THE
PHYSICAL REVIEW

A journal of experimental and theoretical physics established by E. L. Nichols in 1893

SeconDp Series, Vor. 94, No. 4

MAY 15, 1954

Magneto-Hydrodynamic Waves in Liquid Sodium

Bo LEHNERT
Royal Institute of Technology, Stockholm, Sweden

(Received August 28, 1953)

Liquid sodium, because of its higher electrical conductivity and lower density, is more suitable than
mercury for magneto-hydrodynamic experiments. Torsional waves in liquid sodium have been generated in
a cylindrical vessel with the axis parallel to a homogeneous magnetic field, and resonance phenomena have
been investigated at constant frequency and variable magnetic field strength. The agreement between theory
and experiment is satisfactory. It is shown that even with sodium, damping plays an important role under
laboratory conditions. The calculations of this paper are also used to improve the results of earlier in-

vestigations with mercury.

1. INTRODUCTION

URING the last ten years the importance of
magneto-hydrodynamic phenomena in cosmic
physics has been realized in a great number of applica-
tions, such as solar physics, cosmic radiation, and the
problem of oscillating stars. The investigations of
general physical interest made by a number of authors
is given in a survey by Lundquist.! By far the largest
part of the work on magnetohydrodynamics is of a
theoretical nature, and there exist only a few experi-
mental investigations, all carried out with mercury.2
When the theory is applied to special problems in
cosmic physics, an exact solution often leads to great
mathematical difficulties. Thus, in addition to being a
valuable verification of theory, the experimental work
serves the purpose of solving problems associated with
complicated geometrical configurations through model
experiments in the laboratory.?

When treating an electrically conducting liquid in a
magnetic field from both a theoretical and an experi-
mental point of view, an analogy between magnetic
field lines and elastic strings given by Alfvén®¢ is often
a convenient tool. A motion of the liquid perpendicular

1S, Lundquist, Arkiv Fysik 5, 297 (1952).

2 J. Hartmann and F. Lazarus, Kgl. Danske Videnskab. Selskab,
Mat.-fys. Medd. 15, No. 6 (1937); J. Hartmann, Kgl. Danske
Videnskab. Selskab, Mat.-fys. Medd. 15, No. 7 (1937).

3S. Lundquist, Phys. Rev. 76, 1805-1809 (1949).

4B. Lehnert, Arkiv Fysik 5, No. 5, 69 (1952); Tellus 4, No. 1,
63 (1952).

5 H. Alfvén, Cosmical Electrodynamics (Oxford University Press,

London, 1950).
6 H. Alfvén, Arkiv mat. astron. fysik B29, No. 2 (1942).

to the magnetic field gives rise to induced currents and
an induced magnetic field. If the conductivity is in-
finite, the total magnetic field is “frozen in” and the
fieldlines act as elastic strings “glued to” the elements
of the liquid. This is true in many cosmic applications
where the conductivity is high and the dimensions are
large. Virtually undamped magneto-hydrodynamic waves
are then propagated along the magnetic fieldlines with
a velocity independent of frequency in much the same
way as elastic waves along strings. However, under
laboratory conditions, e.g., in experiments with mer-
cury, the properties of the waves differ from those of
“ideal waves,” i.e., waves in a liquid with very large
conductivity, both at low and high frequencies. The
wavelength at low frequencies becomes much larger than
the linear dimensions of the apparatus and the wave
velocity depends on frequency. At high frequencies the
inertia of the liquid becomes too large, and the waves are
changed into strongly damped skin waves in a solid
body, which also suffer from dispersion. If the condi-
tions are favorable enough, however, there exists an
intermediate “ideal” region of frequencies, where the
waves are propagated with approximately constant
velocity and moderate damping. The condition for
such well developed magneto-hydrodynamic wave
phenomena is!+?

BLa- (u/p)>>1, 1)
where B is the magnetic field strength,” L the linear di-

7 Mks units are used throughout this paper. The unit for mag-
netic field strength is volt sec/m?=10* gauss.

815



816

TaBLE L. Values of the left-hand side of the inequality (1) at
different applications. Large values of this quantity correspond to
states of motion greatly influenced by electrodynamic forces.

B (volt L 4 p
Application secm™) (m) (@!'m™) (kgm) BLo-(u/p)}
Experiments with 1 0.1 10¢ 13 600 1
mercury
Experiments with 1 0.1 14X108 970 50
liquid sodium
Sunspots 0.01 108 108 108 3% 108
Magnetic vari- 1 101 1087 1032  3X104?
able star
Interstellar space 10722 102 108? 10722 3X10%?

mensions, ¢ the electric conductivity, p the density, and
u the (absolute) permeability. Some possible values of the
left-hand side of the expression (1) are given in Table 1.
It is shown in the table that cosmic conditions are far
from being realized in laboratory experiments. Never-
theless the conditions of the experiments with sodium,
described in this paper, are improved to such an extent
compared to earlier experiments with mercury that it
has been worth while to make an experimental investiga-
tion with liquid sodium.

The following sections will give an account of some
experimental and theoretical investigations of magneto-
hydrodynamic waves in liquid sodium in the “ideal”

F1G. 1. Outline of the vessel where the waves are generated.
1—Magnet with pole shoes. 4—Pipe for sodium. 11—Axis, iso-
lated with a glass cylinder. 12—Box with packing. 13—Duct bolt.
14—Driving arm. 15—Copper disk. 16—Holder with ball bearing.
17—Cylinder made of brass. 18—Layer of glass tape and silicone
ﬁesin. 19—Packings of rubber. 20—Probes with holder. 21—

eater.
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region. Section 2 gives a description of the experimental
equipment, and a theory of cylindrical waves is pre-
sented in Sec. 3. The results are discussed in Sec. 4,
and an application to earlier measurements is given
in Sec. 5.

2. THE EXPERIMENT
(i) The Apparatus

In the experiment, torsional waves are generated in
an insulated column of liquid sodium (Fig. 1) placed in
a homogeneous, axial magnetic field the strength of
which is varied in the range 0.3-1 volt sec/m?. A copper
disk at the bottom of the column is set into oscillations
about a vertical axis and generates torsional magneto-
hydrodynamic waves which are propagated through
the liquid along the magnetic field lines to the free
surface. There they give rise to an electric potential
difference, which is measured by two probes. A fre-
quency of 30 cps has been used.

<
~—_Aluminium

Fic. 2. Joint between two parts of the pipe containing sodium.

To keep the surface of the liquid clean and prevent
fire, the interior of the apparatus contains an atmos-
phere of pure nitrogen. The details are made of non-
magnetic materials, which are not chemically attacked
by liquid sodium. Thus the vessels and pipes are made
of stainless (nonmagnetic) steel, and the packings in the
pipe containing sodium are made of aluminum (Fig. 2).
Brass has been chosen with good result for details which
are unimportant as regards security and which are not
subject to considerable mechanical strain. As shown,
e.g., in Fig. 1 all packings not in direct contact with
sodium are made of temperature-resistant rubber. A
nonconducting surface as that of the inner cylinder in
Fig. 1 is obtained by coating a cylinder of brass with
glass tape and silicone resin, baked for about 3 hours
at 250°C.

Figure 3 is a diagram showing the arrangement of
the apparatus. The liquid sodium in the vessel 4, which
is placed in the magnetic field, is taken from the reser-
voir B through the pipe C. The levels in the vessels are
regulated through the taps J with nitrogen from the
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tube E. The gas is cleaned in the tube F containing
pulverized copper at 250°C. The heaters keep the vessels
and the middle pipe at about 120°C, controlled by the
thermo elements G. The parts containing sodium are
shielded by sand as shown by the lined regions in
Fig. 3. The position of the surface is indicated by
signal lamps H.

The copper disk at the bottom is set into oscillations
through an eccentric shaft, driven by a motor. The
vessel in Fig. 1 is strapped between the pole shoes to
prevent shaking.

When handling the apparatus, the author wore
asbestos clothing as a safety precaution.

(i) The Method of Measurement

The potential difference at the surface of the liquid is
measured by probes placed as shown in Fig. 4. The im-
pedance of the external circuit is very large compared
to that of the liquid. Since the diameter of the probes is

F16. 3. Sodium system in outline. A—Vessel placed in magnetic
field. B—Reservoir. C—Pipe for sodium. D—Pipes for nitrogen.
E—Tube for nitrogen. F—Gas-cleaning equipment. G—Thermo
elements. H—Signal lamps. J—Taps.

only 0.5 mm, the disturbance caused by the measuring
equipment is assumed to be negligible. Above the sur-
face (medium III, which also contains the wires) a
homogeneous, axial magnetic field By is assumed since
the displacement current can be neglected at low fre-
quencies, and it is shown in Sec. 3 (ii) that the induced
currents give no external magnetic field.

The closed paths ACEDBA, ACFDBA, and CEDFC
are called C, Cs, and C4, respectively, where CFD has
been chosen immediately under the surface and CED
is an arbitrary path in the liquid. Since the electric
field is

E=—-vV—06A/a,
we have

fE ds———  a. ds=—2 ffn BudS=0. (2)

Further,

Eii=—vV,

IN Na

o+
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Fic. 4. Calculation of the potential difference between the
probes at the surface of a moving liquid in a homogeneous mag-
netic field Bo. Z is the impedance of the external circuit.

which results in a measured potential difference

Vea= E'dS,

CFD

®)

if the potential drop in the wires is neglected. The same
result is deduced for the arbitrary path C, since

fE'dS=f E.ds= E'dS+VBA
a1 ¢ CED

due to Eq. (2), and Eq. (3) is obtained from the first
and last member.

The measurements are carried out with the arrange-
ment shown in Fig. 5. The amplitude of the potential
difference ¥V p4 is measured with the switch J in “direct”
position. The amplified signal is measured with a
harmonic wave analyzer H. The cathode-ray tube G and
the wave analyzer H are adjusted to the right frequency
with the oscillator F, whereupon the excited frequency
in the vessel 4 is adjusted until the pattern on the
tube G is stationary.

. The phase of the potential difference V 54 at the sur-
face is measured with the compensating apparatus
shown in the lower left-hand corner of Fig. 5, when the
switch J is in the upper position. The eccentric shaft B
affects the strain gauge C giving rise to a compensating
voltage over the resistance R,. The phase of the voltage

Fi16. 5. Diagram of the method of measurement: A—Vessel
with probes. B—Axis with eccentric shaft. C—Strain gauge.
D—Holder. D'—Scale. E—Amplifier. F—Signal generator. G—
Cathode-ray oscillograph. H—Harmonic wave analyzer.
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Fi16. 6. Twisting of a cylindrical column of liquid with infinite
conductivity placed in an axial homogeneous magnetic field Bo.

at the surface is given by the scale D’ when the holder D
and resistance R; are adjusted to give the resulting
voltage zero at H. The zero point of the scale D' is
determined at maximum magnetic field (1 volt sec/m?)
and lowest possible frequency (about 5 cps).

3. THEORY OF THE EXPERIMENT
(i) Cylindrical Waves at Infinite Conductivity

Before an exact treatment is carried out let us con-
sider a simple example in a liquid with density p and
infinite electrical conductivity. If a magnetic field Bo
is assumed to exist within the liquid, no relative motion
between the magnetic lines of force and the liquid is
possible, since such a motion would give rise to infinitely
large currents (see, e.g., reference 5). Consider a column
of height L and radius R (Fig. 6), which is parallel to the
field and has been twisted with constant pitch ¢o/L.
Cylindrical coordinates are introduced, and the field is

written
B = (07b,Bo) )

where b= By-7- ¢o/L is the component due to the twist-
ing. The increase of magnetic energy is

R
U= f (5/24)- Lomrdr= (B/2u) - 3R o/ L. (&)
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From the theory of elasticity it is known that the corre-
sponding expression for the torque of an elastic rod with
a modulus G of torsional rigidity is

M=G-3wR* ¢y/L 5)
and the potential energy

@0
U= f M-dp=G-3xR 1o/L. ©)
0

From the results (4) and (6) we define an equivalent
modulus

Geq=B02/IJ'- (7)

The dynamic equation of a disk with height dz is given
by (35):

Ry 9 E Q9o
Geq-%rR4-—=———[f 1’2-——p-27rr-dr],
9z otLJ, ot

which becomes

Fo  (Geq\ ¢
7 (%)% ©
a? p 922
where the wave velocity is
V= (Gea/p)t=Bo/ (up)*. 9)

If all quantities are assumed to vary harmonically in
time the solutions of (8) have the form

o=[Aeio=! V4 BeivelV]giot,

If the boundary conditions,
0(0,5)=ppe’et at z=0

M(L#=0

and
at z=1L,

are imposed we get the motion at the free surface z=L
of a column of liquid which is in a state of torsional
oscillations with a given amplitude at the bottom, z=0:

@(L,t)= poe’t/cos(wL/ V). (10)

(ii) Cylindrical Waves with Negligible Viscous
Damping

The notations shown in Fig. 7 are used in the calcu-
lations of the waves generated in the apparatus de-
scribed in Sec. 2. The column of sodium (region I),
which has the electrical conductivity o1 and density p,
is bounded at the nonconducting surfaces r=r7, and
r=R. The copper disk at the bottom (region II) has
the conductivity o2 and thickness 6. Since the viscosity
can be omitted? the following boundary conditions are
imposed :

(1) The radial component ¢, of current density
vanishes at r=R in regions I and II and at r=r
in region 1.

(2) The axial component, ¢,, vanishes at the surface
g=1L.
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(3) The result of the following analysis shows that
the influence of the sodium layer between the disk and
the bottom is equivalent to a slight increase in the
thickness 8. Thus the boundary condition at the bottom
is approximated to

i,(r, —8,8)=0.

(4) The solutions in regions I and II are fitted at the
boundary z=0, where the axial component ¢, and the
tangential components %, and E, are continuous. %, is
the induced magnetomotive force (b=uh).

(5) The mechanical influence of the axis is estimated
with the results of Sec. 2. At a magnetic field strength
By=1 Vs/m? the equivalent modulus of rigidity is

Gro=Bg?/u="7.80X10° newtons/m?,
whereas an axis made of steel has a modulus of about
G,=7.85X10" newtons/m?.

In this case we have R=0.068 m and the radius of the
axis 7,=0.010 m. At a given twisting, d¢/9z, the ratio
of the corresponding torques is given by (5):

MNa/Ma= (R/T'a)4'GNa/Ga=O.02.

Thus, with the dimensions given in Fig. 7, the me-
chanical influence of the axis can be neglected, and the
velocity of the copper disk is

vID =gy (7/R) - oot =Qgreiet, (11)

where Qo is the peak value of the angular velocity of the
axis and w the frequency.

A general treatment of magneto-hydrodynamic waves
has been given in earlier works':® and will not be de-
scribed in detail here. If the liquid and the disk in
Fig. 7 are assumed to oscillate around the axis of sym-
metry and a homogeneous magnetic field Bo=pH,,
parallel with the axis, is generated by external sources,
then an induced emf. will arise in a direction per-
pendicular to the axis. Thus the induced currents will
flow in planes through the axis and the induced mag-
netic field is parallel with the particle velocity. It is
shown in the following that the induced magnetic field
disappears at the free surface and the bottom of the
vessel (see Fig. 7), and the total magnetic field becomes
homogeneous all over the region outside the vessel
[see Sec. 2 (ii)]. The general solution of a cylindrically
symmetric state of torsional oscillations with fre-
quency o is discussed in the system of cylindrical
coordinates given by Fig. 7:

3/3¢=0, 9/dt= jw,
v=(0,,0), h=1(0,4,0), H,= (0,0,H,), (12)
i=(4,,0,i.), E=(E,0,E.), H=Hy+h,
where v is the velocity of the liquid and b=yh the in-

duced magnetic field. At low frequencies the displace-
ment current can be neglected, and the fundamental

8 C. Walén, Arkiv mat. astron. fysik A30, No. 15 (1944).
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F1c. 7. Notation and starting points for the calculation described
in Sec. 3. Inner radius of the outer, nonconducting cylinder and
position of outer probe, R=06.8 cm. Outer radius of glass cylinder
at the axis, 7o=1.2 cm. Position of inner probe, 7;=3.2 cm. Radius
of axis, made of stainless steel, 7,=1 cm. Height of the column
of liquid sodium, L=10.5 cm. Thickness of the copper disk at
the bottom, =1 cm.

equations at constant permeability u are

curlh=i,
curlE= —udh/ 1,
13
divh=0, (13)

i=d[E+u- (vXH)].

In the liquid, which is incompressible, are added the
conditions

av .
el (iIX H)—gradp,

(14)
divv=0,

where p is the hydrostatic pressure. In the copper disk
the condition expressed in Eq. (11) is added to the
system (13). The solution at small amplitudes is:

Solution in Region I

The equations for cylindrical waves are deduced
from the expressions (13) and (14) 3

?r 1 91é*h 10k h % %h
—-’—“—*'—[——-i—— ———"l——]"l- Vi—,
0 uoy 9L v dr 2 022 022
(15)
v oh
—= (uHo/p)—, V= (u/p)-H¢.
ot 9z
The first equation has the form
?h 10k 1
——+——+(k2——)h=o, (16)
ar? ror r?
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with
v= (B jouo1)/ (1+po1 V?/ jw), (17)

for travelling waves, where all quantities vary as
exp (jwi+~vz). The solutions of (16) have the form

KO =[ A" T (kr)+B'N1(kr) [C'ev*+er2Teiet.  (18)

The constants A’ and B’ are determined by the bound-
ary conditions
1.(70,2,8) =14, (R,3,t) =0,
which give
A'J1(kro)+B'N1(kro)=0, (19)
A’J(kR)+B'N1(kR)=0,

since i,= —d%/dz. The solution of (19) corresponds to
a number of modes with possible values k, deter-
mined by

Jl(kﬂ'())Nl(kyR)'—Jl(kyR)N1(ky1’0)=O. (20)
The condition at the surface,
1,(7,L,t) =0,
gives the relation
Clerideg=1L=0, (21)
since
19
1,=——(rh).
v Or
If we introduce
Jl (kﬂ'ﬂ)
Zy (k) =T (k) — Ny (k) (22)
1(R70

and B’ is eliminated by means of Eq. (19), a particular
solution of (16) becomes

hO=A'Z (kr)e 1L e T2 —g1L=a) Jgivt (23)
Finally, from the expressions (13) and (155,
E,=1,/o1—uHw, v= (uHy/jwp)(0k/3z). (24)
Thus the general solution in region I has the form
KO=3" 4,02, (k) sinh[y,(L—2) e,
v=1
7, D= i kA, D7 (k,r) sinh[vy, (L—2) Jei?,
y=1
(25)

ED =3 (vs/o1) (1+poiV¥/ jw) 4,0 Zy (kor)
v=1
X cosh[y, (L—2) Je?t,
0= — (uHyy,/ jowp)A, P Z1(k.r)

v=1

X cosh[y, (L—z)Je«t.

BO LEHNERT

Solution in Region 11

From the fundamental equations (13) and the condi-
tion (11), the equations for region II are deduced

- (')h/62= UQET+[£0'2H0'I),
— 8%/ 3z*=0:0E,/ 9z,
and
19
bo—- ——(1’h) =O'2Ez,
Eror
which is combined with

dE, IE,
=— jouh,
dz  Or

giving
82h| 16k h 0% oh
!

T 1 MO =V.
ar ror 2 9z at

(26)

Equation (26) is also obtained by putting p=», V=0
in the first expression (15).

A separation in the usual manner leads to the par-
ticular solution

RID=[A"J (kr)+B"N(kr) J[C" exs+ e Jeiet,

where

27

K*= k- jwpos. (28)

A small error is committed in neglecting the currents in
the region 7 <7, at the junction of the disk and the axis.
With this approximation the radial boundary conditions
become the same as in region I, and the modes are given
by (20). With

1:2(7’, _67 t) = 07

an analogous treatment gives the general solution in
region IT:

B =3%" 4,907, (k,r) sinh[«, (z+5) Je*?,

v=1

$AD=3" BAZy(Rr) sinh[c, (z-+8)Ter,
=1 <29)

EM=%" — (k,/a9) A,V Z 1 (k,¥) cosh[k, (z-+8) Je7«*

v=1

it ,lL}I()Q(ﬂ'Cjwt,
9ID =Qreiet,

The velocity distribution v1; is now developed into
modes

Qor=3 W,Zi(kr); re<r<R.

=1

(30)

From the orthogonality relations the coefficients W, are
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derived in the usual manner :°
QR
/P —
k.RZy(k,R)
% 1— (ro/R){ Zo(ksro)/ Zo(kuR) ]
1= (ro/ R)’[Zo (o) / Zo (uR) T

Fitting of the Solutions at the Boundary Z=0

The field quantities 7,, E,, and % of the »th partial
wave given by (25) and (29) are fitted at the boundary
2=0:

A,® sinh (y,L) = 4,0 sinh (,8),
(vs/o1) 1 +po1V?/ jw)A,® cosh(y,L)

= — (k,/02) A, cosh (k,8) —uHoW,. (32)

If
M=k jouoy (33)

is introduced and Eq. (32) is solved for 4,®, the veloc-
ity in the liquid is given by (25):

cosh[y,(L—2)]

Feiot,  (34)
cosh(v,L)

vO=3" W,Z,(k.)
r=1

where
1 o a1 vk, tanh (y,L)
- (1+ )(1+—1 ————) (35)
F, uoV? o2 N2 tanh(k,9)
The result is illustrated by some special cases.

1. If the conductivities oy and o5 tend to infinity, we
have

v,=jw/V and F,=1.

cos[ (L—z)/V] ot
’ cos[wL/V] )

Thus

2D =Qy ,

which is the expression for an ideal column of liquid dis-
cussed in Sec. 2 (see also the discussion of convergence
at the end of this paragraph).

2. With finite conductivities and vanishing thickness
of the disk, ¥ tends to zero.

o 1—Zy(kr1)/Zo(kR) . 1— (ro/R)[Zo(kiro)/ Zo(k.R) ]
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3. If the magnetic field By tends to infinity, we have
vD =Qqreiet,

and the liquid behaves like a solid attached to the disk
at the bottom.

4. If the disk at the bottom is assumed to be ideal
(g9= ), the factors F, tend to the value

F,=1/(14+ jw/uc1V?).

In particular, if 7o=0 and w/uo1V?K1, the formula
given by Lundquist® is obtained :

w  2J1(kw) cosh[y,(L—z)]
e’®

WW=0QRY
=1k J2(k,R)  cosh(y,L)

L (36)

Indicated Potential Difference at the Sur face

The potential difference between the probes at the
points r=7; and r=R is

R
Vr1R= f ET(I)dr,
1

as shown in Sec. 2 (ii), Eq. (3). Since

E.®=— (14 jw/uc1V?) Bp®
and

R
f Zu(r)dr=— (1/k)[Zo(lr) T,
1
the voltage at the surface is found by integrating (34):

Viir= (14 juo/usiV)Bo 3 (Wo/k)
y=1

X[ Zo(kR)— Zo(kyr1) JF €7t/ cosh (v, L).

The asymptotic value for By is

(37

VrlR(Bo—)OO )-9—9030% (RZ— 712),

from which a normalized voltage U= Vrir/Vriz(By—®)
is defined: :

U= (14 jo/por V%)

} \1 — (ro/R)2[20 (kﬂ'o)/ZO (k.R) ]21 .

-F.eiet/cosh(y,L), (38)

J

1— (ri/R)* = (B,R)?
\_*‘_—F‘—/ L'__\f—J L
(a) (b) (c)

where F, are given by (35) and the expression (31) for
W, has been used. The factor (a) is due to the finite
conductivity of the liquid forming a part of the measur-
ing circuit, (b) and (c) are due to the position of the
inner probe and the special radial velocity distribution
which has been chosen, and (d) corresponds to the
finite radius of the axis; (e) is the “axial”’ factor, where

9 E. Jahnke and F. Emde, Tables of Functions (Dover Publica-
tions, New York, 1945).

) (e)

F, represents the efficiency of the generating mechanism
and 1/cosh (v, L) is the factor of main interest which can
give rise to resonance phenomena. This factor reduces
to 1/cos(wL/V) in an ideal liquid.

Discussion of the Convergence

With the asymptotic formulas for J,(k.r), N ,(k.7)
and the roots k, (see the tables by Jahnke-Emde?),
it is easily shown that the remainders, v, and U,,
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L= 0 0.006 Oo012m
7_ (-]
6 7
5.
4,.
3,
2_
17 K,
50 100 150 200 250 300 350 400

Fic. 8. Values of %, as given by (20) for three values of outer
radius 7o of the axis. 7o=0 corresponds to the equations J;(,R)=0.

after » terms of the series (34) and (38) tend to the
limits

v,—>const i (1/») sin(»8)
XL (ro/R)*+ (—1)"]F, exp[ — (a+ jb)vz/ L],
U —const(1+ jo/uc1V?) i (1/9)? cos(v6,)

XL (ro/ R (—1)JF, exp[ — (a+ jb)v],

where ¢(>0) and b are functions of o1, V, @ and
lim ¢=lim b=0 when gr— and 0=r(r—ry)/(R—rv),
61=m(r1—7)/(R—r,). The remainders are uniformly
convergent, even in the limiting case o1= = (see, e.g.,
Titchmarsh! and Hardy!).

4. RESULTS OF THE CALCULATIONS AND
MEASUREMENTS IN LIQUID SODIUM

The linear dimensions of the apparatus are given in
Fig. 7. A magnetic field strength in the range
By=0.3—1.0 volt sec/m? and a frequency w=188.5
sec™! (30 cps) corresponds to a region containing the
first resonance of the ideal column of liquid. The tem-
perature is kept at 120°C, corresponding to ¢;=94.0
X108 @'m™ for liquid sodium and o;=40.6X10°
Q1 m™! for copper, and the density of sodium is p=970
kg/m?. The axis has been oscillating with a peak angular
velocity Qo=3.84 sec™!, corresponding to a voltage of
the order 1072 volt between the axis and periphery at
the bottom when By=1 volt sec/m?

The values k, from (20) are shown in Fig. 8. It is
seen that they are only slightly modified in the range
of values 7, of the axis given by the figure.

Figures 9(a) and 9(b) show the depth of penetration
1/a, and phase velocity w/B, for the five first modes,
when the magnetic field is varied. v,=a,+ 78, is given
by (17).

The “axial” factors,

S,=F,/cosh(v,L) (39)
WE, C. Titchmarsh, The Theory of Functions (Oxford Uni-
versity Press, London, 1939), p. 42.
1 G, H. Hardy, A Course of Pure Mathematics (Cambridge
University Press, Cambridge, 1952), p. 473.

BO LEHNERT

[see Eq. (38)], are shown in Figs. 10(a) and 10(b),
where the dotted lines mark the result when the in-
fluence of finite conductivity and thickness of the copper
disk is neglected (F,=1).22 Thus the influence of the disk
is rather small in the actual case. Further, the damping
of the waves prevents a formation of resonance maxima
of higher order at increasing values of 1/By. The phase
difference between bottom and surface [Fig. 10(b)]
increases nearly linearly even for the first mode, con-
trary to the jump of 180° at the resonance when the
conductivity is infinite.

The resulting normalized voltage at the surface ac-
cording to (38) is shown in Figs. 11(a) and 11(b) as
well as the corresponding experimental results. The
modification of the curves for the first mode (v=1)
depends mainly on the influence of the second mode.
The series converges rapidly and the fifth and higher
modes become negligible. Thus the sharp resonance of
the column with infinite conductivity is reduced by
losses in the liquid and the copper disk and through
“dispersion” of the composing modes to a barely de-
tectable maximum, displaced in the direction of
stronger values of the magnetic field.
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F16. 9. (a) Depth of penetration, 1/a,, of cylindrical waves in
a column of liquid sodium at 120°C with the dimensions 7,=0,
R=6.8 cm at a frequency w=188.5 sec™? (30 cps). The five first
modes are given. In the experiment 7o=1.2 cm and the correspond-
ing curves of Figs. 9 (a), (b) and 10 (a), (b) are modified with less
than 10 percent even for the fifth mode. (b) Phase velocity
w/B, of the waves.

2 The calculations have been performed with the help of tables
and a chart atlas by A. E. Kennelly, Tables of Complex Hyperbolic
and Circular Functions and Chart Atlas of Complex Hyperbolic and
Circular Functions (Harvard University Press, Cambridge, 1914).
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Even if the phase is measured more precisely than
the amplitude, the discrepancy between theory and
experiment as regards the amplitude is hardly within
the limits of error. The deviation has the same direction
as in earlier investigations being greater in the measure-
ment of amplitude than in that of the phase [see Figs.
11 (a), (b) and 12 (a), (b)]. The elasticity of the upper
part of the axis in Fig. 1 may introduce an error. Other
possible sources of error are mechanical disturbances by
the inner probe (r=r1) and impurities of the liquid,
the disk at the bottom and the boundary layer between
disk and liquid; all these effects increase the apparent
damping. An impurity of the free surface may have
some mechanical influence but it is not so important
as in mercury (Sec. 5). In Sec. 3 it has been pointed out
that the currents at the junction of axis and disk and in

1/B,
(nBsv)

5

Fic. 10. (a) Amplitude |S,| of the “axial factors” (35), (39) of
a column with 7o=0, R=6.8 cm, w=188.5 sec’. —-— column
with infinite conductivity ; — — — — result when the influence of the
disk at the bottom is neglected (F,=1); resulting theoretical
curve; (b) Phase /S, of the “axial factors.”
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resonance at
infinite conductivity
£ Nee—— e d \

(a)

1/8,
(m/sv)

5

(b)

F1c. 11. (a) Amplitude |U| of normalized indicated potential
difference at the surface as given by Eq. (38). Linear dimensions
according to Fig. 7 and frequency w=188.5 sec™!. —-— column
with infinite conductivity; — — — — first mode (v=1); — result-
ing theoretical curve; X XX measurements. (b) Phase £U of
the normalized potential difference.

the layer of sodium below the axis have been neglected.
This reduces the effectiveness of the generating mecha-
nism and appears as an increase in the damping when
the amplitude at the bottom is kept constant. Finally,
the velocity distribution at the bottom has been as-
sumed to have a finite value at =R, which is an ap-
proximation when the viscosity is taken into account.
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Fic. 12. (a) Amplitude, 7, at normalized velocity at the point
r=4.1 cm at the surface of a vessel with mercury with radius
R=15 cm and height L=15 c¢m as given by Lundquist.3 theo-
retical results by Lundquist; —-— experimental results by
Lundquist; ————theoretical results after application of the
factors F, given by (35). (b) Phase v of normalized velocity.

5. A NOTE ON LUNDQUIST’S INVESTIGATIONS

Earlier investigations of cylindrical magneto-hydro-
dynamic waves have been carried out in mercury® with
an apparatus similar to that of Fig. 1. The waves were
excited with a disk furnished with 1-cm high radial
strips and the motion indicated at the surface with a
floating mirror and a scale. If the liquid between the
strips is treated as a solid disk of mercury, the result
(34) may be applied to the velocity »®@. Z;(k,r) is re-
placed by Ji(%.7) in this case, where 7o=0. The result
when the influence of the disk has been included is shown
in Figs. 12 (a), (b), which also show the results given
by earlier investigations.®

13 Dr. Lundquist has kindly placed his numerical calculations

at the author’s disposal for the application of the factors F,
given by (35).
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After the application of Eq. (34), however, there still
remains a discrepancy for the amplitude [Fig. 12(a)].
It has been pointed out by Lundquist that a source of
error may be the tenacious surface layer of mercury.
Another possible source is a slipping of the liquid round
the strips at the bottom,.ie., the mercury between
the strips cannot be considered as a solid. Finally, the
inertia of the mirror and impurities of the mercury may
introduce some error.

6. CONCLUSION

The investigations of magneto-hydrodynamic waves
in sodium and mercury show a satisfactory agreement
between theory and experiment. The conditions for
model experiments in the laboratory scale, however,
cannot give a very good picture of cosmic phenomena,
even with such a medium as liquid sodium. A velocity
profile with sharp edges, which is demanded, e.g., in an
experiment on whirl rings, representing a mechanism
for sunspots, becomes rather diffuse and damped after
travelling through an experimental arrangement of
laboratory dimensions [see Eq. (17) and Figs. 9(a) and
9(b)]. In experiments on resonance phenomena the
conditions are more unfavorable since the reflected
waves, which virtually travel several times through the
experimental arrangement, are damped too strongly
to have considerable influence on the resulting ampli-
tude. A liquid with better properties than sodium can
hardly be found, but an improvement may be obtained
with an increase in linear dimensions. Experiments have
been carried out with an ionized gas in a magnetic
field."* At this stage, however, it may be premature to
draw definite conclusions about the possibility of
improving the conditions for magneto-hydrodynamic
waves in the gas.
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