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A system of interacting particles with variable rest masses is considered, whose motion is governed by a
variational principle of general form, in which there are self-action terms instead of the usual specifically
inertial terms. For suitable restrictions of the action principle it is shown that, when the particles are at
distances large compared to the classical electron radius, the new theory reduces to classical electrodynamics
and the variable rest masses become constants of the motion. The conservation laws of energy momentum
and of angular momentum are derived from the Lorentz invariance of the general action principle.

1. INTRODUCTION

N a recent paper' one of us proposed an action at a

distance theory of interacting particles with variable

rest masses. Here we wish to consider theories of this
type based on action integrals of the general form,
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The notation is as follows: Latin subscripts label the
different particles of the system, Greek suffixes label
space-time components and are subject to the sum-
mation convention, x,* are the space-time coordinates
of particle e,
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and #, is a physically significant parameter along the
world line of particle a. In terms of this parameter the
variable rest mass m, is defined by?
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In Eq. (1), u,* refers to a set of points obtained by
choosing a point on each of the world lines of the
system, and #,** refers to any other such set, the only
restriction being that u#,** > u,*.

In Eq. (1), the double summation includes self-
action terms for which e¢=b. Here, and throughout,
such a term is to be interpreted as
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where %, and #,” are the parameters of two independent
points x,# and x,* on the same world line a, and

gau’“ dxa'#/d%a . (7)
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Because of the double summation in Eq. (1) and the
double integration in the self-action terms (6), we can
assume, without loss of generality, that the interaction
function A4 Is symmetric in the two particles:

Aot Ey) = A (— Ec B Ba),
Agp=Apq. (8)
We also assume that A is Lorentz invariant, so that the
theory will be relativistic.
2. VARIATION AND EQUATIONS OF MOTION

Consider a variation of the world lines of the particles
and of their parametrizations: .
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Equation (5) shows that such a variation implies not

only a variation of the classical variables of motion,

but also a variation of the rest masses of the particles.
The variation of the action integral is given by
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The equations of motion are determined by the action
principle
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Here J is the total action, obtained from J£* by putting
all

UF=—00, uF=-+4o0, (13)

Equation (12) is to hold for arbitrary variations dx.*
which vanish identically outside arbitrary but finite
intervals (d,, #,) on their respective world lines. From
Eq. (10) we find that the equations of motion of particle
a are
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3. CONSERVATION OF LINEAR MOMENTUM
AND ENERGY

From the Lorentz invariance of the action integral
it follows that
¥ =0 15)

is satisfied identically for variations &x,* which are
induced by infinitesimal Lorentz transformations. This
gives rise to ten identities. In this section and the next
it will be shown that, by virtue of the equations of
motion, these identities can be put into the form of
conservation theorems. Because of the difference
between the action J§* in Eq. (15) and the total action
J in Eq. (12), this last fact is not obvious a priori, as it
is in classical mechanics or in a field theory.

To obtain the conservation laws of linear momentum
and energy, we consider the variations induced by an

infinitesimal space-time translation,
6.’,\’2‘1’“: €

(16)

where ¢* is a set of four constants. By Egs. (10) and
(15), this gives the identities
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If the equations of motion (14) are used, this becomes
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XAab,‘duadub= 0.
On substituting from (11) and integrating by parts, this
simplifies to

° 6Aab e
d [hl’
OLH
ug** up* @\ 0Aqs
(f +f ) dudupy=0. (19)
ug® — upt afab“

By (8) and (3), the integrand 9Aq/9&.* is skew-sym-
metric in ¢ and . It follows that the integral operator
in the second term of Eq. (19) can be skew-symmetrized,
since there is a double summation over ¢ and &. By
doing this and using the operator identity
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Eq. (19) becomes
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Since the #,** and the #,* are two independent sets of
points, we obtain the laws of conservation of linear
momentum and energy:
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i.e., the left side is independent of the choice of the
points #q, #s, u#s, - -+, on each of the world lines of the
system.

4. CONSERVATION OF ANGULAR MOMENTUM

We consider the variations 6éx,* induced by an
infinitesimal space-time rotation

O0x* = €%s”,

(23)

where e, =mn,,¢’ is a set of six skew-symmetric con-

stants:
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First we establish a simple identity which will be
required later. From the Lorentz invariance of the
interaction function A we obtain
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- correct to the first order in ¢%,. Expanding in powers of

€u» and retaining first powers only, we find
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This must hold for arbitrary skew symmetric e, and
therefore the bracketed expression must be symmetric
in u and ». Writing this down and rearranging terms,
we find that '
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ie., the left side is skew symmetric in the particle
variables @ and &.
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Substituting (23) in Eqgs. (10) and (15), we obtain
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If the equations of motion (14) and integration by
parts are used, this becomes
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Since, by Eq. (25), the last integrand is skew symmetric
in a and b, we can now proceed exactly as we did from
Eq. (19) to Eq. (22). We obtain the law of conservation
of angular momenium:

aAab aAab
f ( xa")dub
ax‘m afi)av
(f L) G
Kot
—o Y Uub agabu agabv

aAab

as
b ——i

+ T ) du.duy= constant, (28)

Oiay  Oay
i.e., the left side is independent of the choice of the
points %1, #g, us, - - -, on each of the world lines of the
system.

5. CLASSICAL ELECTROMAGNETIC THEORY

Under suitable conditions on the interaction function
A, and for charged particles with moderate accelerations
which interact at distances large compared to 107 cm,
our theory reduces to classical electrodynamics and, in
particular, the rest mass of each particle is a constant
of the motion. We shall discuss this for the restricted
class of interaction functions of the form

Aab= eaebia“x.buf(gabzyxaﬂaibﬂ)7 (29)
Ea?=EatP bty | Ead| = | (Bar*Eamn)] . (30)

Here ¢, is the charge of a fundamental particle a. The
units are chosen so that e,= =41 for all charged particles,
and the velocity of light ¢=1. All dimensions are
expressible in terms of cm, and the rest mass of an
electron is

mo=3.6X 102 cm™. (31)
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We shall use the empirical fact that there exists no
charged particle in nature with a rest mass smaller than

that of the electron, so that
1/&a=1/m<1/me=2.8X1071 cm, (32)
o= | (EaTen)?] - (33)

We require that the structure function f have the
following properties:

1. It is Lorentz-invariant and symmetric in the two
particles [see Eq. (8)]:

f(faf,i’a",ib“) = f(gab27j;bﬂ’j;a“)'

2. With respect to its first variable £, f must ap-
proximate a § function. It must be normalized such that

(34)
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for all @4#, dy*. We assume that f (and its integral with
respect to £2) is negligibly small outside an interval of
order 1/, or 1/4; about £=0:

1 1\
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where % is of the order of magnitude 1. From the nor-
malization condition (35) it follows that f must be
large somewhere in the range |£] < k max(1/da, 1/d5).
By Eq. (32), this is an interval of the order of magni-
tude of 1071 cm or less.

3. When a=b, f must satisfy the condition

[ rearaie=a, @37
for all @z~

Some examples of structure functions which satisfy
these three conditions are:

fab= S(Eab2—)\ab2), (38)

1
fum s o=l /) for gt 20

ab
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where, in each case, Ag can be any one of the following
expressions:

=1/ (Tatey), (40)
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etc. Any two time-like vectors in Minkowski space
satisfy the reversed Schwarz’s inequality,

(4,B*)?> A,A*B,B". (45)

From this and Eq. (32) it follows that any of the Au
given above are small,

| Aap| <2.8X 1078 cm, (46)

so that Eq. (36) is satisfied. The remaining conditions
on the structure functions can be verified directly.

We now examine a system of charged fundamental
particles which move under the following restrictions:

a. Relative to some suitable inertial frame, the dis-
tances between all pairs of distinct particles are at all
times large compared to 10713 cm.

b. The velocities of the particles may be relativistic,
but they are not too close to the velocity of light.

c. For each particle @, the change in the momentum
&.* during any proper time interval of magnitude 1013
cm or 1072 sec is negligible. We call this the condition
of “moderate accelerations,’” but it includes a condition
of moderate rates of change of the rest masses m,=1d,.

A typical interaction term in J§* for two distinct
particles ¢ and & is, by Egs. (29), (30),
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The restrictions @, b, ¢, and condition2 on the structure
function, insure that this interaction term can be ap-
proximated by
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A typical self-action term in JE¥ is
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Condition 2, Eq. (36), and the restriction ¢ of moderate
accelerations imply that we have approximately

dualzdfaa’/zta, (50)

in the small interval about #,” = #,, outside of which f.
is negligibly small. If we introduce these approximations
in (49), condition 3 enables us to perform the integration
with respect to #,’, and the self-action term reduces to
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Thus, for structure functions with the properties
1, 2, 3, and for systems satisfying the restrictions @, b, c,

xa"‘:xa'“,
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the action principle (12) simplifies to
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The equations of motion of particle a are easily seen to be
xap= 6uxavFavu; (53)
where
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Then, if Eq. (53) is multiplied by @4, it follows from
the skew symmetry of F,, that
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Thus the rest mass m, of each particle is a constant of
the motion. The A4, are half-retarded plus half-ad-
vanced Maxwellian electromagnetic potentials; Eq. (53)
is easily seen to be equivalent to the Lorentz equations
of motion for a point charge.

Thus, for a wide range of phenomena, and for a large
class of structure functions, our theory reduces to clas-
sical electrodynamics.?

Under the same assumptions, the law (22) of conser-
vation of linear momentum and energy reduces to
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This conservation law has been obtained by Fokker*
and by Wheeler and Feynman,® who also showed that
it is equivalent to the usual field-theoretic formulation.
The law (28) of conservation of angular momentum re-
duces to

Z { Xt (x.av—’_ eaA av) — X (j:a““I‘ eaA au) } Ua
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3See J. A. Wheeler and R. P. Feynman, Revs. Modern Phys.
17, 157 (1945) 21, 425 (1949).
iA.D. Fokker, Z. Physik 58 386 (1929).



