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A harmonic oscillator wave packet which oscillates sinusoidally without change in shape has been de-
scribed by Schrodinger and others. It is shown in the present note that there are an in6nite number of such
wave packets —of which the above is a special one —having the shapes of the various eigenfunctions of the
harmonic oscillator Hamiltonian. The relation of these wave packets to the classical oscillator is discussed.

&~UK to the importance which the one-dimensional
harmonic oscillator problem has in quantum

theory, its wave functions have been given considerable
attention. Several authors' ' have shown that there is
a particular harmonic oscillator wave function in the
form of a wave packet, the center of which oscillates
sinusoidally about the origin and the shape of which
remains constant in time. The purpose of the present
note is to show that there are an infinite number of such
wave packets.

The most general expression for a complex function
of q and t, the absolute value of which remains constant
in shape, is given by
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Equation (3) can easily be transformed into
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which yields, as the solution,
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&(q,t) = f(q qp(t))e'"" "—,

where f, qp, and y are real, arbitrary functions. In-
serting (1) into Schrodinger's equation for the harmonic
oscillator,
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and equating real and imaginary parts separately, we
obtain
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y(q, t) = (m/h) qqp+S(t), (4)

where 5 is an arbitrary function of the time only. Sub-
stituting this expression into Eq. (2) and completing
the square involving q, we obtain
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Now, if P(q, t) is to be normalizable, f must vanish at
infinity. The constant is therefore equal to zero, and we
have
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have
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has no direct connection with the eigenvalue E„, since
it depends on the arbitrary constant A.

It is also interesting to obtain the expectation value
of the energy of our oscillating wave packets. We have
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where E is a constant independent of the time. Equation
(5) can now be written as
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where we have put q
—qp(/)=Q. But Eq. (8) is just

the time-reduced Schrodinger equation for the harmonic
oscillator. Its solutions are the well-known harmonic
oscillator eigenfunctions, '

Bp
=i"qp i' ff dq " —f' dq. —

Bf

The first integral vanishes, since the limit of f is zero
as q becomes infinite either positively or negatively. We
thus have
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corresponding to the eigenvalues E„=(e+-,')her, where
n'=mp&/0, H„ is the eth Hermite polynomial, and e is
any non-negative integer. The solutions of Eqs. (6) and
(7) can be written down immediately. These are
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where A and 0 are arbitrary constants.
We see, thus, that there are an infinite number of

harmonic oscillator wave packets defined by Eqs. (1),
(4), (9), (10), and (11), for each of which the absolute
value remains constant in shape while oscillating sinu-

soidally about the origin. The wave packet described
in references 1—3 is obtained by setting e in Eq. (9)
and 0 in Eq. (10) equal to zero.

It is interesting to note that if qo, which, in view of
Eq. (9), is the expectation value of q, be regarded as the
coordinate of a classical particle, then the integral in
Eq. (11) is Hamilton's principle function for that
particle. The energy of this classical particle, however,

where use has been made of Eq. (6), of the normalization
of f(Q), and the symmetry of f'(Q). It is seen, therefore,
that the expectation value of the energy is just the sum
of the quantum-mechanical energy of the wave packet
when it is stationary and the classical energy of the
particle with coordinate qp(/). Equation (12) can be
written as
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where the average of qo' is the time average. It is evi-
dent, then, that if the amplitude of oscillation is large
compared to the width of the wave packet, the energy
is predominantly of classical origin, while if the ampli-
tude of oscillation is small compared to the width of the
wave packet, the energy is predominantly of quantum-
mechanical origin.

The author is indebted to Professor Julian Schwinger
for helpful discussion of the foregoing subject matter.


