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Conservation Theorems in Modified Electrodynamics*
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A system of interacting particles with variable rest masses is considered, whose motion is governed by a
variational principle of general form, in which there are self-action terms instead of the usual specifically
inertial terms. For suitable restrictions of the action principle it is shown that, when the particles are at
distances large compared to the classical electron radius, the new theory reduces to classical electrodynamics
and the variable rest masses become constants of the motion. The conservation laws of energy momentum
and of angular momentum are derived from the Lorentz invariance of the general action principle.

1. INTRODUCTION

' 'N a recent paper' one of us proposed an action at a
~ ~ distance theory of interacting particles with variable
rest masses. Here we wish to consider theories of this
type based on action integrals of the general form,

A. du.dub,
~u * uI+

Because of the double summation in Eq. (1) and the
double integration in the self-action terms (6), we can
assume, without loss of generality, that the interaction
function A,& is symmetric in the two particles:

A (g.bo,*.o,xbo) =A( („o—,xb~,x:),
A,g= Ag, . (8)

We also assume that A is Lorentz invariant, so that the
theory will be relativistic.

Aob =A ($ab",xo",xb") (2) 2. VARIATION AND EQUATIONS OF MOTION

$ bo= X o—Xbl4

x,"=dx o/du„

(3)

(4)

and I, is a physically significant parameter along the
world line of particle a. In terms of this parameter the
variable rest mass m is defined by'

my —gg Xg)lg ~
2 — p

The notation is as follows: Latin subscripts label the
diferent particles of the system, Greek suffixes label
space-time components and are subject to the sum-
mation convention, x & are the space-time coordinates
of particle a,

Consider a variation of the world lines of the particles
and of their parametrizations:

x.o(u,)~x.o(u.)+Ix.~(u.)

Equation (5) shows that such a variation implies not
only a variation of the classical variables of motion,
but also a variation of the rest masses of the particles.

The variation of the action integral is given by

ref++ BA g

h j~e*=Q -dub6x, o

~up+ Bx ~

+p I A,b„5x,&du, dub& (10)
Sb ~+4 aJ o,b4

BAy d BAy
A g„=

8$ bo du, Bxg'

The equations of motion are determined by the action
principle

In Eq. (1), u,* refers to a set of points obtained by
choosing a point on each of the world lines of the

where
system, and I,**refers to any other such set, the only
restriction being that I **~&I *.

In Eq. (1), the double summation includes self-
action terms for which a=b. Here, and throughout,
such a term is to be interpreted as

SJ=0. (12)
A($ o,x o,x;o)du, du, ,

4 ~
(6) Here J is the total action, obtained from J~*by putting

all
where I and I,' are the parameters of two independent
points x," and x, & on the same world line a, and

$., "=xJ' x. o, *', «=dx—."/du. '.
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'The metric of space time is ds'=v dx"dx"= —(dx')' —(dx')'—(dx')'+ (dx4)'.

u *=—oc u **=+ co (13)

Equation (12) is to hold for arbitrary variations bx,&

which vanish identically outside arbitrary but finite
intervals (u„u,) on their respective world lines. From
Eq. (10) we find that the equations of motion of particle
a are

(c)A~b d c)Aob 1
dub= Q I

— —
. I

dub= 0 (14)
48),b" du, r)xJ')
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6x~"= P, (16)

where br is a set of four constants. By Eqs. (10) and
(15), this gives the identities

fur** BA b !vov'v fvv @!I!

dub +p

3. CONSERVATION OF LINEAR MOMENTUM
AND ENERGY

From the Lorentz invariance of the action integral
it follows that

(15)

is satis6ed identically for variations 6x & which are
induced by infinitesimal Lorentz transformations. This
gives rise to ten identities. In this section and the next
it will be shown that, by virtue of the equations of
motion, these identities can be put into the form of
conservation theorems. Because of the difference
between the action J~* in Eq. (15) and the total action
J in Eq. (12), this last fact is not obvious rb priori, as it
is in classical mechanics or in a field theory.

To obtain the conservation laws of linear momentum
and energy, we consider the variations induced by an
infinitesimal space-time translation,

Eq. (19) becomes

BA!vb ( J' r'us f uv r

X du, dub =0. (21)

Since the u,**and the 0,* are two independent sets of
points, we obtain the laws of conservatiorb of linear
momentum and energy:

t' BA!vb t' f' Pub
r'!!v f

BA b

X du. dub= constant, (22)
br!

i.e., the left side is independent of the choice of the
points N~, 02, N,~, , on each of the world lines of the
system.

4. CONSERVATION OF ANGULAR MOMENTUM

ab 4~g+ Cj)g & u + eb &~a+ ~my+ We consider the variations bx,& induced by an
infinitesimal space-time rotation

X abp Na Nb=

If the equations of motion (14) are used, this becomes
8x,"=P„x~", (23)

ua** cjA!vb u vv f'uv~v'
t P!!bv

!vb J ubv 87 P
vv + !vb ~ vv v. (~ !vr ~++)

&pv
=

&vp, . (24)

where Ep ~/ p6~„ is a set of six skew-symmetric con-
stants:

Xh..b„du.dub ——0. (18) First we establish a simple identity which will be

On substituting from (1.1) and integrating by parts this required later. From the Lorentz invariance of the

simpli6es to interaction function A we obtain

t BAgb uvv@

dub
Bi.f" u.+

r .*+( r b* ~" 'tBA, b

+ i
du. dub =0. (19)

!vb J~,* (J ~vvb*v j rip b"

By (8) and (3), the integrand BA,b/Bg. br is skew-sym-
metric in a and b. It follows that the integral operator
in the second term of Eq. (19) can be skew-symmetrized,
since there is a double summation over a and b. By
doing this and using the operator identity

A($!vb"+ e"v$!vbv, Xv,"+e"~!v",i b"+e"vZb") =A ($,b"
v

Z!v"
v

Xbv'),

correct to the first order in e&„. Expanding in powers of
e„„and retaining first powers only, we 6nd

fBA,b BA,b BA,b
c„.) $,b"+ z,"+ ib"

~

—=0.
E Cl $!!br! rig!vr! Bgbr! )

This must hold for arbitrary skew symmetric e„, and
therefore the bracketed expression must be symmetric
in p and v. Writing this down and rearranging terms,
we find that

r.*( r r") ( 1
." r"

y+ I

—
I +

J„,.*) iJ „
BA,b S'—a
B) b„

BA,b BA,.b
S "+

BXgp

OA, b

BXcty

BA b BA b

xP+
rl$b!vv rl&br!

BA, b

(25)
Cj&bv

r' t'uvvv r'Mv*' r'

(20) i.e., the left side is skew symmetric in the particle
variables a and b.
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ab** f BAab Bh.ab p a.ax"— xa ldu
-b ." * &ax.„ax., ) 1/X, =1/m, (~1/mb ——2.8&(10 "cm,

x.=
I
(x:*,„):

(32)

(33)+Q (A,b&x."—A.b"x,a)du„dub=—0. (26)
c5 «Ju We require that, the structure function f have the

following properties:If the equations of motion {14) and integration by
parts are used, this becomes 1. It is I orentz-invariant and symmetric in the two

particles Lsee Eq. {8)]:t'" t'BA, b

» „&ai.„
BA,b

x," ldub
ai., i

u ++

f(4b'» "»")=f(4b'*b" *.").

Substituting (23) in Eqs. (10) and (15), we obtain We shall use the empirical fact that there exists no
charged particle in nature with a rest mass smaller than
that of the electron, so that

t'aaaa ( t'aaa t' P (Blab
+ I I x."—

ab Ila a (J 4 abaJaL, ap
x~"

Bg.b.

2. With respect to its first variable P, f must ap-
proximate a 5 function. It must be normalized such that

t'BA b Bh.,b

x."— .a Id,
b ~ „Iax.„ax.„j

( & ca~ r t'") t'BA b Bh. b

ab EJa. a J Ja ) hag, ba Blab„

BAab B+ab
+ i." x—.a I

d—u,dub ——constant, (28)
ax.„' ax.,

' i
i.e., the left side is independent of the choice of the
points NI, N~, N3, , on each of the world lines of the
system.

S. CLASSICAL ELECTROMAGNETIC THEORY

Under suitable conditions on the interaction function

A, and for charged particles with moderate accelerations
which interact at distances large compared to 10 "cm,
our theory reduces to classical electrodynamics and, in

particular, the rest mass of each particle is a constant
of the motion. Ke shall discuss this for the restricted
class of interaction functions of the form

stab eaebxa xbaf(Jab )xa )xb )y {29)

BA~p BA~g

+ i." —-x.—a
I
du.dub 0 ——(2.7)

Bxaa Bxaa )
Since, by Eq. (25), the last integrand is skew symmetric
in a and b, we can now proceed exactly as we did from
Eq. (19) to Eq. (22). We obtain the law of conservation

of angular momentum:

f(p x ",ib")d@=1

for all x,&, ib" We as. sume that f (and its integral with
respect to P) is negligibly small outside an interval of
order 1/i, or 1/ib about )=0:

goo

f(P,x.a,x.a) dp= x., (3&)

for all i &.

Some examples of structure functions which satisfy
these three conditions are:

f.b= & (hb' —li.b'), (38)

, e p(—l4 I/Il. I)
2) ~g'

=0 for (. '(0b, (39)

where, in each case, ) & can be any one of the following

expressions:

t' 1 1 y
f(px "xb") 0 for

I pl )p maxi —,—
I (36)

I.i. x, &

where k is of the order of magnitude 1. From the nor-
malization condition (35) it follows that f must be
large somewhere in the range I pl ~&i'b max(1/x„1/xb).
By Eq. (32), this is an interval of the order of magni-
tude of 10 "cm or less.

3. When a=b, f must satisfy the condition

m0=3.6)&10I2 cm ' (31)

Here e is the charge of a fundamental particle a. The
units are chosen so that e =&1 for all charged particles,
and the velocity of light c=1. All dimensions are
expressible in terms of cm, and the rest mass of an
electron is

X,.b2= 1/{x.axb„),

Xab eaeb/ (Xa Xba) y

'A.P=2/{i.'+xb2),

X,bm = 2e.eb/ (i.'+xb'),

&.b'=4/I. (x:+*;)(*.„+*,„)J,

(40)

(43)

(44)
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etc. Any two time-like vectors in Minkowski space the action principle (12) simplifies to
satisfy the reversed Schwarz's inequality,

(A„B")'~&A „A"B„B".
t

(45) )5 z Q ) x))"x))))duN

From this and Eq. (32) it follows that any of the ))„a

given above are small, + ', p-eeb l t b(],p)x&xb„du dub ——0. (52)d„J„
agb

(),.a( &~2.8X&0-» cm, (46)
The equations of motiort of particle a are easily seen to be

so that Eq. (36) is satisfied. The remaining conditions
on the structure functions can be verified directly.

We now examine a system of charged fundamental
particles which move under the following restrictions:

a. Relative to some suitable inertial frame, the dis-
tances between all pairs of distinct particles are at all
times large compared to 10 "cm.

b. The velocities of the particles may be relativistic,
but they are not too close to the velocity of light.

c. For each particle a, the change in the momentum
i,& during any proper time interval of magnitude 10 "
cm or 10 " sec is negligible. We call this the condition
of "moderate accelerations, "but it includes a condition
of moderate rates of change of the rest masses m =i,.

A typical interaction term in Jz* for two distinct
particles a and fi is, by Eqs. (29), (30),

f%~ QQ fQ~pQ
1
2&a~b

~u.+ ~ ma+

fabxa xb))duadub (47)

ft4 pQ

2eaea 5 ($))a )X))"Xb))du))dua
Qa@ Vb+

A typical self-action term. in J~* is

f024 QQ f )14

f($„)x,")x ")xj'x „du,du ' (49).
~ 'Qa+ ~ Na+

Condition 2, Eq. (36), and the restriction c of moderate
accelerations imply that we have approximately

The restrictions a, 6, c, and condition2 on the structure
function, insure that this interaction term can be ap-
proximated by

where
&ay &a&a & avttty

Fa))) 'i)Aav/t)xa cAja /)))&)a )

(53)

(54)

(x."x.„)= (m.—') =0.
dQ, t 8Q~

(56)

Thus the rest mass m, of each particle is a constant of
the motion. The A,„are half-retarded plus half-ad-
vanced Maxwellian electromagnetic potentials; Eq. (53)
is easily seen to be equivalent to the Iorentz equations
of motion for a point charge.

Thus, for a wide range of phenomena, and for a large
class of structure functions, our theory reduces to clas-
sical electrodynamics. '

Under the same assumptions, the law (22) of coibser

i)atiort of tirbear momentum arbd energy reduces to

g (x.~(u.)+e.A.~ (u.))

( t
f~+b r)Ma r&~ )+ p e.eb~

' — ' ~5'((.b')

agb

X Jab"X,"Xa,du dua ——COnStant. (57)

This conservation law has been obtained by Fokker4
and by Wheeler and Feynman, ' who also showed that
it is equivalent to the usual field-theoretic formulation.
The law (28) of corbservatiorb of arbgular momentum re-
duces to

A)))) Q eb t) ($))a )xb))dua
b

b&a

Then, if Eq. (53) is multiplied by x,)', it follows from
the skew symmetry of F„„that

x;"=xg") du, =d$g, /x„ (50) P(x.~(x."+e.A.") x."(x.~+—e.A:)}„.
in the small interval about u, ' =u„outside of which f ~

is negligibly small. If we introduce these approximations
in (49), condition 3 enables us to perform the integration
with respect to I,', and the self-action term reduces to agb

X(5)(g.a')(x."xb&— x~ x)axe pb

i'"it?„de?,. (51) —-,'5(p,b') (x,"x'a)' —x,)'xb") }du,dub ——constant. (58)

3 See J. A. Wheeler and R. P. Feynman, Revs. Modern Phys.
Thus, for structure functions with the properties 1?'157 (1945);21 425 (1949)

1, 2, 3, and for systems satisfying the restrictions a, b, c, ' A. D. Fokker, Z. Physik 58, 386 (1929).


