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Effect of Atomic Electron Screening on the Shape of Forbidden Beta Spectra
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In Fermi's theory of beta decay the influence of the atomic electrons on the shape of the spectra is often
disregarded since the influence is small except at low energies. However, there is some interest in knowing
exactly how small it is. This paper gives an approximate calculation of the screening effect, both for allowed
and for forbidden spectra. The Thomas-Fermi model for the atomic electrons and WKB approximations for
the wave functions of the emitted particles are used. The results for the allowed spectra agree with those of
Rose and of Longmire and Brown. The calculations for the forbidden spectra lead to a simple rule for finding
the screening effect in any speci6c case.

I. INTRODUCTION

'
[N Fermi's original paper on beta decay' he neglected

~ - the eGects of the atomic electrons on the process.
This has also been done in many of the subsequent
developments of the theory; it is ordinarily assumed
that the beta particle is created into the Coulomb field
of the daughter nucleus. The justification for this simpli-
fying assumption is that the atomic electrons have only
a small inhuence on the electric field at the nucleus,
where the beta particle is created. One expects the
atomic electrons to be of importance only when the
energy of the emitted beta particle is so small that the
wavelength is comparable to the size of the atom. The
atomic electrons make the effective electric field smaller
than the field of the bare nucleus so that, when they are
taken into account, a decreased electron emission and
an increased positron emission are predicted by the
theory.

The effect of the atomic electron screening was first
calculated by Rose' and later by Longmire and Brown'
using methods based on the WEB approximation.
Most recently Reitz4 has published tables of the screen-
ing correction, found by solving the equations numeric-
ally. All these authors have discussed the allowed beta
spectra only. However there is a need for similar
information about the forbidden spectra also;5 the
purpose of this paper is to discuss the screening effect
with emphasis on the forbidden spectra.

The calculations here are similar to those of Rose and
Longmire and Brown, "and for the allowed spectra the
results found here agree essentially with theirs. WEB
approximations to the wave functions of the emitted
beta-particle are used, and the potential due to the
atomic electrons is found from the Thomas-Fermi
statistical model. ' A simple procedure is given for
Gnding the eR'ect of the screening on any specific
forbidden spectrum. It is found that ordinarily the

eGect for a forbidden spectrum is of the same order of
magnitude as for the allowed spectrum.

II. DERIVATION OF THE SCREENING EFFECT

In the following discussion the notation of Kono-
pinski and Uhlenbeck' and of Smith, ' is used. The
Konopinski-Uhlenbeck paper gives formulas for the
Grst- and second-forbidden beta spectra for each of five
possible interaction types. Smith's letter gives the cross
terms which arise when a linear combination of the Gve
interaction terms is used, assuming no Fierz" inter-
ference (cross terms have also been calculated by
Pursey" and by Al-Ghita"). Both Konopinski-Uhlen-
beck and Smith expressed their results in terms of quan-
ties I., 3f, E, I. , M, E which depend quadratically
on wave functions of the electron evaluated at the
nuclear radius, and then they substituted the wave
functions for an electron in the Coulomb field of the
daughter nucleus. The screening will be taken into
account here by using the Coulomb field modiGed by
the atomic electron cloud. A consequence of treating the
screening this way is that diferent values of I., 3E, E,
I=, M, E are obtained but the formulas expressing
the spectrum shapes in terms of these quantities are
unchanged. Serber and Snyder" have shown that this
approach to the problem takes proper account of the
binding energies of the atomic electrons.

From this point of view, the beta particle is emitted
into the potential Geld of the neutral parent atom plus
the Coulomb Geld of the single extra charge that it
leaves on the nucleus:

V„(Z)= aVr p(Z%1) nr— (1)

Here the upper signs apply for electron emission, the
lower for positron emission, Z is the atomic number of
the daughter nucleus, U„ is the screened potential
energy of the emitted particle, and Vrs(Z&1) is the
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is a characteristic length for the parent atom electron
cloud. The screened potential in the neighborhood of the
nucleus is then
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Thomas-Fermi potential energy for an electron in the
parent atom of atomic number (Z&1).It is assumed that
the beta particle has escaped from the atom before any
rearrangements in the atomic electrons take place. The
connection between this screened potential and the
Coulomb field of the daughter nucleus is seen by ex-
panding the Thomas-Fermi potential about the nucleus.
Using Fermi's formulation of the statistical potential, '
Baker's expansion about the nucleus, "and converting
to relativistic units, one finds easily that
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The first term is the usual Coulomb potential. In what
follows, a first approximation to the screening effect will

be obtained by taking into account the second term,
disregarding the terms of order (r/tt)& compared to 1.

It would be diKcult to make exact calculations of the
electron wave functions in the potential of Eq. (1);
the %KB method developed by Uhlenbeck and
Bessey" for the Dirac radial wave equation will be
used to approximate the functions. This approximation
has been reviewed in an earlier paper. "The use of this
%KB method in this problem requires justification
because the values of the wave functions at the nuclear
radius are required and this radius is in the neighbor-
hood of the pole of the potential function at the origin.
However, it has been shown that for the Coulomb
potential V(r)=&crZ/r the WKB approximation re-
produces the exact results within a few percent both for
the function F(Z,W) which gives the shape of allowed
spectra and for a representative forbidden spectrum
correction factor."'~ This indicates that the method will

give good results in the problem at hand, where the
potential also has a simple pole at the origin and then
goes monotonically to zero. For use in the formulas of
Konopinski-Uhlenbeck and Smith, radial wave functions
ft, gt satisfying the Dirac radial wave equations, giving
an integrable probability density at the origin, and
normalized to one particle in a sphere of unit radius, are
required. Referring to Eqs. (12) and (13) of reference
16 and putting I= rf, o=rg, one finds that the WKB

'4 E. B.Baker, Phys. Rev. 36, 630 (1930)."R. J. Bessey, thesis, University of Michigan, 1942 (un-
published).

M R. H. Good, Jr., Phys. Rev. 90, 131 (1933)."R.H. Good, Jr., thesis, University of Michigan (Publication
No. 2597, University Micro6lms, Ann Arbor, Michigan, 1951).
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' See, for example, Edwin C. Kemble, The Iiundemental
PrinciPles of Quantum Mechanics (McGraw-Hill Book Company,
Inc. , New York, 1937), erst edition, p. 95.

V (r) is an arbitrary potential, and ri is the positive root
of ttr'cps —(1+1)'j.Zwann's method' was used to con-
nect the approximations across the turning point r~.

The next step is to evaluate the approximate wave
functions, Eqs. (5) to (8), at the nuclear radius p and
with the potential of Eq. (1).Since p is always less than
ri, formulas (5) and (6) apply with r replaced by p. The
result then depends only on the value of the potential in
the region r&r&. It is easily seen that r&&p, so one may
use the expansion of the potential for small r/p, I Eq.
(4)j;as a further approximation the higher-order terms
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A property of Eqs. (5) and (6) is that W and V(r)
always occur in the combination W—U(r) in the inte-
grations. This permits the screened-potential wave
functions fg*', gg- to be expressed in terms of the well-
known Coulomb wave functions fP"', garou'. Intro-
ducing the notation

E(Z,W) = E(Z,W 6)—
for any function E(Z,W), then one sees that
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This is usually written like Eq. (18) except with a
correction factor:

f~"= (pW/PW)'f~'"'

g
cc (pW/pW))g Coul

(16) To 6nd the eGect of the screening, one substitutes
Eqs. (16) and (17) into Eq. (21) and puts the results in
the form of Eq. (22):

It is assumed that W)6+1. The formula for the
allowed spectrum, regardless of the potential used, is
Lreference 8, Eqs. (1) and (22)]
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The result for the screened potential is then easily found
to be

pcc (71W/pW)+Coul (20)

This result is substantially in agreement with the
results of Rose' and of I ongmire and Brown, ' although
they choose a different value for 6 (Reitz's paper4 shows
the connection between their results). The numerical
evaluation of this function has been discussed by Fano."

What happens in the forbidden spectra is easily
shown by a specific example. For the vector first-for-
bidden transition the spectrum is Lreference 8, Eq.

'9 U. Pano, Tables for the ArIclysis of J3etu Spectra, Natl. Bur.
Standards U. S. Appl. Math. Ser. 13 (U. S. Government Printing
0%ce, Washington, 1952).

This argument can be applied uniformly to all the terms
in the forbidden spectra. One may take the screening
into account by using the F" of Eq. (20) in the basic
spectrum formula and by replacing 8' by 8'—6 in the
results of Konopinski-Uhlenbeck and Smith for the
quantities L, M, S, L, M, E which arise in the
correction factors. Ordinarily these quantities do not
depend drastically on the energy, so the screening eGect
for forbidden spectra is of the same order of magnitude
as it is for the allowed spectrum. A very simple inter-
pretation of these results has been given by Buster."
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