65, 221 (1952).
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p. From Eq. (20) it is seen that the deviation of p; from
linearity with p is very sensitive to the values of the
parameter P, the number of electrons contributed per
atom of the solute. In cases where the thermopower
varies slowly with p and for which therefore small
values of e& and n2 are required, the bracketed terms in
(20) remain so near unity that comparison with experi-
ment is dificult. It is no easy matter to determine ac-
curately the impurity content of alloys. Nevertheless,
in the cases of Cu —Zn and Cu —Si alloys, agreement
with the theory is satisfactory as seen from Fig, 5. On
the other hand, in the case of Cu —Ni, for example,
large values of e~ and n2 are required to fit the thermo-
power curves. Now it has been customary to assign the
value zero to the "valency" P of transition metals dis-
solved in Cu, Ag, and Au. If we use P=O in Eq. (15) for
thermopower, we require such large values of o.~ and
ns (in the Cu —Ni case, for example) that at p=10
atomic percent the bracketed term in p; from Eq. (20)
attains values of about 2, which of course represents an
enormous deviation from linearity. Experiment shows
that p; vs p for dilute Cu —Ni alloys is practically a
straight line. (See Fig. 5.) But it has been shown by
Jones" and by Haworth and Hume-Rotherys' that in
Cu alloys with Fe, Ni, Co, and Mn, both binary and
ternary (with Zn or with Al), the valency of these
transition metals is not only nonzero but actually varies
with composition. They And, for example, that Ni,
Co, Fe, and Mn behave as though they possessed val-
encies of about 0.6, 0.8, i.0, and i.9, respectively, in the
systems Cu —Zn —Ni, Cu —Zn —Co, Cu —Zn —Fe, Cu
—Zn —Mn, Cu —Al —Co, Cu —Al —Fe, and Cu —Al
—Mn. In fact, Haworth and Hume-Rothery hold that
the effective valence of Ni in Cu is radically different at
the Cu-rich side of the phase diagram from what it is

I

0 2 0 6 8 /0

Atomic percent Impurity in Copper

Fro. 5. Resistivity ~s impurity concentration. All three curves are
theoretical. The points show experimental data.

at the Ni-rich side. If, therefore, we use values of the
order of P=0.6 electron/Ni atom in Eqs. (15) and (20)
we arrive at much more satisfactory agreement with
experiments on the impurity resistivity of this alloy
system. This situation we consider to be support for the
metallurgical properties discussed by Jones, Haworth,
and Hume-Rothery, although from Fig. 5 it is seen that
the p; vs p curves for Cu —Ni bend the wrong way.

D. API'LICATIOES TO OTHER ALLOY SYSTEMS

We attempt first to apply the theory to the alloys
of aluminum. Crussard" has made a rather extensive
study of dilute aluminum alloys and his results have
been explained qualitatively by Gait'7 on the basis of
Mott's equation (1). However, Gait does not consider
scattering from the impurities themselves, and assumes
as does Mott" that the efI'ect of these impurities is
simply to vary the Fermi level in the metal. According
to our picture this assumption is not allowable.

Because of the difference in number of conduction
electrons per atom between Cu and Al, our formula (15)
for absolute thermopower must be altered slightly.
Instead of using the factor (p —1)p/150 we should
write (p —3)p/150, where we have assumed that Al
has three valence electrons per atom. We mention this
detail only to emphasize the fact that Eq. (15) applies
as it stands only to Cu, Ag, Au, Li, Na, K, . . ., etc.,
and the factor (P—3) will not enter into the formulas
we wish to discuss in connection with aluminum alloys.

We concern ourselves only with the following "rule"
laid down by Crussard: The absolute thermopower of
Al (8&=390'K) is negative (at ordinary temperatures);
when small amounts of a metal preceding Al in the
column-of-eight periodic table are dissolved in Al, the
absolute thermopower is algebraically increased (be-
comes less negative); when the dissolved metal follows
Al in this table the thermopower is algebraically de-
creased (becomes more negative). It can be shown that
for p~0, Eq. (15) becomes

S/Sp —&1+0.211pp*'Qppr 'p

XL0.0243TSo—'(2—
'po '+n )—1), (21)

if we neglect the higher terms in the Q, (s) expression
(9). Equation (18) is a special case of (21) applied to
Cu. The initial slope of (21) is then

(r)S/r)p) &—p= 0.211pp*QpSppr

XL0.0243TSo '(2 'po '+nr) —1). (22)

From (22) it is seen that in general

(aS/Bp) „,is positive for nr~
~

E0.0243T 2po i

~

positive
when Sp is . (23)

negative
~' C. Crussard in Report of Conference on Strength of Solids,

H. H. Wills Laboratory, Bristol (Physical Society, London, 1948),
p. 119;Compt. rend. 226, 1003 (1948).

P' J. K. Gait, Phil. Mag. 40, 309 (1949).
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Taking Sp= 0.00563T K for Al and p, p '=4 ev, we
find (n ') '= —0.356(ev) '.

The application of Eq. (15) to Ni-, Fe-, and Co-base
alloys is more dificult than in the alloys already con-
sidered. However, it should be possible to apply the
basic arguments given here even in the cases of these
alloys.

-»Q. -

Q

-Qr c)e -~o

f) lnQ, (c)

86 pp

&o(3yo+2&) —2 (go+ &)' ln (1+po/&)
(27)

po(I o+a)' ln(1+go/a) —po'(ps+a)
'8 There is a succession of typographical errors in the transcrip-

tion of Mott's resistivity formula from his paper to Mott and
Jones' book, and to p. 545 of F. Seitz's Modern Theory of Solids
(McGraw-Hill Book Company, Inc. , New York, 1939). Mott's
formulas for np, his Eq. (17) on page 290 of reference 17 and that
just above his Eq. (17),should have a factor of 2~ in the numerator.
This factor seems to have been used, however, in Mott's numerical
calculations. On p. 294 of Mott and Jones (reference 10) and on
p. 545 of Seitz, the resistivity formula should have e' in the de-
nominator, not e'. On the same page of Seitz's book, the expression
for Mott's abbreviation y should have no~ in the denominator,
not m.

E. CORRELATION WITH THEORETICAL FORMULAS
FOR SCATTERING CROSS SECTION

In order to arrive at a connection between our em-
pirically determined scattering parameters Qo, ni, ns,
etc. , and the atomic structure of the impurity scattering
centers we have chosen a formula of Mott" which re-
lates the impurity resistivity of binary alloys of Cu, Ag,
Au, Li, Na, K, etc. ,'to the velocity of the current-carry-
ing electrons in the metal. Mott uses a one-electron
approximation, of course, and takes the electron to be
free (v= hk/nz). The foreign atom is shown to introduce
a perturbing potential of the form V = (1/r) exp (—r/ro),
the so-called screening potential. Mott's final formula
for the scattering cross section of a foreign atom is"

Q;(e) = 27r(se'/mv')'f(y), (24)

where s has the same meaning as our s, e=4.80)(10 '0

esu, m=9. 1)&10 "g, v is the velocity of the scattered
electron in crn/sec, Q, (e) is in cm', and f(y) is

iq 1
f(y)=»l 1+- I— (25)

E y) 1+y
with the abbreviation y= jt'/(4m'v'ros). Here ro is the
"screening radius" in the scattering potential and is the
reciprocal of the usual screening constant qp. If the
cross section is expressed in A' and the energy in elec-
tron-volts, Eq. (24) becomes

Q'(e) =326(s'/")f(y). (26)

We have seen in Eq. (9) that for a given dependence
Q;(e) of cross section on energy, the Taylor expansion
for this Q, (e) will be in the form of (9) if we set

0.953/roe and—

"020
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FIG. 6. First scattering parameter n& es effective radius rp,
for various Fermi levels pp.

the last step requiring some algebraic manipulation.
In Fig. 6 we show how n~ depends on pp and on the
screening radius rp. We have not attempted to calculate
the second-order coeKcient 0.2. Mott has found that
resistivity data call for screening constants of the order
of 1/qo 0.3A=ro, whereas calculations made on the
basis of the Thomas-Fermi method give larger values
of rp. The values of n~ for rp 0.3A from Fig. 6
are of the order of o.&~—0.1, being negatively larger
the smaller the Fermi energy pp. Thus we see that Mott's
cross section formula leads to just the right range of o.~
values for the thermopower ~s composition curves dis-
cussed above. On the other hand, we see that formula
(26) for Q; does not permit posi, tive values of crt. Ac-
cording to Eq. (19) the thermopower of a binary alloy
with copper base cannot be thermoelectrically positive
relative to pure copper unless nt&+0.12, and we have
mentioned that Mn and possibly Ti and Cr form dilute
solutions in Cu which are positive against copper. '

S=0.0243T
-2"I 1+(~-1)p/»0j

ni+2nopo(P —1)P/150

, , (»)
1+~ipo(P—1)P/150+~2po'(P —1)'P'/(15o)'-

where again 5 is in pv/deg, po in ev, rr, in (ev), ns in

(ev) ', and p is atomic percentage of the foreign atom
(or vacancies, etc.).

F. FORMULAS FOR LOW TEMPERATURES

Mott's formula (1) is valid at lower temperatures
than 0& provided p,.))p&, so that the scattering is
predominantly by impurities, or more generally,
"lattice imperfection scattering. " The formula for 5 at
low temperatures can be obtained from Eq. (15) simply

by letting p&—+0. Thus
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The main point of interest in this formula is the linear
temperature dependence. The Fermi level po will de-
crease slightly with increasing temperature because of
thermal expansion, " and although this decrease is in
the right direction to account for some of the deviation
of many 5 vs T curves from linearity, we have not yet
investigated these effects su%ciently to arrive at any
definite conclusions.

The most extensive low-temperature thermoelectric
measurements on metals and alloys are those performed
in the Leiden Laboratory by Borelius, Keesom, Johans-
son, and Linde. ' These workers measured the thermo-
power of a large number of very dilute alloys of Cu, Ag,
and Au at temperatures down to O'K. The solutes
included Fe, Co, Ni, Ti, Cr, Mn, Pd, As, and Au, and
the reference metal was a so-called "Silbernormal-
legierung" (Ag+0.37 atom percent Au) chosen because
of its suitability for Thomson-coeflicient measurements.
Now the absolute thermoelectric powers of these alloys,
according to the measurements of Borelius et al. , do not
vary linearly with temperature even at temperatures so
low that the impurity resistivity should exceed the
thermal contribution by factors of tens or even hun-
dreds. It is very unlikely that the scattering parameters
o.~ and o,2 are temperature dependent. It is conceivable,
although unlikely, that the eGective valence of some
elements may be sufhciently sensitive to interatomic
distances to make P temperature sensitive. The experi-
ments of Borelius ei al. show that the thermopowers of
the dilute Cu —Fe, Au —Fe, and Cu —Co alloys are not
greatly sensitive to the amount of foreign atom dis-
solved, and this fact would indicate that even the varia-
tion of P with temperature is unlikely, as one can deduce
from Eq. (28); for if P were mainly responsible for the
large negative values of the bracket in (28), which would
be required to give large negative 5 in these alloys,
then changes in solute content should give rise to large
variations in S. In the case of Cu —Ni, the o.j required
to give the experimental order-of-magnitude thermo-
power at 10'K is about —4 (even with ns ——+7, the
value used for a good fit at high temperatures), and

~ The temperature variation of p0 at coestaet volume, involving
a factor P1-const (T/TD)'j, is completely negligible for our
purposes.

'0 Sorelius, Keesom, Johansson, and Linde, Leiden Comm. 206a
(1930); 2061 (1930); 2171 (1932); 217e (1932). Most if not all
of these communications also appear in the Proc. Acad. Sci.
Amsterdam (Koninkl. Ned. Akad. Wetenschap. Proc.}.

this value is several times larger than the high-tempera-
ture value (—1.2).

The recent findings of Pullan" on silver and tin at
liquid helium temperatures are more encouraging.
Pullan shows that the thermopower of tin becomes more
nearly linear with temperature as the impurity content
increases; and that while 5 T' ' for high purity, well
annealed silver with very low residual resistivity, the
thermopower of the same silver in the cold-drawn state
satisfies the relation S=+0.011T pv/deg. According
to Eq. (28), the coeKcient +0.011 calls for an nr of
approximately +0.35 (for ps"s=3.3 ev). The lattice
imperfections caused by cold drawing of silver would
thus have a positive scattering coeflicient nq ——+0.35

It is obvious that a great deal more experimental
work needs to be done on the thermoelectric properties
and on the resistivity of dilute noble metal alloys, and
it would be most helpful to have both S and p for the
same specimens.

6. CONCLUSIONS

We have shown that the theory of thermoelectric
power as developed by Mott and others" can be used to
explain many intricacies of thermoelectricity in metal
alloys. The theory can also be used in reverse to derive
information about electron scattering in metals. Fur-
thermore, if a systematic study were made of the
thermoelectric properties of quenched, cold-worked, and
otherwise imperfect lattices, it should be possible to
learn much about the nature of such imperfections.
Finally, our speci6cations of the values which the
scattering parameters must have, in order to explain
the thermoelectric properties of imperfect metallic
lattices, more precisely define one of the problems to be
solved by the quantum theory, namely, the calculation
of scattering cross sections of scattering centers in
solids. "
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work, and to the Squier Signal Laboratories for their
continued support.

@ G. T. Pullan, Proc. Roy. Soc. A217, 280 (1933).
» A formula, identical with Mott's equation (1) is also a conse-

quence of the recent theoretical work of A. W. Saenz, Phys. Rev.
91, 1142 (1933).See, e.g. , his Eqs. (4.13).

"One might ask, for example, whether or not there exists an
"internal or crystalline Ramsauer effect."


