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Magnetic Quenching of the Positronium Decay
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The influence of static and alternating magnetic fields on the radiative decay of positronium is investigated
theoretically. Equations for the time variation of the probability amplitudes of the ortho- and para-states
are presented and solved for various cases of experimental interest. In particular, formulas are derived
which describe the resonance effects occurring in the case of a constant and a perpendicular alternating field.

L INTRODUCTION

''N recent years, experiments by Deutsch' and his
~ ~ collaborators have given us a very detailed insight
into the structure and decay of positronium. The
original experiments have been later on somewhat
extended by other authors. '

The main achievement of the work of Deutsch was
the observation of the theoretically postulated' three-
quantum decay of the ortho-form of positronium, as
well as an insight into the modi6cations of this three-
quantum decay which are produced by static or
alternating magnetic fields.

It had been shown theoretically' that the lifetime of
the ortho-form of positronium is about 1j.00 times as
large as that of the para-form. This is due to the fact
that two antiparallel light quanta, the decay product
of para-positronium, cannot carry a resultant angular
momentum of the value h/2 rswith them, which is the
original angular momentum of ortho-positronium. This
leads to a three-quantum decay of ortho-positronium
with a correspondingly increased life-time as compared
with para-positronium which decays into two quanta.
The observation' of the three-quantum decay consti-
tuted the 6rst significant experimental advance.

If the positronium is brought into an external
magnetic Geld, the ortho and para-states become-mixed
up. This leads to possible two-quantum decays of
ortho-states and thereby to a diminution of the observed
three-quantum coincidences. Theory and experiment
agree in the conclusion that only one of the three
ortho-states is involved in this change if a homogeneous
static magnetic field is applied; only the ortho-state
with a vanishing component of its angu. lar momentum
with respect to the direction of the magnetic field
combines with the para-state.

A further refinement of the experiment' consisted in
the use of the by now classical method of applying a
small alternating magnetic 6eld perpendicular to the
direction of the large constant magnetic 6eld. One can
thereby induce transitions between the two ortho-states
with finite projection of their angular momenta upon
the direction of the constant magnetic 6eld and the

'M. Deutsch and S. C. Brown, Phys. Rev. 85, 1047 (1952);
there are also references to earlier literature.' J. Wheatley and D. Halliday, Phys. Rev. 88, 424 (1952).' A. Ore and J. L. Powell, Phys Rev. 75, 169. 6 (1949).

II. THE MATRIX ELEMENTS OF THE PERTURBING
MAGNETIC ENERGY

We denote by pp, (1), q, (2) the eigenfunctions of the
electron with its spin parallel and antiparallel to the s
axis, with poo(1), yo(2) the eigenfunctions of the posi-
tron in the corresponding states. If we then neglect
very small corrections of relativistic order of magnitude
we can write the eigenfunctions of the para- and ortho

ground states of positronium as follows:

Pr= 9',(1)to„(1), (1a)

Pp= [io (1)p&(2)+ p (2) p&(1)]/K2 (1b)

P r = po, (2) po„(2), (1c)

P= [p, (1)tp„(2) —io, (2) to„(1)]/K2. (1d)

The magnetic perturbation terms of the Hamiltonian
in the presence of a constant magnetic field along the
s axis and a variable magnetic 6eld along the x axis are
given by the expression

eh
$H, (o„o„,)+H, cospat(o, .—o—.„.)]. (2)P =

4m.mc

In (2) the meaning of all symbols is conventional;
0-, and O-„denote, respectively, the matrices of the spin
vector with the eigenvalues &1.

~ O. Halpern, Phys. Rev. 88, 164 (1952).

remaining ortho and -para-states. Thus an additional
quenching of the three-quantum decay can be made
observable' which is sharply dependent upon the
frequency of the alternating magnetic field.

The papers of Deutsch and his collaborators have
already given a semiquantitative treatment of these
data. Since the basis of this treatment is largely formed
by analogies, the meaning of which may not always be
unambiguous, it seemed appropriate' to present a
theoretical discussion of these phenomena which goes
back to first principles by studying the time variation
of the probability amplitudes of the various states in
dependence upon the external magnetic 6elds. The
present paper, the publication of which has been unduly
delayed for external reasons, will present such calcu-
lations in detail and thereby also cover some limiting
cases for which the method of analogies would not
seem to be sufhcient.
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cV,=fpP f= 2ehEI, /42rrrtc. (3)

The x component has nonvanishing matrix elements
only in reference to states with different total angular
momentum:

One notices by inspection that the magnetic part II
of the Hamiltonian has no diagonal elements; this
shows that the Zeeman eGect of positronium is at least
quadratic in the magnetic field-strength. The physical
reason for this fact is to be found in the opposite signs
of the magnetic moments of the electron and the
positron in (2).

The s component of the magnetic field has, as was to
be expected, only one nonvanishing (nondiagonal)
matrix element

Because the exponents in the exponentials of (7a)
and (7b) have opposite signs, this system of linear
differential equations of the 6rst order with time-
dependent coefficient can be transformed into a linear
equation of the second order with constant coeKcients.
One solves (7a) for b, differentiates with respect to the
time, and inserts the expression for db/dt thus obtained
into (7b). This leads to

4x'
ho+ bo(2(do+y')+ho M.2= 0,

h'

7 =7—v»&7~.

Equation (8) gives for ho the expression

3f =piP f=p iH Q=v2ehH cos(dt/42(2rtc (4).
with

ho= Cie~"+C2e~tt2 ) (10)

We are now prepared to study the e6ect of the
various magnetic 6elds on the decay of the two forms
of positronium. To make things simpler, we first
consider only the case of a static magnetic field.

&p)o+7 1 ( 162r
+—

i
(2(oo+y')2 — -M,2 ), (11a)

2 24 f22 ) '

1—-) (p~o+V')'—
2 2E

(»b)

(12)

a() —Cie (al—'Yt) t+ C'2e (nt—'Yl) t

(13b)

Ci~Di, C2~D2.

27ri
= ——— -M,uei"o' —ygag

Since pop))y', ni and n2 are to a first approximation
given by

4x'M, '
(Xy= Z

47r'3f, '—7'dG 2' Z

M uoe '"0'—ya
dt h

)
h Goo(5b) h Goo

IIL QUENCHING IN A CONSTANT MAGNETIC FIELD

We denote by a&, ao, a &, and u the amplitudes of the
four different positronium spin states. The subscripts For 7 =0, (11) reduces to
indicate the magnitude of the projection of j on the s
axis in the ortho-states; a without subscript stands for I+&, I

~

the amplitude of the para-state (j=0). The energy 2 &&2)
difference between the ortho-states and the para-state
in the absence of external perturbations shall be denoted The original amplitudes ao and c are then given by
by htop/22r. Since, as shown in (3), there exist no expressions of the type:
matrix elements of the Hamiltonian between states of
unequal m, the amplitudes a& and a & decay as they do
in the field-free case. jg e(n1+io&0—&1)t~ D e(ag+icoo —gl) t

)
For the amplitudes ao and u we now have the fol-

lowing equations: (14)

dip

p& and p denote, respectively, the amplitude decay
constants of the ortho and para-sta-tes. Since the life-
times of these states are 1.3)&10 sec and 1.2)&10 "
sec, respectively, we have for p& and p the values
3.7X 10' sec ' and 4)& 10' sec '

Introducing the expressions,

n2= —($(t)p+r )—ni. (15b)

It follows from (13a) and (13b) that one can form
linear combinations of the wave functions (1b) and
(1d) which decay according to a simple exponential
law; if we put for t=0,

one obtains

ao=~oe ~"

8= 68 )

dip 27ri
3f,hei""e (»')'

dt h

(6a)

(6b) or

(7a)

Co=0, fp=, f= (16a)
(Ci'+D')' (Ci'+Dt')'*

Ci 0, Pp= (16b)
(C2'+D2')' (C2'+D2')

2' $
M*5'oe '""e ~ ~' '.

dt h

then these aggregates have decay constants
+ (y'4 Mo,r'/I' )t(papnd y —(y'42r'3f, '/h'coo'), respec-
tively.
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The physical interpretation of this result is clear. In
the absence of decay, v&=v=0, the expressions (11),
(12) and (16) are the well-known wave functions of a
magnetic system which has vanishing diagonal and
nonvanishing o8-diagonal matrix elements of the mag-
netic Hamiltonian. The energy-splitting given by (12)
is the familiar generalization of the Lande formula.

The discussion for nonvanishing 7~ and y can best be
carried out remembering the order of magnitude of the
various quantities involved. We have cop IO" sec ';
v~ and v (or v') are about —3.7 .10' and 4&(10' sec '

respectively, and v'4m'M, 2/h'coo' becomes for H, 9000
gauss about p'10 '. One thus sees easily that the
imaginary parts of (11) (the energy splitting) are very
little affected by the spontaneous decay. The real part
of n2 —

p&, i.e., essentially the decay constant of the
para-state, is hardly changed by the presence of a
constant magnetic field. The decay of ap, on the other
hand, is strongly inQuenced by a sizable magnetic 6eld.
One sees readily that for values of H, larger than, say,
2000 gauss the term v'4m'M, '/h'&oo2 predominates. This
means that the three-quantum decay is progressively
replaced by the two-quantum decay of the para-state.
For B, 9000 gauss only a few percent of the three-
quantum decays are left; this means experimentally
that only 3 of all three-quantum processes originating
from the states with the amplitudes a~ and a ~ remain.

It should perhaps be re-emphasized that it is not
just the small fraction 4''M, '/h'coo' of para-state
present in ap that decays rapidly. It is, as shown by
(13a) and (13b), the whole linear combination (16a)
which decays at the rate v&+ (v4w'M, 2/h'u, ').

IV. THE EFFECT OF AN ADDITIONAL
ALTERNATING MAGNETIC FIELD

For the treatment of this problem it is advantageous
to change the basic wave functions. It. should be noted
that the linear combinations (16a) can be made
mutually orthogonal and are also orthogonal to the
states with the amplitudes a~ and a ~. If we introduce
these expressions in place of (1b) and (1d), we have
thereby included the eGect of H„which as mentioned
before does not have matrix elements between states
with m diferent from zero. The equations of variation
of constants therefore contain M only. We continue
to use the notation for the amplitudes of the states
a& u which will not lead to any misunderstanding.

Keeping in mind the results of Sec. II, one thus ar-
rives at the following equations:

dg 2' z

(M,e '"o'(a~+a ~)) —va
dt h

P = 2mM. /hs)0,

v"=v i+v'P'

w'= imaginary part of o.&.

(18a)

(18b)

(18c)

27rz

M, 'Paoe '~"' "" vgag-
2h

(19a)

dap 27rz

M, 'P(a~+a ~)e'&"' " '—v"ao, (19b)
2h

2'
M~ Pap e ~ ~ —vga

2h
(19c)

A study of this system of equations shows that no
simple reduction to a linear equation of higher order
with constant coe%cients is possible. This has its origin
in the factor cosset in M, which cannot be eliminated as
was done with the exponentials in III. But closer
attention to the physical side of the problem allows us
to introduce simplifications which lead in the end to
another linear equation of the second order with
constant coeScients.

One has to keep in mind that we are looking for
resonance effects which will occur when co'=co, or in
other words when h times the frequency of the alter-
nating field equals the energy difference between the
ortho-states a~ j and ap created by the constant magnetic
field H, . This energy difference is given by the imagi-
nary part (h/2n. )n&. General dispersion theory leads to
the experimentally confirmed view that the infIuence
of the alternating field will be very small off resonance.
This means first of all that all terms containing a in

(17) can be dropped; in fact the whole equation (17d)
may be neglected. The frequency of the alternating
field will always be very small compared with cop.

Furthermore, if we write

cosMt= —(e'"'+e '"')

than we see that in (17a) and (17c) only the term e'"',
while in (17b) only the terms e '~', can give rise to a
resonance phenomenon. The second term produces only
dispersion effects which average out during the time of
observation. One thus obtains the following three
equations:

{ggy 2' z

(M aoe '"'P+M~e+'"o') —v~a~, (17a)
dt h

M, =M ' cosset. (2o)

{Ecp 27/ z

fMge'"'(ay+a g)) —v "ao,
h

(17b)

27ri
(Mgaoe '"'+M~e'"") vga 1, (17c)—

h

ag ——bye»',

cp= bpe

u~ ——b~e—»',

(21a)

(21b)

(21c)

We introduce again in analogy with III the quantities
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and obtain for the quantities b the equations We can then expand the square root in (27) and obtain
at resonance the following values for 8~ and 82.'

1n
M 'pI)0(, ~(~' ~)((,——(v"—»)(

h
(22a) 2~'P'M "

h'(v" —v))
(29a)

gran

= ——M, 'P(b)+I) ))e'("' ")'e(&" »)', (22b)
h

2m'P'M, "
fl~2=& —ya-

h'(v" —v))
(29b)

db g xi
M 'pf) e ((~' ~—)&e (—v" »—)(—

dh h
(22c)

8&—p" obviously gives essentially the decay time of
the state with vanishing m, which is only slightly
aGected by the alternating field. This can be understood
physically by observing that the rate of decay is large
compared with the rate of transition to one of the other
ortho-states.

82—p", on the other hand, leads by resubstitution
easily to that quantity which now represents essentially
the decay rate of the two ortho-states. We find for it:

Solving (22b) for b)+b ), and differentiating with
respect to the time, we obtain again from (22a) and (22c)
the desired equation

27r2

ho+ hot i(co—(0')+v) —v"]+ P'M, "bo ——0. (23)
h'

This gives for bo the expression

b e"
)

2m'P'M, "
&'(v"—v )

(24)
with

27r2

9+5[i(o)—co')+v) —v"j+ P'M, "=0.
h2

2m'P'M " e'H '

h'v)(v" —v)) 4m'c'vvt

One 6nally obtains for co a time dependence of the form
(3o)

ao ——Ae(~' ~")'+Be(~2 ~"' (26)

(25)
The percentage of the increase of the decay rate is
given by

~(~—~')+v) —v"

1( 8~2
+-( t ~(~—~')+v) —v"]'— p2M*"

I (»a)
2 ( I)."

$(M &d )+Vl Y

1 ( 8~'—
i

L'(---')+v.-v"j'- P M."
I

(»b)2( h'

The successive use of (19), (21), and (26) together
with the values of h as given by (27), permits us to
determine the decay times of the various states in the
presence of both magnetic 6elds; the parametric
dependence on co gives us the behavior at and near
resonance. Two limiting cases are of particular interest
and lead to simple results especially at resonance.

(1) H, small, or, more quantitatively,

v"—v(«(3m/h) 8M~'. (28)

This value is well observable for moderate H since
the decay rate of the pure ortho-state is in that case
no longer overwhelmingly large compared with the
rate of transition to the composite state with ms=0
from which two-quantum decay processes are now
possible.

(2) H, large, or, more quantitatively,

Sx'
p'M, ".

h'
(31)

Then for the case of resonance the real parts of b~ and
82 become equal. Substitution into the relevant equa-
tions of the text shows that then'ut'l three states decay
with a decay constant -', (v&+v"). This means that the
states with m= &I decay mostly through two-quantum
processes; the state m=0 is now partly "dequenched"
and decays with a larger percentage of three-quantum
processes than in the absence of the alternating 6eld.
It should be observed that this eGect is independent of
the magnitude of H, as long as the relation (31) holds
true.


