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An analysis of .the dimensional relations characteristic of electromagnetic phenomena in Quids of large
dimensions is carried out. Most dimensionless quantities are found to be exceedingly small, or large, com-
pared to unity, with resultant simpli6cations of the theory. We 6nd that, in the absence of instabilities,
the conditions for the acceleration of particles to the higher cosmic-ray energies are favorable only when
the linear dimensions of the Quids involved are very large.

SYMBOLS

]t OSMIC fluids are as a rule highly turbulent. This~ 'entails the necessity of dimensional order-of-
magnitude considerations preceding, and often even
replacing, a more rigorous dynamical theory. We shall
here use the symbol fa) to designate the order of
magnitude of a physical quantity a. In particular, P,)
will designate a representative length and (co) will
designate a representative reciprocal time. We shall use
the rationalized mks system of units, whence pe=c '
with the usual meaning of these, and other, electro-
magnetic symbols. For simplicity it will be assumed
that the electrical conductivity 0- is constant throughout
the Quid; e and p will be assumed constant throughout
space.

FIXED FRAME OF REFERENCE

In large-scale electrodynamics the electromagnetic
eGects arising from the difference in mass of the positive
and negative carriers might not always be negligible.
We shall here ignore this type of eGect and assume that
all the e8ects considered can be described classically,
namely, by a combination of Maxwell's equations with
the hydrodynamic equations. Hence V will designate,
throughout, the material velocity of the Quid in a given
frame of reference. As a general rule this velocity is
small compared to the velocity of light, that is

If a conductor moves across a magnetic field, there
appears an induced electric field of magnitude VXB.

* Supported by the U. S. Once of Naval Research.

(~e/~) = i~) (3)

This nondimensional quantity is well known from the
electromagnetic theory of metals. To estimate it here
we remember that co now represents frequencies of the
macroscopic motion of the Quid. Let us take co=10 ',
corresponding roughly to periods of a day. Cosmic
Quids are as a rule excellent conductors, of metallic
order. For the earth's core the conductivity has been
estimated to be a factor of 10—100 below that of iron. '
The material of stars is highly ionized and the con-
ductivities are again of metallic order. ' Clouds of
ionized gases near stars or in interstellar space show as
a rule appreciable ionization; they are then again
comparable to metallic conductors. (This results from
the fact that while the number density of ions becomes
small, the mean free path becomes large in the same
proportion). Taking as an example a=10', the con-

r W. M. Elsasser, Revs. Modern Phys. 22, 1 (1950).
2T. G. Cowling, Monthly Notices Roy. Astron. Soc. 105, 166

(1945).

From the electromagnetic field equations we then have

tt 'VX B=J= er)E/r)t+oE+trVX B+rtV. (2)

The terms on the right represent in turn, the displace-
ment current, the conduction current, the induction
current, and the convection current. The convection
current appears owing to the fact that (as we shall see
later) E cannot in general be assumed divergence-free
and hence there is a space-charge density p in the Quid.

The ratio of displacement current to conduction
current is of the order
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V'XB = pT =- poE+ poVXB. (5)

We next compare the induction current to the net cur-
rent. The ratio is

(yo.VB}/() '8) = (pa.)t V) = (E ), (6)

where R is a nondimensional quantity which will be
designated as the magnetic Reynolds number. To
elucidate the physical meaning, or one physical mean-

ing, of this quantity we notice that if a current Qows

in a rigid conductor of linear dimensions X and con-
ductivity 0. the period of free decay, in the absence of
an impressed emf, is of the order

{(os„')= (po)t'}. (7)

Again, the periods of the material motion of the Quid

are of the order {&o,~}={VX'}.Hence

{~-}=(-/
This relation indicates that E is a measure of the
coupling between the mechanical motion and the
electromagnetic field: As we shall see, the presence of
the term, VXB in (5) implies that, in the absence of
free decay, the Quid carries the magnetic field along in
its motion. The decay phenomena may be visualized
as a "diGusion" of the field across the conductor.
Strong coupling, including the important case of
ampli6cation of the field, requires that the transport of
the Geld by the motion exceeds the rate of diffusion.
The distinctive property of cosmic magnetohydro-
dynamics becomes evident: in the laboratory 8 is
always small; in problems of cosmic hydrodynamics
E is, as a rule, very large. The relation of laboratory
phenomena to cosmic phenomena of magnetohydro-
dynamics is, in a rough analog, that of Poisseuille Qow

to the large-scale eddy motions in a star or cosmic
cloud. Here, we shall essentially confine ourselves to
the cosmic case, that is to large numerical. values of the
magnetic Reynolds number, and shall not enter into a
discussion of the laboratory experiments' on the inter-
action of sound waves with a magnetic held. In order
to estimate R for the earth's core we take, say 0-= 10',
V=10 ' m/sec from observations of the secular mag-
netic variations, ' and X=10' meters, giving E =10'.
For extra-terrestrial phenomena ) and V are larger by
many powers of ten and E. is correspondingly larger.

Returning now to (5), we see that the rset current is
' S. Lundquist, Phys. Rev. 76, 1805 (1949).

ductivity of ordinary iron, we have y=10—"which is
small indeed.

From the field equations we have (rf}= («X '8},and
hence the ratio of convection current to conduction
current is

(rfTU/oE) = {«X 'V/o} = (y},

and the convection current is also negligible; (2)
reduces to

in an excellent approximation. It must not, however,
be concluded from (5) that VX 8 is negligible in other
connections; we shall see for instance that the pondero-
motive forces exerted by the held, which depend on
V'X8, are by no means small.

A further dimensionless quantity of interest is the
ratio of the electric to the magnetic energy density.
This is

{«@2/p 1+2}= {@2/c2+2}= (P2} (10)

as may be seen from the 6eld equation

VXE= —c)B/c)t,

or else directly from (9).
Taking the curl of (5) we obtain by virtue of (11)

aB/at= V X (VX B)+.„V«B,

where the quantity
v„= (po)-'

(12)

(13)

will be designated as the magnetic viscosity. We have
R =)tU/v„which shows that the magnetic Reynolds
number is obtained from the ordinary hydrodynamic
Reynolds number by replacing v, the kinematic vis-
cosity, by the magnetic viscosity v . It will appear
more clearly later that v and v correspond to analogous
physical eGects.

The integration of (12) is as a rule prohibitively
difFicult. The physical meaning is brought out more
clearly by a corresponding integral theorem, 4

B ds= —o.-' J dL,
dt&

where the surface integral on the left is thought of as
moving bodily with the Quid. The contour integral on
the right becomes small as R becomes large; in the
limit of infinite conductivity we obtain the well-known
result that the magnetic lines of force are "frozen" in
the Quid and are carried along with its motion.

From (9) we may infer that the electrical space
charge does not in general vanish, ' since

~/«=V E=V VXB—B VXV. (15)

The ratio of the electric to the magnetic components
of the electromagnetic stress tensor is, however, given

by (10) and the electrostatic forces are negligible.
Furthermore, it may be shown that the irrotational part
of the current (5) is small compared to the divergence-
free part so that the magnetic eGects corresponding to
a nonvanishing g are also likely to be in general negli-
gible. We have from the equation of continuity for the

' See for instance W. M. Elsasser, Phys. Rev. 72, 821 (1947).
s S. Lundquist, Arkiv Fysik 5, No. 15 (1952).

negligibly small in large-scale Quids; we have a balance

E=—VXB
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current, on using (15),

V.J= —j={teaE/X}= {teeVB/)i}= {&e'eB},

and, on the other hand,

VXJ=ts '&X&XB={8/tsar'}.

Hence it follows that

{V' J/V'X J}= {te'y'tse} = {P2tse} = {P'} (16)

which is small. This relation suggests that for large
magnetic Reynolds numbers we may, without loss of
the essential dynamical features, disregard q, an assump-
tion which can most conveniently be expressed by
introducing a vector potential while dropping the
corresponding scalar potential; thus,

a=VXA, E=—aA/at, V A=o, (17)

which would transform (5) into

ct A/t) t = VX (&X A)+ v &'A.

In this form, however, the last equation is inconsistent
because, by (17), the left-hand side and the second
term on the right have vanishing divergence whereas
the divergence of the 6rst term on the right does not
vanish, according to (15). A correct equation is

BA/at=PVX(V'XA)), „+v V'A, (18)

where the index tr signifies that only the "transverse"
(divergence-free) part of the bracket is to be taken.
It is well known that the decomposition of a vector
field into the sum of a transverse and a longitudinal
(irrotational) component is unique under suitable
boundary conditions (e.g., vanishing at infinity). In
applications one uses Fourier transforms or spherical
eigenfunctions, which make the decomposition auto-
matic. The physical meaning of this simplification is
this: By (16) the contribution which the longitudinal
part of E makes to the ponderomotive force is negligible;
thus, although the transverse and longitudinal compo-
nents of E may be of the same order of magnitude, the
longitudinal component does not significantly aGect
the transfer of energy between Quid motion and field;
hence it can be omitted to advantage in problems
where the interest does not center on the electric field
as such.

LORENTZ TRANSFORMATION

In view of (1) we may neglect all terms of the order
of P' and higher terms. Texts on relativity' indicate
that o- must be considered as an invariant; this follows
from its connection with thermodynamical quantities
which are invariant. To within terms linear in P, the
I.orentz transformation from an unprimed system to a
primed system moving with velocity U reduces to

R'= R—Ut, t'=t, P= V, 8/Bt'= 8/at+ U V (19).
M. von Laue, Dee Retatevettrtstlseoree (F.Vieweg, Braunschweig,

1921).

Furthermore, in this approximation,

J'= J+stU,

but the convection current may be neglected if {U}
= {V}.The field vectors transform in the same approxi-
mation as

E'= E+UX B, B'= B—UX E/c',

but the last term in the equation for 8' is by (9) of the
order P' and hence negligible. The transformation
equations for the electromagnetic quantities thus reduce
to

E'= E+UXB, B'= B, J'= J, vt'=st. (20)

We have been brief in this deduction, but it should be
emphasized that, as closer consideration shows, all
terms linear in p have indeed been included.

We see from (5) that if we transform to a frame of
reference in which a given Quid particle is at rest, then
the "local" electric 6eld becomes small compared to
the average value of E over the fluid, for which (9)
gives {Z}={VS}.This latter relation, by the way,
permits a convenient observational evaluation of the
field, since V and B are quite directly measurable, B
being also Lorentz-invariant to. within terms of the
order of P. The actual current referred to a "local"
system of reference is therefore small, as R ', compared
to the current in, say an engineering dynamo. In such
a machine the current is {oE}={o.VB}.Considerable
semantic difficulties are bound to arise when one speaks
uncritically of the "electric currents" producing the
magnetic fields of the earth, of sunspots, etc. It has
been suggested in the literature' that since at "neutral"
points (points at which B vanishes in the "local" frame
of reference) charged particles do not travel in spirals
as they do elsewhere, phenomena of the type observed
in gas discharges might occur which would lead to the
acceleration of particles. The extreme smallness of the
"local" electric field makes this conclusion unlikely.

MECHANICAL MOTION; SYMMETRIZATION

The density of the ponderomotive force which the
held exerts upon the Quid is

&=JxB=—t-'Bx(vxB)
=t '(B ~)B—(2t) 'V(B') (21)

Here, the electrostatic forces produced by the space
charges have been neglected since they are small by
(10). The work done on the fluid by these forces per
unit time and unit volume is V F; it may be shown'

by obtaining the energy integral from (5) and (11)
that this is indeed the negative of the work done by
the Quid on the field.

In writing down the equations of motion we shall for
simplicity assume that the Quid is incompressible. The
equations of motion are

&V/cit+ (V.V') V= —Vlt+ (tsp) '(B.V)B+vPV, (22)
7 J. W. Dungey, Phil. Mag. 44, 725 (1953).
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tnt/-P+I+(2p) 'B'

and I is the gravitational potential. Equations (12)
and (22) together are the fundamental equations of
field-motion of magnetohydrodynamics. They can be
put into a remarkably symmetrical form. ' ' Letting

P=V+(pp) 'B, Q=V —(pp) 'B,
Vl= V+ V~i P2= V Vm)

and remembering that for an incompressible Quid,

V'X(VXB)=(B V)V—(V V)B,

we can rewrite (12) and (19) as

aP/at+(Q V)P= —V,+Vs(v, Pyv, Q),
aQ/r)t+ (P V)Q= —V't, +V'(vsP+ vrQ),

where now

(23)

0 = l/p+~/p+ (P Q)'/g — (24)

It should be noted that the symrnetrized equations
hold only for an incompressible Quid; no corresponding
symmetrical formalism has as yet been found for the
compressible case. The equations suggest strongly that
if magnetohydrodynamics is considered from a sta-
tistica/ view point, as seems appropriate for turbulent
Quids, the vectors V and (ttp) 'B should play com-
parable roles. Energy transfer is possible both from and
to the Quid. Many authors have therefore inferred
that eqttipartitiort of the energy as between the kinetic
energy of the Quid and the magnetic Geld energy might
be assumed to hold in a first approximation:

{pV')= {J3'/p) (25)

Batchelor' has, however, pointed out that if the
statistical theory of turbulence is applied to magneto-
hydrodynamics, the magnetic field energy should be
less than the equipartition value (25), at least for the
largest eddies. The author hopes to show elsewhere that
under certain conditions the field energy can also
exceed the value given by (25). For rough estimates,
however, (25) should be useful. An equivalent state-
ment is clearly that in (22)

{(V 7)V)={(ttp) (B ~ V')B); (26)

the ponderomotive forces are in the mean comparable
to the inertial forces. Schluter and Biermann" have
pointed out that if the "frictional" term in (12) is
neglected, this equation is of the type

{r}B/r)t)=P 'V){B),
and that the solutions of this equation are of the
general form

{8)= {Bs){exp() 'V)t).

Therefore, if a small magnetic stray 6eld exists in a
conducting Quid, it will in the average be amplified at

s W. M. Klsasser, Phys. Rev. 79, 183 (1950).
s G. K. Batchelor, Proc. Roy. Soc. (London) 201, 405 (1950).' A. Schliiter and L. Biermann, Z. Naturforsch. Sa, 65, 237

(1950).

ntte' (ms) *

ttov=
f

—
/ p '8 4.

6~s Em)
(28)

Consider hydrogen and let (mks units) 5= 10 "m; then

tvao=2X10 n/p (29)

This result shows that in interstellar gas clouds where

p is very small (10 " mks) the dissipation is entirely
caused by mechanical friction, whereas in the interior
of stars where p is in excess of unity the dissipation is
entirely electromagnetic; the transition domain, {ttov)
=1, occurs near the density values obtaining in the
photospheres of stars.

One should emphasize that even when the electro-
magnetic dissipation is numerically large, the quantity
v = (po.) ' is not in itself a measure of the rate at
which the field is dissipated. Since cosmic Quids are
highly turbulent, the actual transport or dissipation
of any quantity is determined, not by the molecular
coeScients of diGusion but by the corresponding eddy
di6usivities which are as a rule very much larger than
the former. This applies to scalar properties such as
heat as well as to vectorial properties such as momen-
tum, and clearly must apply to the magnetic field in
the Quid The calculation of the free decay for a body
as large as the sun' yields decay times longer than the
age of the universe. This amounts in essence to a
computation of the magnetic Reynolds number; there
can be little doubt that the general result of turbulence
observations applies to the magnetic diGusivity; the
larger the Reynolds number, the more the eddy diGu-
sivity exceeds the molecular diGusivity in order of
magnitude. The disappearance of sunspot magnetic
6.elds in the course of a few days or weeks is certainly a
matter of eddy diffusion.

"For instance Peat, by J. M. Cork (John Wiley and Sons, Inc. ,
Nevr York, 1942), p. 131.

an exponential rate until some statistical equilibrium
value near (25) is reached.

DISSIPATION
The quantity

v/v„=R /R=ttov, (27)

where R is the conventional Reynolds number, measures
the ratio of the generation of heat by viscous friction
in the Quid to the generation of Joule's heat by the
electromagnetic field. Unless this ratio happens to be
close to unity, one form of dissipation will predominate.
This form of dissipation will also determine the cutoG
of the turbulence spectrum at the side of the smallest
eddies.

We can obtain an estimate of (2'/) for the case of an
ionized gas. From kinetic theory" we have v = vs/v/3 and
a=etc'N/v. /2mv, where /„ is the mean free path, n the
degree of ionization, E the number density, m and n

are mass and mean velocity of the electrons, vo mean
velocity of the molecules. Since /v= (AN') ', where 5

is the collision diameter, and es/v= (m/ms)'*, we can
write this:
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ELECTROMAGNETIC POTENTIALS

We shall now make some applications of our results
to the acceleration of individual particles in conducting
Quids. It must be assumed that the particles have a
certain initial velocity such that the increase of their
kinetic energy by electromagnetic accelerations can
exceed the average losses by ionization, collision proc-
esses, and radiation; in other words we must assume
that an "injection" process" exists. Let us inquire into
the electromagnetic potentials that accompany mag-
netohydrodynamic phenomena. On account of the very
high energies encountered in cosmic-ray particles it is
often presumed that there exist special mechanisms
which increase the field strengths, e.g., self-amplificatory
plasma oscillations. From the viewpoint of magneto-
hydrodynamics we might classify as instabilities any
processes leading to electrical potentials very much in
excess of those found in ordinary conducting fluids.
Such processes, as well as the cyclotron or betatron
mechanisms where a particle circulates in the same field
many times, are open to the criticism that on purely
statistical grounds they are not likely to be suKciently
widespread or effective: Given the relatively large
energy density of the cosmic radiation, one is prejudiced
in favor of processes that can be counted upon to occur
regularly in large volumes of cosmic space.

Here, we shall abstract from all processes except
those directly related to the average conditions of
cosmic magnetohydrodynamics. The electrical potential
p between two points of space is by (9) of the order

(30)

If we assume that equipartition prevails, this becomes,
by (25),

(31)

These relations must be interpreted with some care.
The potentials are, of course, to be understood as line
integrals J'Ed), along some possible trajectory. The
particles spiral along the magnetic lines of force, but
these lines of force are not in general closed" and the
particles will not in general follow the lines accurately
owing to collisions and accelerations. Everything de-
pends on the measure (in a set-theoretical sense) of
trajectories that actually yield potential differences of
the order indicated. If this measure is not too small
some particles will be accelerated provided they have
the required injection velocities. The above formulas
do not discriminate between the nondivergent and the
irrotational part of E, the two being of comparable
order.

If the region where the acceleration occurs is highly
inhomogeneous we may apply (30):In the envelope of
a star the density changes very rapidly with height
and the magnetic field will as a rule not be of local

's E. Fermi, Phys. Rev. 75, 1169 (1949).
'3 K. McDonald, Am. J. Phys. (to be published).

origin but will emanate from the lower layers of the
star. If we can estimate fB} from other data, (30)
gives an estimate of the order of magnitude of the
accelerating potentials. It is well known that at the
occasion of solar flares the sun has ejected numerous
particles with energies of the order of 10' ev. The
acceleration of particles in stellar envelopes has been
extensively discussed and we may be satisfied to refer
to the literature. "With X=10' m, V=10' m/sec, and
8= 10 ' (= 100 gauss), we obtain /=10" volts. Apart
from possible phenomena of instability, it is not likely
that magnetohydrodynamic processes in the neighbor-
hood of stars will lead to potentials exceeding this value
by several powers of ten.

If we next consider the gaseous interstellar medium,
we may assume that the equipartition formula (25)
applies, as has been done by a number of authors;""
we may then use (31). The variations in V admissible
here are rather limited; V=10 km/sec should be
reasonably close to an upper limit. Extremely high
voltages could be produced by increasing I,. If we
assume one proton per cm' in the average over the
galaxy, that is (in mks units) p=10 ", take V=3)&10'
and X= 10" (comparable to the dimensions of the more
condensed parts of the galaxy) we obtain P= 10"volts.
We can increase this value by increasing X still further.
Chandrasekhar and Fermi" suspect the presence of
magnetic fields in the spiral arms of the galaxy. Parker"
has studied the formation of galaxies from an inter-
galactic gaseous medium and concludes that turbulent
velocities of the order of 40 km/sec ought to be present
in this medium. If there is also som, e magnetic field in
these dimensions, it seems possible to account quanti-
tatively for the presence of extremely energetic particles
by acceleration over sufficiently large linear dimensions.

If the galactic magnetic field is of the order given by
the equipartition formula (25), the particles circulate
in the galaxy for a very long time and they will acquire
their high energies by multip/e interaction with the
irregular magnetic field of the gas. The mechanism
proposed by Fermi" represents a specific model where
the magnetohydrodynamic field takes the form of
statistical motions of individualized gas clouds. If from
the above figures we compute the energy density of the
galactic medium, it is found to be slightly in excess of
10 " erg/cm'. Given the roughness of the data, this is

very close to the energy density of the cosmic radiation
estimated" as 10 "erg/cm'. It is likely, therefore, that
the cosmic radiation is nearly in dynamical equilibrium
with. the galactic magnetic fields and hence also with
the motions of the gas, a conclusion which has been
reached by a number of previous authors. '~

r4 L. Biermann, Ann. Rev. Nuclear Sci. 2, 335 (1953)."S. Chandrasekhar and E. Fermi, Astrophys J. 118, 113.
(1953)."E.N. Parker, Astrophys. J. (to be published).

"Note added in proof.—See also the recent paper by Morrison,
Albert, and Rossi, Phys. Rev. 94, 440 (1954).


