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The Magnetic Susceytibility of the Transition Elements

C. J. KRIEssMAN, Eckert-.Vanchly Division, Remington Rand, Inc. , I'lziladelpIzia, I'ennsylvania
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The available data on the temperature dependence of the paramagnetic susceptibility of the transition
elements are reviewed. A theoretical treatment according to the band theory of solids is developed explicitly
by means of a simple approximation to the Fermi function. Each term in the resulting theoretical formula
may be directly and graphically interpreted in terms of the geometry of the density-of-states curve, allowing
a simple and intuitive analysis of the susceptibility variation at any temperature. The empirical data on the
temperature coefficient of susceptibility, on the absolute magnitude of the susceptibility, and on the speci6c
heats of the transition elements are analyzed to suggest probable alterations in the available theoretical
density-of-states curves.

1. INTRODUCTION

~ NLY in recent years have enough reliable data
been accumulated to encourage an attempt at a

general understanding of the temperature dependence
of the magnetic susceptibility of the transition elements,
These data, ' " together with the absolute magnitudes
of the susceptibility and of the electronic specific heat,
provide some of the most direct information on the
electronic density-of-states curves of these materials.

The purpose of this paper is two-fold: first, to criti-
cally assemble the data on the temperature variation of
the magnetic susceptibility, and to show that certain
striking regularities in these data can be understood
on the basis of the general features of the available
theoretical density-of-states curves;" and second, to
invert the logic and to suggest certain alterations in the
details of the density-of-states curves on the basis of the
experimental data.

*The contribution of one of the authors (H. B.C.) to this work
was supported in part by the U. S. OfIIice of Naval Research at the
University of Pennsylvania, and was stimulated and initiated in
the course of consultantship to the Eckert-Mauchly Division of
Remington Rand, Inc.

' C. F. Squire and A. R. Kaufmann, J. Chem. Phys. 9, 673
(1941).' Li Klemm, Z. Electrochem. 45, 354 (1939).

'C. J. Kriessman and T. R. McGuire, Phys. Rev. 90, 374
(1953).' C. J. Kriessman, Revs. Modern Phys. 25, 122 (1953).

s F. E. Hoare and J. C. Walling, Proc. Phys. Soc. (London)
B64, 337 (1951).

e W. J. deHaas and P. M. Van Alphen, Proc. Acad. Sci. Amster-
dam 36, 263 (1933).' T.R. McGuire and C. J.Kriessman, Phys. Rev. 85, 452 (1952).

s L. F. Bates and A. Baqui, Proc. Phys. Soc. (London) B48, 781
(1936).

s H. Sochtig, Ann. Physik 38, 97 (1940).
'v M. Isobe, Science Repts. Tohoku Univ. A3, 78 (1951).
"A. Serres, J. phys. radium 9, 377 (1938)."N. Perakis and L. Capatos, Compt. rend. 196, 611 (1933).
"A. N. Guthrie and L. T. Bourland, Phys. Rev. 37, 303 (1931).
'4 K. Honda, Ann. Phys. 32, 1027 (1910).
's F. E. Hoare and J. C. Mathews, Proc. Roy. Soc. (London)

A212, 137 (1952).
'6 For a compilation of electronic specific heat data see M. Horo-

witz and J. G. Daunt, Phys. Rev. 91, 1099 (1953).
"H. M. Krutter, Phys. Rev. 48, 664 (1935);J. C. Slater, Phys.

Rev. 49, 537 (1936).

5,0-

4,0-
O

~ s.e

E

~0.6—
a 0.5—I
X

OA0

Hafrlium (ref, 5)

I I I I l I

200 F00 600 800 GOO l200 l400
Temperature ('K)

Fn. 1. Experimental susceptibilities of Ti, Zr, and Hf. The
high-temperature changes in the susceptibilities of Ti and Zr are
associated with crystal structure transitions.

"E.C. Stoner, Proc. Roy. Soc. (London) A154, 656 (1936).

The theoretical treatment which we shall develop
for the temperature dependence of the susceptibility
is based on a simple approximation to the Fermi func-
tion which avoids the intractabIe integrals of the precise
theory. This approximation yields closed-form ex-
pressions valid for any temperature, and permits a
simple and intuitive graphical interpretation on the
basis of the density-of-states curve.

The theory supplements an earlier theory of Stoner"
which proceeded by a series expansion valid for low
temperatures. On the basis of that theory Stone t

recognized the general aspects of the relationship be-
tween the density-of-states curve and the temperature
dependence of the susceptibility. The geometrical nature
of our analysis allows a particularly perspicuous and
convenient semiquantitative discussion of recent ex-
tensive experimental data and of the various theoretical
density-of-states curves.

2. EXPERIMENTAL OBSERVATIONS

The most striking feature of the accumulated data on
the temperature dependence of the susceptibility of the
transition elements is that each of the elements in a
particular column of the periodic table exhibits the
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FIG. 2. Experimental susceptibilities of V, Nb, and Ta.
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FIG. 3. Experimental susceptibilities of Cr, Mo, and W.

TAszE I. References and figures for the experimental magnetic
susceptibility data.

Periodic
table

column

IV
V
VI
VII
VIII
IX
X

Elements

Ti;Zr;Hf
V;Nb; Ta
Cr;Mo;%
Mn;Re
Ru;Os
Rh;Ir
Pd;Pt

References

1,271 273
4,2;4,6;4,5
7,8,9;4,6)4,6
11,3,10;12
13;13,14
5,15,13;13,14
5,13,15;13,15

Dominant
temperature
dependence

increasing
decreasing
increasing
decreasing
increasing
increasing
decreasing

Figure

1
2
3

5
6;5
6

same general type of temperature dependence; thus the
susceptibility of each of the elements (Ti, Zr, Hf) in
column IV increases with increasing temperature,
whereas the susceptibility of each of the elements

(V, Nb, Ta) in column U decreases with increasing
temperature. Furthermore, the sign of the temperature
coeKcient of the susceptibility is observed to alternate
from column to column of the periodic table. The
empirical results are shown in a series of graphs,
(Figs. I—6), references to which are given in Table I.
Since many of the room temperature values of the
absolute magnitude of the susceptibility which are
quoted in handbooks are antiquated, a list of the best
values has been compiled in Table II.It should be noted
that only a room temperature value is known for Re,
and that the data on Ru, Os, and Ir are still somewhat
uncertain.

As remarked above, one of the most interesting fea-
tures of the experimental data is that the temperature
coefFicient of the susceptibility alternates in sign with
the columns in the periodic table from column IV to
column VIII. This change in temperature coefTicient
correlates also with an alternation in the magnitudes of
both the room temperature susceptibility and the
electronic specific heat" as shown in Table III. These
facts will be discussed in the following section in rela-
tion to the band theory. The burden on a theory has
become more dificult with the recent discovery of
maxima in the susceptibilities of Mn (Fig. 4) and Pd
(Fig. 6) and minima in the susceptibilities of Zr (Fig. I)
and Nb (Fig. 2). However, it must be noted that al-
though the maxima have been substantiated, it is pos-
sible that the low-temperature minimum in Zr is due to
impurities, as indicated by Squire and Kaufmann, '
and that the apparent high-temperature minimum in
Xb may be merely a leveling oG. Another interesting
result is that the susceptibility of Pd appears to increase
again at the lowest temperatures.

3. INTERPRETATION ACCORDING TO
THE BAND THEORY

We recall very briefly the mechanism of the Pauli
paramagnetism. In the absence of a magnetic field the
electronic spins in a paramagnetic material are equally
divided between the two possible spin states ("up" and
"down"). An applied magnetic field in the up direction
lowers the energies of the electrons with spin up relative
to those with spin down. The lowest energy state of the
system is then achieved by a spontaneous transition of
some electrons from the down to the up state. The net
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5 Experimental susceptibilities of Ru and Os (column VIII
of the periodic table) and of Ir (column IX).

FrG. 4. Experimental susceptibility of Mn. The original dotted
data are higher than shown, but have been shifted downward to
join continuously with the solid curve.
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&V=, [n(e+17,H)+77(e f7,H) jf—(e,i,T)de (3)

uncompensated magnetic moment so induced per unit
field is the magnetic susceptibility of the material.

The total number of electrons with spin up is simply
577+(e)f(e,t, T)de, where 77+(e) is the density-in-energy
of the electronic spin-up states; f(e,I,T) is the Fermi
distribution function (the a priori probability of occupa-
tion of a state of energy e); and f and T are the Fermi
energy and absolute temperature, respectively. The
applied magnetic field merely lowers the energy of every
spin-up eigenstate by the amount pH, so that

77+( )e= 's(e+pH), (&)

where 77(e) is the density-in-energy of the states of a
single spin in the absence of a magnetic 6eld. Similarly,

77 (e) = 1E(c '/AH) . (2)

The Fermi energy f' is determined by the requirement:
that the sum of the numbers of electrons of each spin is
the constant total number iV:

TABLE II. Compilation of best magnetic susceptibility values
(emu/g) for the transition elements.

Element

Tl
Zi'
Hf
V
Nb
Ta
Cr
Mo
W
Mn
Re
Ru
Os
Rh
Il
Pd
Pt

x X&06

3.2
1.3
0.42
5.0
2.24
0.84
3.3
0.94
0.30
9.7
0.37
0.43
0.05
0.99
0.18
5.23
0.97

References

12
12
3
4
4,6
4,5
8,7
4,6
4l6
11
12
13
13
5
14,16
5
5

Ti V Cr Mn (Ru)

TAaxz III. Comparison of the temperature coefficient of the
susceptibility, the electronic specific heat, and the magnetic
susceptibility of certain transition elements.

The susceptibility is given in terms of the difference
Sign of d7c d1'

between the number of SPins uP and the number of Electron7cspecifcheat, vX104
spins down: Susceptibility, pX10'

+ — + — +
8.0 15 3.8 42 3.04
3.2 5.0 3.3 9.7 0.43

+=Llm— L77(e+pH) N(e pH)]f(e I T)de (4)
K—lo II/

y= 2p' 77'(e)f(e,I', T)de, (5)

and by then performing a partial integration,

)t= —2ps N(e) f'(eg, T)de, (6)

Equations (3) and (6) are the fundamental equations
determining the susceptibility. In principle it would
merely be necessary to know 77(e) from the band
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FIo. 6. Experimental susceptibilities of Rh (column IX) and of
Pd and Pt (column X). The general trends of the susceptibility
dependence continue in the, high-temperature region which is not
shown in the graph.

This equation is easily cast into a more convenient form
by erst explicitly performing the indicated limiting
process,

structure of the material; one would solve for I from
Eq. (3), insert this into Eq. (6), and then perform the
integration to obtain x explicitly as a function of T.

However, for any realistic 77(e) functions, this simple
procedure is mathematically awkward due to the di%-
culty of the integrations involving f(e,I,T). Now al-
though the susceptibility does depend on the Fermi
distribution function (which is thesame, ",for all the
metals), the main differences in the susceptibility from
one metal to another will depend on the diGerences in
their 77(e) curves. Since the susceptibility does not de-
pend critically on the 6ne details of the universal
function f(e,t,T), we replace it by an analytically
simple function which still retains the essential char-
acter of f(e,I,T) and which makes the mathematical
calculations relatively easy and convenient. Such a
function is shown in Fig. 7 and is given algebraically by

-1, «t- 2.77kT—

,0, e)t+2 77kT. (7)

We now proceed to substitute this simple linearized
function into our basic Eqs. (6) and (3) in order to ob-
tain a new pair of simplified basic'"'equations. Substi-
tuting 6rst into Eq. (6) gives

pr+7 77k T (.
X= —2p' 77(e) I

— l«(g)
~r s.77sT ( 5.5kT)

, (
f*(eg,T)=. sI & —'I, I 2 77kT&e&I—+2. 77kT.

2.'77kT j
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n(e) curve computed by Slater and Krutter'7 for copper
is shown in Fig. 8.

Given a particular n(e) curve, construction of the
1V(e,|'p) curves for various values of 1 p is facilitated by
the evident relation,

Fro. 7. The "linear" approximation to j(ej,T). The slope
of the straight line is so chosen that the shaded area vanishes
algebraically.

Thus we need only compute one integrated density-of-
states curve; all others can be obtained therefrom by
the simple subtraction of an appropriate constant.
Equation (11), which determines f, may now be put
into a convenient form by a partial integration,

CO

1V(,i,)—[f*(,&",T)—f(,(,,0)jd =0; (15)

or
X= »'(n(|))s.»r

That is, the magnetic susceptibility is proportional to the

average value of n(e) in an energy interval of width 5.5kT,
centered at e=i'

The simpli6cation of Eq. (3) proceeds in a similar
fashion, but the result is not quite so immediate. For the
vanishingly small values of magnetic field in which we
are interested Eq. (3) becomes

Thatis, the Fermi energy is determined by the vanishing of
the average value of the integrated density of states-c-urve
in an interval 5.5kT centered at e= f'.

Equations (9) and (16) are our new basic pair of
equations, replacing (6) and (3). The procedure for
computing the susceptibility at any given temperature
now resolves into the following sequence of graphical
constructions, which are illustrated in Fig. 9.We assume
that we are given the density-of-states curve n(e) and
the zero-temperature Fermi energy fp (or the equivalent
quantity 1V, the total number of electrons) We th. en
construct the integrated density-of-states curve 1V(s,t p).
To find the value of f at the chosen temperature T we
move the interval 5.5kT along the energy axis until it
intercepts an algebraically vanishing area under the
1V(e,f'p) curve. The center of the interval is then 1 (T).
The average value of the n(e) curve in that interval,
when multiplied by the constant 2p, ', is the value of the
susceptibility x(T).

Although the above constructions permit a simple

(10)1V=2 n(e) f(e,l, T)de

Eliminating E' by means of the above equation re-
written for T=O, and replacing f by the linearized
function f*, we obtain

Now the 6rst fact which may be noted is that f' is
bounded in an interval of width 5.5kT, centered at t p.

f'p 2.77kT &1 &—fp+2.77kT. (12)

For if we were to assume t)i'p+2 77kT, the term .in

square brackets in the integrand of Eq. (11) would

be everywhere nonnegative, and the integral conse-
quently could not vanish. Similarly, if we were to
assume i &f'p 2 77kT, the te—rm . in square brackets
would be everywhere nonpositive and again the integral
could not vanish. It is now convenient to introduce an
integrated density-of-states curve de6ned by

(9) and inserting the algebraic form for the parenthetical
function yields

1V(e,i'p) = ~" n(e')de'.
"to

(13)

Thus 1V (e,t p) has the physical signi6cance of the total
number of states (of a single spin) between the energies

f p and e. In the counting of states, howeverall'st, ates
of energy higher than f'p give a positive contribution,
whereas all states of energy less than t p give a negative
contribution. An 1V(ej p) curve obtained from the

'8 V Cr Mn
I I I

yH) go) g(e) ~p)

FIG. 8. The density-of-states curve for copper, as computed by
Slater and Krutter. The integrated density-af-states curve
X(p,fp&'&) is also shown. The relative positions of other energies
fp&"& for some of the transition elements are indicated (» is the
total number of s and d electrons).
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calculation of )f(T) itself, it is in the temperature
coefficient dx/dT that we are primarily concerned. We
shall now see that this quantity may also be directly
related to certain geometrical constructions based on the
n(e) curve.

The temperature dependence of z clearly arises from
two distinct sources. These are

ng)
Cr

1. the variation with temperature of the miChh of the
Fermi distribution and consequently of the interval
of averaging in Eq. (9). This width is simply S.SkT;

2. the variation with temperature of the Fermi energy
f(T), which determines the center of the interval of
averaging in Eq. (9). The dependence of t on the tem-
perature is determined by Eq. (16).

The two separate mechanisms of temperature varia-
tion are clearly exhibited in the explicit equation for the
derivative. Differentiating Eq. (9) (or 8), we find

b

~o,~iooO,

5.5k7~

FIG. 9. Geometrical interpretation of the two contributions to
the temperature coefBcient of the susceptibility. Portions of the
Slater-Krutter density-of-states curve have been applied to Ti, V,
and Cr. The contributions of the interval width to the temperature
coeifrcient of the susceptibility is (for Ti).

(dx/dT)~;p&s = 2','/5. 5k T' (Area dfc)
The contribution of the Fermi energy shift is

(dx/dT)a„. n=2y'( l spoe of line dc)(df/dT),
dx 2p

[n((&2.77kT) —(nu')) . srj
dT T

where

df/dT=5. 5k[(Area A —Area B)/(Area A+Area 8)j.

n(f+2.77kT) nu 2.7—7kT) —dl
+2' (17)

dT

where nQ'&2. 77kT) denotes the average of the two
values of n(e) at the ends of the interval:

n(0~2.77kT) = s[n(2.77kT)+nu+2. 77kT) j. (18)

The two terms of Eq. (17) correspond, respectively, to
the two sources of temperature variation mentioned
above. The quantity df'/dT may be related to the den-
sity-of-states curve by differentiating Eq. (16), yielding

df /V (t +2.77kT f'p)+/V (f 2.77k—T,gp)= —2.77k . (19)
A'(/+2 77kT, t 2.7. '/kT)—

Each of the terms of Eqs. (17) and (19) may be given
a direct geometrical interpretation in terms of the n(e)
curve, and this geometrical interpretation is very
useful in the analysis of susceptibility data. To interpret
the first term of Eq. (17), which represents the contri-
bution of the width of the Fermi distribution, we con-
sider a straight line drawn between the values of n(e) at
the ends of the interval t'+2.77kT. The bracket in the
first term is then proportional (with the factor 5.5kT) to
the algebraic area between this line and the actual n(e)
curve, as shown in Fig. 9. To interpret the second term
in Eq. (1/), we note that the bracket is just the slope
of the above mentioned straight line. The quantity
dt/dT, as given in Eq. (19), is in turn proportional
(with the factor 5.5k) to the fractional difFerence in the
areas to the left and to the right of t p under the n(e)
curve in the interval l &2.77kT. This geometrical
interpretation of df'/dT is illustrated in Fig. 9.

We shall now consider each of the two mechanisms of
temperature variation in more detail. The first contri-

bution to dx/dT, arising from the width of the Fermi
distribution, is 2fcs/5. 5kTs times the area between the
n(e) curve and the straight line joining the extremities
of the interval. It is clear that this contribution de-
pends essentially on the curvature of n(c) in the interval
f'+2.77kT. If n(e) were linear, the curve would be
coincident with the straight line, and the area between
them would vanish; analytically, the average value
of n(e) appearing in Eq. (17) would just be nu), inde-
pendent of the width of the interval. However, if n(e)
were to have positive curvature the curve would be
below the line, and the area would be positive, connoting
a positive contribution to dz/dT. In terms of Eq. (9) the
average value of n(e) would be larger than n(f') and
would increase with increasing interval width 5.5kT;
as a result the susceptibility would tend to increase
with temperature. Similarly, an n(e) curve with nega-
tive curvature leads to a negative temperature coefB-
cient of susceptibility. This connection with the curva-
ture is clearly evident in the first term of Eq. (17), the
form of which suggests the finite difference approxi-
mation to the second derivative of n(e).

For low temperatures we may expand n(e) in a power
series about e=t'
fl e =B

+(1/2 )( —|)' "u)+ .
, ('-o)

whence
(2.77)'

( u». -.=-u)+ "'u)(kT)
2 (2!)

(2.77)4
+ "(P)(kT)'+ (»). .

4(4 l)

Again we note that the leading temperature-dependent
term is determined by the curvature of n(e), and we
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also note that the temperature dependence involves
only even powers of T.

Two significant physical conclusions thus may be
drawn from these considerations. First, that the con-
tribution to the temperature dependence of the width
of the interval of averaging appears only in a quadratic,
and not in a linear, term in T. And second, that the
contribution of this mechanism to the temperature
coefficient of g is positive if l 0 lies near a minimum of
n(e) (where n(e) is concave upward) and is negative if

1 0 lies near a maximum of n(e) (where n(e) is concave
downwa, rd).

VVe now consider the second contribution to the
temperature dependence of the susceptibility, namely,
the variation of the Fermi energy with temperature. If
an increase in temperature shifts |in the direction of
increasing n(l ) this mechanism tends to make a positive
contribution to the temperature coefIicient of
whereas if an increase of T shifts t in the direction of
decreasing n(g) the contribution tends to be negative.
Thus the second term of Eq. (17) is roughly of the form
(dn/de)re'/dT, the actual slope (de/de)r being re-
placed, however, by the slope of the straight line
joining the values nO &2.77kT). The value of df/dT is
found graphically as described above and as indicated
in Fig. 9.

It is again of some interest to check the behavior at
low temperatures. Expanding E(e,|0) in a power series
about e=fo, we obtain

1
&(,t..) = ( —|..) (t-.)+—( —~.)' '(l-)

2l
1

+—(~—l.,)'e"(g,)+ ", (ZZ)
3l

whence

&&o.,t'))= c.-t.) u.)

+—,C(t —l-o)'+-:(277kT)'j '(l-o)+" . (»)

By ignoring all terms higher than the second in T, the
equation obtained by equating (N (t,l 0)) to zero may be
solved for l, giving

1 n'(fo)
l 0

——— ——(2.77kT)'. (24)
6 n(l-)

Thus
1 e'(t 0)

eO-) =n( t-,——
6 n(f'0) )

(25)
1I '(~o)7= (~o)-- (2.77kT)'+

n(go)

Inserting this value in Eq. (21) we find that to the
second order in T,

(n'(to))'
x=zp'n(10)+(2. 77)'p' -'n"(to) — (kT)'. (26)

3n(l.,) ~

The term involving the square of the 6rst derivative of
e (e) is the contribution of the variation of l with temper-
ature. Again we find that the temperature dependence
appears only in a quadratic, rather than in a linear, term
in T. The sign of this leading temperature-dependent
term is always negative, so that at low temperatures
the shift of 1 with temperature always makes a negative
contribution to the temperature coefficient of the
susceptibility.

Equation (26) may be compared with a result of
Stoner, "who by a direct series expansion of the true
Fermi function, found

N (j.=2" (l-,)+—"—. "u.)- (kT) +
2 . 3e(l'p)

On the basis of this low-temperature equation, Stoner"
has demonstrated the possibility of obtaining a positive
temperature coefficient of susceptibility near a minimum
of n(e), and has applied this result to a discussion of the
then-available data.

Despite the fact that at very low temperatures the
contribution to dx/dT of the shift of t is always negative,
at reasonable temperatures this contribution may be
either positive or negative. The graphical solution in-
dicates tha, t t has a tendency to move away from the
largest peak of the n(e) curve in the interval t &2.77kT,
and this "repulsion" may easily result in an increase in

nO) with T. A condition under which this mechanism
will contribute a positive temperature coeKcient is thus
that fo be on the shallow side of an asymmetric mini-
mum of n(e).

4. THEORETICAL DENSITY-OF-STATES CURVES"

Preparatory to a discussion of the correlation of the
theoretical results and the empirical data, we briefIy
review the several density-of-states curves which have
been computed for the transition elements. Precise cal-
culations, although possible in principle, are pro-
hibitively difFicult in practice. As a consequence semi-
quantitative inferences must be drawn from the syn-
thesis of the results of various approximate calculations.

The theoretical density-of-states curve to which we
shall make primary reference is that computed by
Slater and Krutter" for copper, and generally optimis-
tically applied to the various iron-group transition
metals. The Slater-Krutter calculation is bayed on an
approximate signer-Seitz solution of the Pock equa-
tions, using an ion-core potential obtained from the
Hartree functions for the free copper ion. As these
Hartree functions, in turn, were computed neglecting
exchange they are very probably larger than the true
inner-core functions. Consequently the width of the
d band as computed by Krutter is undoubtedly too wide.
The computed width is 5.4 ev, whereas a more probable

"G. V. Raynor, "The band structure of metals, "Repts. Progr.
Phys. 15&""173 (1952).
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value on the basis of soft x-ray data, electronic specific
heats, and other calculations is of the order of 4 ev.

The general method of the Slater-Krutter calcula-
tions on copper have been applied to n Fe by Manning"
and to p Fe by Greene and Manning. "Comparison of
these curves with the copper curve substantiates to some
extent the assumption of similarity in form of the d
band among the various transition metals, although
significant diGerences in detail are quite apparent. In
all three curves the distribution is peaked at each end
of the band, and has a third peak just below the center
of the band. Although the relative heights of the peaks
di6'er in the various calculations we shall see that it is
merely the existence and position of the peaks, rather
than their precise height, which is significant in our
considerations.

Another calculation with relevance to the Fe-group
transition metals is the tight-binding calculation of Ni
by Fletcher and Wohlfarth. "The tight-binding approxi-
mation certainly underestimates the effect of overlap,
and in this case predicts a band width of only 2.7 ev.

For our discussions of the density-of-states curves of
the elements in the sixth row of the periodic 'table (Hf,
Ta, W, Re, Os, Ir, Pt) we shall refer principally to the
calculation of tungsten by Manning and Chodorow, "
shown in Fig. 10. This calculation employed a rather
elaborate signer-Seitz cellular approach, using four-
teen atomic functions for the representation of the wave
functions of the valence electrons. The results for the
partially filled d band may be expected to be reasonably
accurate, and the extrapolation of the results to Ta at
least should be quite trustworthy. Extrapolation to
other members of the sixth row, which have other crys-
tal structures, would be questionable.

No theoretical density-of-states curves are available
for a discussion of the transition elements of the fifth
row of the periodic table (Zr, Nb, Mo, Ru, Rh, Pd).

I

S. THEORETICAL CORRELATION OF
EXPERIMENTAL DATA

Having reviewed both the experimental data and the
theory of the dependence of the susceptibility on the
density-of-states curves, we now consider the correla-
tion of the observed data with the ri(e) curves described
in the preceding section. In particular we shall first
attempt to account for the observed alteration in the
sign of dx/dT from column to column of the periodic
table. The empirical susceptibility data will then be
analyzed to suggest certain probable alterations in the
details of the theoretical density-of-states curves.

Ke first consider the sequence of the iron-group
transition metals, for which we adopt the Slater-Krutter
curve as the nominal basis for our discussion. Ke pro-
ceed by assessing the separate contributions to dx/dT

~ M. F. Manning, Phys. Rev. 63, 190 (1943)."J.B. Greene and M. F. Manning, Phys. Rev. 63, 203 (1943).
~ G. C. Fletcher and E.P. Wohlfarth, Phil. Mag. 42, 106 (1951)."M. F.Manning and M: Chodorow, Phys. Rev. 56, 787 (1939).
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Fio. 10. The density-of-states curve for tungsten, as calculated
by Manning and Chodorow. The zero-temperature Fermi energy
of W and Ta are indicated.

from the interval width and from the l shift mechanisms
using the graphical constructions illustrated in Fig. 9.
Ke arbitrarily choose an interval width of 1000'C to
obtain the general trend of the temperature coeKcient
of the susceptibility. If both mechanisms give contri-
butions of the same algebraic sign, the sign of dx/dT is
known immediately. However, if the two separate con-
tributions are of opposite sign we must inquire more
carefully into the ratio of their magnitudes. Ke shall
examine in turn the elements Ti, V, Cr, and Mn. In
Fig. 9 we see that for Ti the motion of t over the temper-
ature interval to 1000 C is very small because the areas
under Ã(e, t s) are almost equal. However, it is evident
from the relative heights of the two maxima that l will
shift slightly to the right, the direction of decreasing
e(e) and decreasing y. The contribution due to the in-
terval width, however, is positive and large. The ratio
of the interval width contribution to the i shift contri-
bution is of the order of 80, showing conclusively that
the susceptibility of Ti should increase with temperature
over 1000'C. This is in agreement with the experimental
data in Fig. 1.

The same constructions for V are also shown in Fig. 9
It is evident that both the interval width and l' shift
mechanisms give negative contributions to dx/dl' in
this case and that as a result the susceptibility of V
should decrease with temperature. Again this is consis-
tent with the experimental data shown in Fig. 2.

Cr is considered next. From Fig. 9 we find that
(A/d~) 'ati is positive while (dx/dT)r Q ff, is negative.
The calculated value of the ratio of these contributions
is 1.06 indicating that the x of Cr should actually in-
crease with temperature in accord with the experimental
data in Fig. 3. However, the low value of the ratio is
somewhat unconvincing. Also, as Friedberg, Estermann,
and Goldman'4 have pointed out, and as is evident from
Table II, Cr has a much lower electronic specific heat
than its neighbors in the periodic table. Since the elec-
tronic specific heat is directly proportional to n(e) we
would expect the Fermi energy of Cr to occur at a very

~4Friedberg, Estermann, and Goldman, Phys. Rev. SS, 375
(1952).
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F&G. 11.The Slater-Krutter density-of-states curve qualitatively
altered from considerations of the experimental susceptibility and
electronic specific heat data.

low minimum in e(e). This would be most logically
accomplished if the minimum in e(e), which in Fig. 8
occurs between V and Cr, were widened considerably.
Then not only would the f o of Cr occur at a lower value
of n(e), but the density-of-states in the neighborhood of
Mn would be increased significantly. This is physically
desirabIe also because the magnitudes of the suscepti-
bility and electronic specific heat of Mn are much larger
than those of Cr. This suggests that the actual e(e)
curve is of the form shown in Fig. 11.From this curve it
is at once clear that the susceptibility of Cr must in-
crease with temperature since there will now be a larger
positive interval width contribution.

The suggested e (e) curve also serves to clarify the case
of Mn, in which the experimental susceptibility de-
creases with temperature in the intermediate tempera™
ture range. The |'e of Mn falls on one side of a large
maximum in the m(e) curve of Slater and Krutter, a
position which ordinarily would lead to a negative
dy/dT. However, as can be seen in Fig. 8, the fortuitous
positioning of f e near what is probably only a computa-
tional secondary minimum in m(e) predicts a positive
dx/dT, even though f moves toward lower n(e). Our
suggested e(e) curve eliminates this presumably com-
putational minimum and gives the temperature de-
pendence suggested by the broader features of the
Slater-Krutter e(e) and required by experiment.

Thus we have the important result from our simpli6ed
treatment that the band theory applied to a slightly
amended approximate calculation of the 3d band is
capable of explaining the observed alternation in sign
of dx//dT of the transition elements. This alternation
arises from the sequence of maxima and minima which
have appeared in roughly similar form in the various
various approximate calculations of the density-in-

energy curves of the iron-group 3d band. Corroborating
evidence for the validity of maxima and minima in the
density-of-states of the transition elements is found in
the electronic speci6c heat. At low temperatures the
electronic portion of the specific heat may be repre-
sented by a term linear in temperature, C,=yT, where

p is directly proportional to e(P). Goldman" has pointed
out that the values of m(l) derived from the electronic
specific heats of the transition elements alternate in a
manner quite like the maxima and minima in the
Slater-Krutter curve. Recently Horowitz and Daunt"
have also proposed an e(e) curve, somewhat similar to
that of Fig. 11, based on a synthesis of the electronic
specific heat data of the transition elements. It seems
reasonable therefore, to state that a structure of maxima
and minima in the 3d band is capable of explaining the
susceptibilities of the Fe-group e1ements, and that this
structure is in harmony both with theoretical calcula-
tions and with other experimental data.

The temperature dependence of the susceptibility of
tungsten, in the sixth row of the periodic table, may be
discussed on the basis of the density-of-states curve
computed by Manning and Chodorow and shown in
Fig. 10.The Fermi energy falls at a minimum as shown,
and dx/dT is consequently positive, in agreement with
the experimental susceptibility shown in Fig. 3. On the
basis of the same theoretical density-of-states curve the
zero-temperature Fermi energy of tantalum falls at a
maximum of m(e), as indicated in Fig. 10. A negative
coeIIficient of susceptibility is thereby predicted, again
in agreement with the experimental observations.

Maxima and minima in the curves of susceptibility
vs temperature present no special problem to our treat-
ment, although in some cases it may be necessary to
resort to 6ne structure in the n(e) curves. Minima at
low temperatures are easily explained. It has been
pointed out that at low temperatures the movement of
I always results in a decreasing y; therefore, if the in-
terval width contribution is the smaller at low tempera-
tures (i.e., if the curvature n" (|e) is small) the x will

necessarily decrease. As T increases the interval width
contribution, if positive, can easi1y cause the sign of
dx//dT to change, thereby producing the low tempera-
ture minima. A maximum at low temperatures is some-
what more diTicult to explain because of the tendency of
the susceptibility to decrease at low temperatures; but
if fe were to occur at a small depression in e(e), the
susceptibility could increase initially at low tempera-
tures and a maximum could easily result. However, it
must be pointed out that in the case of manganese a
strong exchange coupling may be responsible for the
maximum at low temperatures. Maxima and minima
at high temperatures are easily accounted for in terms
of the competition of the two mechanisms.

On the basis of the above simplified treatment, it
thus appears that the band theory is able to give a
natural explanation not only of the increasing y of
certain transition elements, but also of the remarkable
alternation in sign of dx/dT.

"J.Goldman (private communication).


