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Holladay and R. Capps devoted much of their time to
an attempt to formulate a theory based on the notion
of free waves outside a nucleon of finite radius. As
mentioned in the Introduction, this program did not
succeed. Professor Gyo Takeda has been a constant
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adviser and critic of the work, and he has brought the
details of Tomonaga’s work to the author’s attention.
Professor K. M. Watson has made many useful sug-
gestions, some of them quite essential to the completion
of the program.
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Tomonaga’s intermediate coupling theory is applied to the scattering of pseudoscalar mesons by a nu-
cleon. The scattering cross section depends on the cut-off momentum of the meson field and the coupling
strength between the nucleon and the meson field. For reasonable values of the coupling strength, we calcu-
lated numerically the wave function of the meson field around a nucleon. By making use of these results the
scattering phase shifts are calculated for various values of the cut-off momentum. Agreement with recent
experimental results is not very good, although most of the qualitative features of the experiments are re-
produced. A modification of the source function of the meson field can be expected to give a better fit with

the experimental results.

I. INTRODUCTION

ECENTLY Tomonaga, Maki, and Sato' applied

the intermediate coupling theory to the problem

of meson scattering by a free nucleon. Their calculation

is based on the charged longitudinal vector theory for

reasons of simplicity. In order to examine the results

obtained in a somewhat more realistic theory, we shall

apply the same method to the symmetrical pseudoscalar
meson theory with pseudovector coupling.

According to the idea of Tomonaga, mesons are
classified into bound mesons and unbound mesons.
The former are supposed to be in a definite bound state
around a core nucleon and the latter in states orthog-
onal to the bound state. As the function of the bound
state we assume that characteristic of the classical field
around a nucleon, which is also the same as the wave
function of the meson field produced by a nucleon either
in the limit of weak coupling or in the limit of strong
coupling. This function depends on the cut-off mo-
mentum of the meson field or, in other words, on the
form of the source function of a nucleon which is treated
nonrelativistically.

A real nucleon is a complex system of the core nu-
cleon and the bound mesons around it; its wave func-
tion depends on the value of the coupling strength be-
tween the core nucleon and the bound field. In case the
coupling strength is weak, the probability of those
states which have more than one bound meson can be
neglected. On the other hand, a large coupling strength

* Supported by the U. S. Atomic Energy Commission

1 On leave from Kobe University, Kobe, Japan.

1 Tomonaga, Maki, and Sato, Progr. Theoret. Phys. (Japan)
9, 607 (1953).

would imply that many mesons occupy the bound state
around the core nucleon. When the coupling strength
is neither weak nor strong, a knowledge of the bound
field is obtained by solving the wave equation for the
system composed of the core nucleon and the bound
field. (Hereafter we shall call the system by the bound
system.) In the present case, it is assumed that the
probability amplitude of those states containing more
than four bound mesons can be neglected. This assump-
tion is justified in Sec. ITI by a numerical treatment of
the wave function obtained for various values of the
coupling strength.

The above equation for. the bound system has solu-
tions corresponding to excited states of the bound field
in addition to the ground state solution. These excited
states are unstable for a transition to a state of lower
energy by an emission of mesons if we take into account
the interaction between the unbound field and the bound
system composed of the bound mesons and the core
nucleon. Therefore it will not correspond to a real
particle.

When we treat the pion-scattering by a nucleon, the
unbound mesons have to be taken into account. The
scattering process is expressed as a transition from the
ground state of the bound system with an incoming
unbound meson to a similar state through emissions
and absorptions of unbound mesons by the bound
system. In this case an excited state of the bound system
is occupied during the collision time and when the
incident energy of the incoming meson is near to an
excitation energy of one of these excited states, we can
expect a resonance scattering although its width is
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much larger than the width characteristic of a nuclear
reaction. '

Another kind of scattering is to be expected due to
the fact that the wave function of the unbound meson
is distorted by the orthogonality condition of the un-
bound state on the bound state. We shall call this
potential scattering? according to Tomonaga’s paper.

The resulting phase shift due to the total effect of
these two different kinds of scattering is given in Sec.
IV. They are calculated numerically for various values
of the coupling strength and the cut-off momentum.
In the weak-coupling limit these two scattering ampli-
tudes cancel completely with each other, as they should,
and as the coupling strength increases the excited
states of the bound system start to have a true physical
meaning so the phase shift could show a real resonance
(90° phase shift) at a certain incident energy.

Especially for an excited state of the bound system
having total angular momenta 3/2 in both ordinary
and isotopic space is the binding energy fairly large,
and for one of the values of the coupling constant
chosen here we find a real resonance for the scattering
via this excited state.

II. GENERAL FORMULATION

We consider the system composed of a single nucleon
plus the symmetric pseudoscalar meson field inter-
acting through the pseudovector coupling. The system
is treated nonrelativistically and the nucleon’s recoil
is neglected. Then the total Hamiltonian of the system is

H= f{T 4wt v uty
+i[7+ Vo Vot uied1}dV

—(g/w) f (re(0-VW+ (o V)*
+7o(o- W)} U)AV. (1)

Here ¢o(x), mo(x) are the (real) field variables of the
neutral field and ¢ (x), w(x) those of the charged field.
¢ is the Dirac matrix and 7, 7, 7o those matrices in
charge space defined by

1= (1,217,)/V2, To=7.; 2)

g is the coupling constant measuring the meson-nucleon
interaction and u is the rest mass of a meson. We use
the natural units Z=c=1. The extended source func-
tion U(x) is assumed to be spherically symmetric and
to satisfy the normalization condition

f U@)av=1. 3)
Since only the p-wave part of the meson field can
interact with a nucleon, the bound field around a

2 This kind of scattering is particularly emphasized by R. G.
Sachs, Phys. Rev. 95, 1065 (1954).
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nucleon is composed of p waves. Also in the problem of
a meson scattering by a nucleon only the p-wave
component of the incident meson will be scattered.
So we shall consider only the p-wave part of the meson
field.

Expanding the field quantities into spherical waves
and leaving only the p-wave part of them, we have

1

Y~ 2

mez1,0d (2k)t

(ot () (— Dma (k)
X Lk, l,m(x)dk,
r@)~ 5 f §(ko/ DM (= 1) (B) — 1= (B)}
m==+1,0
X ek, 1, —M(x)dk)

(C))

and similar equations for ¢*, 7, ¥, and .

a,"(k) and a,”*(k) (po==1, 0; m==41, 0) are the
creation and annihilation operators for a meson of
angular momentum 1 (P wave), z component of angular
momentum m, wave number &, and charge ep. These
satisfy the ordinary commutation relations with each
other. ¢, 1,» and &y are defined by

@1 1,m (%)= (k/r)1T3(kr) YV 1,m(8,0), (5)
ko= (K2+p2)*. (6)

V1, is the normalized spherical harmonic of the p-wave
function.?

According to Tomonaga’s idea, we divide the p-wave
part of the field quantities into a bound field and an
unbound field in the following way:

and

0 (B) = an? Yo (B) 3 an? (B,
u=1
o @)
am®* (k) = an" "o (B)+22 am® P (k),
u=1

where ¥o(k) and ¢, (k) (=1, 2, - - -) compose an ortho-
normal set of functions in % space. ¢,*** and a.** are
the creation and annihilation operator of the meson in
the p orbit “#” with the z component of the angular
momentum . and charge ep.

Yo(k) is called the bound state function (0-orbit)
and it is assumed that a real nucleon is a complex
system of the core nucleon and bound mesons in “0
orbits” with different m and p. Here ¢, (k) is taken to
have the form

Yo(k)= (1/3N)"2(BU (k)/2mkd*?), )

where U (k) is the Fourier transform of the source
function U (x) and NV is the normalization constant of ¥o.

This yo(k) is just the orbit associated both with the
classical field and with either the weak or strong cou-
pling limit of the quantized theory in the absence of
recoil. When the coupling strength is neither weak nor

3E. Condon and G. Shortley, The Theory of Atomic Specira
(Cambridge University Press, Cambridge, 1935), p. 76.
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strong, the real field around a nucleon has a different
shape. But because of its simplicity which leads to
some interesting features mentioned later and because
of the possibility that we can take into account the
deviation of ¢, from Eq. (8) by considering the unbound
states ¥, (=1, 2, ---) we use ¢, defined by Eq. (8).

By using the expansions (4) and (7), the p-wave
part of the total Hamiltonian becomes

where

H0= wO{Z amp,O*amp,O
pym

_f Z ’TpO'm((lm”‘o‘!_ ('— l)ma—mp'o*)} ’ (10)

IJM: Z Z Wy, u'amp’u*amp'u,; (11)
pym w,u! )
V=2 2 {wou(an” " — fT,0m)an?*
pm u
Fwo, o (am? 0= f(= )" po_m)an"*}.  (12)

wo (=wo,0), @0, 4, and wy, o are defined by
Wy, u'szﬂ\bu*(k)\bu’ (k)dk (“ or u’=0, 1) 27 o ')7 (13)

and f is a dimensionless coupling constant defined by

J=(N"/w). (14)

H, is the Hamiltonian of the bound system and the
lowest eigenstate of H, corresponds to an actual nu-
cleon. H, is the Hamiltonian of the unbound field and
V is the interaction between the bound system and the
unbound field.

Although a different choice of a set of unbound func-
tions does not change the scattering amplitude or any
physical quantity as far as they are orthogonal to
Yo(k) and to each other, we shall choose . (k) in such
a way that wy, . (@ or w'=1,2, --.) are diagonal in »
and /.

(15)

Then a state in which we find unbound mesons in
#y, s, ---, U, orbits is an eigenstate of H, and the
energy of the state is simply a sum of wus, wus, - -
As is already shown by Tomonaga et al.,* from the
orthogonality of ¥, and the Eq. (15) ¢, must satisfy
the following equation:

wuu'=wu6u,u’ (% or %,=17 2: o .)'

W,

(o= () =0 (B) f koo Wu(B)dk.  (16)

III. THE BOUND FIELD OF MESONS AROUND
A NUCLEON

As mentioned in Sec. 11, the lowest eigenstate of H,
corresponds to the state of an actual nucleon. Other
eigenstates of H, corresponding to excited states of

4 See reference 2, Eq. (41).
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the bound system are produced artificially by re-
stricting our attention to H, rather than to H and if we
include the interaction ¥ with the unbound field, these
states are unstable for an emission of unbound mesons.’
But in the problem of pion scattering by a nucleon,
these states will be present during the collision time
due to the forced oscillation of the bound field by an
incoming meson and make an important role for the
scattering problem. So here we consider the eigenvalue
of H, and solve it numerically for the lowest eigenstate
as well as for some excited states.

H, allows constants of motion to be specified: the
total angular momentum J of the system, its z com-
ponent J, and similar quantities 7" and T in charge
space. Here we shall express a nth excited state of
H, for given J, J,, T and T in the following way :

‘I/(Ti’w]z: T,],'}’L) = Z C(T,J,%; S7L7NyA'L')

S,L,N \;

'\I/(T37Jz; Tr]: S)L)ZVJA%'): (17)
where ¥(75,J.; T,J; S,L,N,A,) is a state of the bound
system with the total number of bound mesons N, the
angular momentum L, and isotopic spin S, of these NV
mesons, Actually N, L, and .S do not specify the state
of the bound mesons completely for given values of
J, J.,, T, and T3, so we must introduce some other
quantities Ay, Ap, - -+ which commute with those and
with each other in order to remove the degeneracy.
We can expect the appearance of the A-type degeneracy
only for states with V=3 and these quantities are
related to the symmetric permutation group.$

As H, does not commute with &V, L, .S, and A; the
wave equation for the bound system,

H(}‘I’(Ts,]z; T,],%)= €1, J, n‘I/(T(i;JZ; T,J,%), (18)

becomes an equation for the coefficients C(7',J,n;
S,L,N,A;):

(GT, J, n—]\TwQ)C(T,],%; S,L,N,Ai)
= ﬁfwo Z {C<T7]7n) SI;LIJV_I'" 1)Ail)

S’ L’ Az’

XK (S, L' N+1,A¢; S,L,N,A;)
+C(TJm; S, L', N—1,A/)

XK(S,:LI:N_ I:Ai,; S,LyN)Ai)}: (19)
where K (S',L',N',A/;S,L,N,A;) is the matrix element
of 2 T p0m (@ 0+ (—1)"a_,»**) from a state ¥ (73,7 ;;
T,7;8,L',N'A/) to a state ¢ (Ts,J,; T,J;S,L,V,A;).

5 We shall neglect the possibility of the presence of some stable
excited states, for which there appears to be no direct experi-
mental evidence.

6 Here we used

A= (Ep, m(lmp'o*a—-m_p'o*)(zﬂ’, m’dm-’p,'oa——m'_p”o)-

For states with N=5 or N=4, S=L=2, A does not completely
remove the degeneracy and other A; would be required. For N=4,
S=L=2 we used an operator A’'=32, ,(a*Xa*)m(e¢Xa)n’ in-
stead of A.
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Tasire 1. Calculated values of er, s, n, A€z, 4, n and C(T,J,n; S,L,NA) for T=J=1/2.

C(1/2,1/2,n; S,L,N,A) f=02 f=04 f=06

N,S,L,A 7n=0 n=1 n=0 n=1 n=0 n=1
0.0.0.0 —0.8750 —0.4528 —0.7101 —0.5350 —0.5856 —0.5363
1.1.1.0 0.4636 —0.6854 0.6142 —0.1901 0.6350 0.0878
2.0.0.18 —0.0630 0.2711 —0.1567 0.4161 —0.2277 0.4121
2.1.1.0 —0.1205 0.4558 —0.2749 0.4558 —0.3695 0.2959
3.0.0.0 0.0134 —0.0861 0.0559 —0.1904 0.1023 —0.2001
3.1.1.22 0.0224 —0.1540 0.0968 —0.4124 0.1815 —0.5127
3.1.1.0 0.0160 —0.1007 0.0645 —0.2012 0.1135 —0.1947
4.0.0.44 —0.0021 0.0199 —0.0154 0.0923 —0.0366 0.1432
4.0.0.0 —0.0015 0.0130 —0.0102 0.0450 —0.0229 0.0544
4.1.1.26 —0.0042 0.0399 —0.0309 0.1753 —0.0728 0.2619
4.1.1.0 —0.0032 0.0249 —0.0198 0.0931 0.0456 0.1201

€1/2, 1/2, n/ @0 —0.3179 0.9081 —1.0379 0.4263 —1.9518 —0.2948

Aé[/z’ 1/2, n/wo 0 12260 0 1‘4642 0 16570

For T=J=1/2; T=J=3/2; T=1/2, J=3/2 and
T=3/2, J=1/2, values of K are calculated” by using
group theory, and as an illustration we listed values of
K for T=J=1/2in Fig. 1.

The lowest eigenstate (2=0) of Eq. (17) for T=J
=1/2 corresponds to a state of a proton or a neutron
and the eigenvalue eys,1/2,0 of it will give the self-
energy of a nucleon, which together with the mass of
the core nucleon ought to give the observed mass of a
nucleon. States with a different value of 7,J or =
represent excited states of the bound system and the
energy difference Aer, s, , between the energy er, s, » of
these states and ey/2, 175, 0 gives their excitation energy.

Equation (19) is solved numerically® for the ground
state (n=0, T=J=1/2) and for the first excited state
(n=1) with T=J=1/2; T=J=3/2; T=1/2, J=3/2
or T=3/2, J=1/2 under the normalization condition

> |C(TJm; S, LN A [2=1. (20)

) S,L,N,A;

Here it is assumed that the coefficients C with N=3§
are small and can be neglected, which was justified by
the numerical results obtained for various values of f
chosen here.

Calculated coefficients C(T',J,n; S,L,N,A;) and eigen-
values er s, » are given in Tables I, II, and IIT for
different values of f=0.2, f=0.4 and f=0.6. For a
value of f chosen here and for a reasonable source
function, the excitation energies are larger than the
rest mass of a meson.

IV. SCATTERING OF A PION BY A NUCLEON

Scattering of a meson by a free nucleon can be
treated by solving

(Hy+H,+ V)& =Ew. 1)

In the absence of the interaction term V, a solution
of Eq. (21) is a state where the bound system is in the

" K has the following selection rules: AN==+1; AL=+4-1,0;
AS==+1,0. (For a state L=0 or S=0, AL=0 or AS=0 is pro-
hibited, respectively.) Also the values of K do not depend on T’
and J ..

8Nlimerical works were done by Dr. J. L. Gammel at Los
Alamos Scientific Laboratory.

ground state or in one of the excited states and the
unbound field is composed of several “#” mesons in
orbits #;, #s, - %, In particular, a system composed
of an incident pion in the asymptotic region and a free
nucleon at rest is supposed to be the ground state of
the “bound system” plus a single “%’> meson.

The “#” functions already include the scattering
caused by the orthogonality condition to ¥, as is seen
in Eq. (16). Besides this, there is another kind of
scattering due to the interaction V through an ab-
sorption or an emission of ‘“#” mesons with a simul-
taneous transition of the bound system from one state
to another.

We call these two different types of scattering ‘“po-
tential” scattering and “resonance” scattering, re-
spectively, according to the previous paper.!

If we construct an effective potential for the scatter-
ing of an unbound meson by the bound system accord-
ing to the method of Watson and Brueckner,® the wave
equation for the pion scattering becomes

(Hy+H,+U)W=Ew, (22)

where U is the part of the following operator which is

S=L=0 @\ /E\m
3 2
B
| \QZ”"‘@é:z

Fic. 1. Values of K(S’,L',N’',A"; S,L,N,A) for T=J=1/2. Each
square in this figure represents a state with definite S, L, N, A and
the value of A is written inside the square. A number attached to
each line denotes the value of K(S’,L’,N'A’;S,L,N,A) for the
corresponding transition and only nonvanishing K(S’,L',N'A";
S,L,N,A) are written in this figure.

S:L=

9K. A. Brueckner and K. M. Watson, Phys. Rev. 90, 699
(1953).
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TaBLE II. Calculated values of ez, s, », Aer, ,» and C(T'\Jn;
S,L,NA) for T=1/2, J=3/2 (or T=3/2, J=1/2) and n=1.

C(1/2,3/2; S,LN,A) =02 f=0.4 f=0.6
N, S, L A n=1 n=1 n=1
1110 —0.8843 —0.6970 —0.5702
2110 —0.2482 —0.3656 —0.3966
2 0 20 0.3683 0.4985 0.5170
311 22 —0.0489 —0.1246 —0.1732
3110 0.0461 0.1071 0.1410
3120 0.1237 0.3002 0.4000
4 1 1 26 —0.0116 —0.0477 —0.0794
4 110 0.0135 0.0541 0.0886
4 0 2 26 0.0147 0.0601 0.1005
4 0 20 0.0104 0.0426 0.0701
41 20 —0.0167 —0.0653 —0.1064
€1/2, 3/2, n/ @0 0.7356 0.06374 —0.8065
Aerss, 373, n/@o 1.0535 1.1016 1.1453

(C(3/2,1/2n;S,L,N,A) is obtained from C(1/2,3/2n; S,L,N,A)
by interchanging values of .S with those of L.)

€C,0)

diagonal in the occupation numbers of “#” mesons:

V—
E—H)—

V. (23)

In Eq. (22) we neglected those parts of wave function

¥ which have more than two “«#’’ mesons.

If we introduce the following quantities :*°
Amp*z

Ampz amp'[)*fTvpa—-m;

£
@ — 10 ym,

(24)

H, and V can be written as follows:

I{(]:wo Z Amp*Amp_ 9w0f2’ (25)
p,m

V= Z Z (OJ(), uAmp*amp' u+w0, u*Ampamp'u*)-

u=1,2,-++ p,m

(26)

From the commutation relations between H, and
An* or A,?, the transition matrix of 4,,** or 4,,” from
an eigenstate v of H, to another »’ is expressed by

' 70m|9),

— €y
' | An#*|v)= f——
(ey:—e..)
@7

VIAn|v)=—f—————0 | (= 1)"1_ 00| V),

' At ]9) = fw0+<ev,—e,)( | (=17 s-n)
respectively.

Because of the factor e,—e¢, on the right-hand side
of Eq. (27), these operators and consequently V cause
only those transitions connecting two eigenstates of
H, with different energy.! Numerical values of these
are calculated by using the wave functions obtained in
Sec. III.

Equation (22) is transformed to an equation for an
amplitude C(v; u,p,m) of W, where the bound system
is in a state » and an unbound meson is in an % orbit
having charge ep and projection of angular momentum

10 See Eq. (27) in reference 2.
11 This is due to our special choice of o Eq. (8).
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m:
(E—e,—wu)C(v; u,p,m)
=3 X (i upm|U|V ;4 0 m')
v oul ol m'
XCO' 5 u'p'm'), (28)
where
(s up,m| UV 500" ym)
=wo u*w(), u’(V; p,ml W[ "/; p’,m’), (29)
and (] A7) (57| Ae*[/)
v| Ap?| V) (| Ay * |V
(v; om| WV ') =3
vt E_ev”
(VIAm"’I*l V/I) (V'/IA,,,”!V')
(30)

E—eyr—wy—wyr

The first term in the bracket is due to a process of
absorption of a “x” meson followed by emission of a
u meson and the second one due to a process in which
emission precedes absorption. Hereafter we shall re-
place w, and w,- in the denominator of the second term
by some average value which, for simplicity, is taken
to be equal to the incident energy po of the pion.”? The
total energy is equal to a sum of po and eys 190 (or
simple ).

If we neglect the inelastic part of the effective poten-
tial i.e., the part connecting eigenstates » and »" of H,
with different energy, Eq. (28) becomes an equation
for the elastic scattering amplitude C(»=0;u,p,m).
We shall transform the representation of the unbound
field from the # representation to the ordinary mo-
mentum representation'® and furthermore introduce the
constant of motion: the total angular momentum J and
total isotopic spin 7" of the whole system as well as
their projection J, and T.

TasiLe III. Calculated values of er, s, », Aer, s, » and
C(T,Jm; S,L,N,A) for T=J=3/3 and n=1.

C(3/2,3/2n; S,LNA)  f=02 f=0.4 £=0.6

N, S, L, AA) n= n=1 n=1

111 0 —0.8530 —0.7058 —0.6117
21 1—0 0.1198 0.1915 0.2326
222 0 0.4853 0.5976 0.6099
3 11 22 —0.0715 —0.1582 —0.2157
311 0 —0.0207 —0.0501 -0.0729
312 0 —0.0436 —0.0773 —0.0867
321 0 —0.0436 —0.0773 —0.0867
322 0 —0.1098 —0.2372 —0.3170
4 1 1 26 0.0084 0.0312 0.0533
411 0 0.0129 0.0420 0.0654
412 O 0.0059 0.0180 0.0262
4 21 0 0.0059 0.0180 0.0262
4 2 2 (0) 0.0106 0.0370 0.0604
4 2 2 (4 0.0231 0.0774 0.1231
4 2 2 (6) 0.0099 0.0399 0.0717
€3/2, 3/2, l/wo 05779 —0.2740 - 1.2750
Aegsa, 315, 1/0 0.8958 0.7639 0.6768

2 Tf our nonrelativistic treatment has any sense, the main con-
tribution will come from low-energy # mesons in real or virtual
states comparable with the incident energy, and so this substitu-
tion is consistent with our treatment.

13 See reference 2, p. 618,
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Then the elastic scattering amplitude C (7,7 .; T,J,k)
for the state with definite value of J, T, J,, T3 and
having a meson with a momentum % is given by the
following equation:

(po—ko)C(T'3,J 3 T,Jk)=[—1+ (ko—wo)Wr, s Wo(k)

xf kdVo*(R)C(T5,J .5 T,J k)dk', (31)
0

C(Ts,J.; T, J k)=08(p—k)—[ (ko— po) ' +imd(ko— po) ]

X
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where Wy, j** is defined as a diagonal element of W
[Eq. (30)] for a state having the prescribed values of
T,J and »(=+'=0).

The solution of Eq. (31) under the boundary condi-
tion that only the incident incoming wave and the
scattered outgoing wave are present in the asymptotic
region is

Eor, 1 (ko)¥o(R)¥o*(p)

, (32)

Fr, +(po) f L (ke — po)y+imd (ke — po) ][ oK) |/ — Wz,

and the phase shift of p-wave scattering for a pure 7°
and J state is given by

7I'Po

tandy, j=———

?

FT 0, 0 2
o L7 (o) [¥o(p) | 63)

Fr,s(po) f (/= o) [ (B) |°d — Wz,

where

Fr, 7 (ko) =1~ (ko—wo)Wr, . (34)

If we write explicitly the energy dependence of Wr, ;,
we have, from Eq. (30),

W(v; T,7) B; T,J)
Wri=2, i
v PO—AG,,

" . (35)
—Po— A&

A(v; T,J) is the square of a matrix element of 4* from
the ground state of the bound system to the excited
state », while B(v; T,J) is that of 4 for the same
transition.

In the weak coupling limit g—0 (i.e., f—0), the
ground state and the nth excited states of the bound
system are given by states in which we find no bound
meson and 7z bound mesons, respectively.!® Also A4*
and A become identical with ¢** and a°, respectively,
and can cause only those transitions in which one meson
is emitted or absorbed. Therefore, the effect of A* on
the ground state of the bound system is to produce
only the first excited state, and when A operates on the
ground state the result vanishes. From the above con-
sideration we find, in the limit g—0,

N(p=1;T,J)—1, AG+1;T,J)—0,
B(; T,J)—0 (g—0), (36)

and so Fr ; and 6r,; vanish. This vanishing phase

14 W p, s does not depend on T'; and J ; because of the spherically
symmetric property of W in both charge and ordinary space. So
Eq. (31) has the same form for different values of T’z and J ..

15 Of course, there are degeneracies for larger =, even if we
specify the angular momentum, isotopic spin,and their projections.

shift comes from the cancellation of two different
scattering amplitudes, one due to the ‘“potential”
scattering and the other due to the ‘“resonance” scat-
tering, as it should be.

For a low-energy scattering only that part of W due
to A(w=T,J,n=1;T,J) gives the energy-dependent
part of W and the other parts are almost independent
of the incident energy po. So we replace Ae, in the
latter parts by some average value (Aer, ;),!'® and apply
the closure rules to W. The necessary values of ¥ and
B are calculated by using the wave functions obtained
in Sec. IIT and listed in Table IV.

The phase shifts 839,32, 012327 and 6y 12 are
calculated for f=0.4 and f=0.6 by assuming various
values of cut-off momenta K,.. (K,=3u, 4u, or Su; the
corresponding value of wo is 2.45u, 3.07y, or 3.71p, re-
spectively.) For low incident energy of a meson the
phase shift for the 7=7=23/2 state turned out to be
positive, indicating the presence of an attractive force;
while phase shifts for other states became negative,
indicating the presence of a repulsive force. By using
the calculated phase shifts, the total cross section of

TasLe IV. Values of A(»; T,J) and B(v; T,J).

ZA(v=1;T,J)
f T, J Np=1;T,J) —A(p=1;TJ) ,8@=1;TJ)
1/2,1/2 1.1955 0.4858 0.0225
0.2 1/2,3/2
= (3/2,1/2) 0.9982 0.0034 0.0334
3/2.3/2 0.9132 0.0173 0.0407
1/2,1/2 1.0339 1.509 0.0900
" 1/2,3/2 ‘
: (3/2,1/2) 0.9239 0.0572 0.1481
3/2,3/2 0.7634 0.2406 0.2000
1/2,1/2 0.6170 2.8021 0.2025
0.6 1/2,3/2
: (3/2,1/2) 0.4864 0.1958 0.3500
3/2,3/2 0.7671 0.8184 0.4952

16 We assume (Aéa,'z‘ 3/2)=2w0, (Aq/g, 12)=23w,, and (AE]/Q’ 3/2)
= (Aes/2, 172) = 3wo.

17 8172, 312=283/2, 172 is a direct result from the symmetric property
of the interaction term in Eq. (1) for an interchange of the ordi-
nary space with the isotopic space.
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F1G. 2. Theoretical and experimental total cross section vs the
incident energy of a pion for 7+ scattering. O : Ashkin, Blaser,
Feiner, Gorman, and Stern, reports at The Fourth Annual
Rochester High-Energy Conference in January, 1954 (University
of Rochester, Rochester, to be published); ®: Anderson, Fermi,
Martin, and Nagle, Phys. Rev. 91, 155 (1953); A: Bodansky,
Sachs, and Steinberger, Phys. Rev. 91, 467 (1953); [J: J. P.
Perry and C. E. Angell, Phys. Rev. 91, 1289 (1953).

xt—p scattering and = —p scattering (including the
charge exchange scattering) are calculated, and the
results are shown in Figs. 2 and 3 for f=0.4. The agree-
ment with the experimental results is rather poor
although most of the qualitative feature of the cross
sections are obtained. The results for f=0.6 give worse
agreement than those for f=0.4. As we neglected the
S-wave scattering, our results cannot be applied to
the scattering near zero energy.

The excited energies Aer, s, , are proportional to wp
for a given value of the coupling constant f, and so,
for alarger cut-off momentum K, Aer, s, » become larger.
The shift of the maximum in the phase shifts to higher
energy with increasing cut-off momentum is explained
by this increase of Aer, s, ». A real resonance is obtained
when the denominator of the right-hand side of Eq.
(33) becomes zero for a certain incident energy po,
which is different from Aer, 7, ». For example we find the
scattering resonance for 7'=J=3/2 at a little higher
energy po than Aegs, 3/, n.

For small incident energies (X200 Mev) the pre-
dominant phase-shift is 832,39 ». A linearly increasing
character of dy/s 172, 1/2 3/2, and 832 172 With increasing
incident energy between 100 and 200 Mev was found,

GYO TAKEDA

which is due to a factor ¥®(p) in Eq. (74); hence it is a
characteristic of the bound wave function chosen here.
For a more slowly increasing function ¥o?(p), these
phase shifts can remain smaller than calculated for the
energy interval involved here; also a steeper decrease
of the total scattering cross section from the maximum
predicted by experiment will be obtained. The broader
maximum found for the scattering cross section com-
pared to the experimental results indicates that the
attractive force is not strong enough. This may be due
partly to the fact that in our approximation the
attractive force is not fully taken into account, because
the actual wave function of the bound system contains
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F1c. 3. Theoretical and experimental total cross section vs the
incident energy of a pion for =~ scattering including charge
exchange scattering. O: Ashkin, Blaser, Feiner, Gorman, and
Stern, reports at the Fourth Annual Rochester High-Energy
Conference in January, 1954 (University of Rochester, Rochester,
to be published); @: Anderson, Fermi, Martin, and Nagle, Phys.
Rev. 91, 155 (1953); A: Bodansky, Sachs, and Steinberger, Phys.
Rev. 91, 467 (1953); M: J. Ring and D. N. Nelson, Phys. Rev.
91, 1289 (1953).

mesons in unbound orbits and the excited energy will
be smaller than our calculated values.
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