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Magneto-Hydrodynamic Waves in Liquid Sodium
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Liquid sodium, because of its higher electrical conductivity and lower density, is more suitable than
mercury for magneto-hydrodynamic experiments. Torsional waves in liquid sodium have beeri generated in
a cylindrical vessel with the axis parallel to a homogeneous magnetic field, and resonance phenomena have
been investigated at constant frequency and variable magnetic field strength. The agreement between theory
and experiment is satisfactory. It is shown that even with sodium, damping plays an important role under
laboratory conditions. The calculations of this paper are also used to improve the results of earlier in-
vestigations with mercury.

l. INTRODUCTION to the magnetic Geld gives rise to induced currents and
an induced magnetic field. If the conductivity is in-
finite, the total magnetic field is "frozen in" and the
fieldlines act as elastic strings "glued to" the elements
of the liquid. This is true in many cosmic applications
where the conductivity is high and the dimensions are
large. Virtually undamped magneto-hydrodynamic waves
are then propagated along the magnetic fieldlines with
a velocity independent of frequency in much the same
way as elastic waves along strings. However, under
laboratory. conditions, e.g. , in experiments with mer-

cury, the properties of the waves difFer from those of
"ideal waves, " i.e., waves in a liquid with very large
conductivity, both at low and high frequencies. The
wavelength at low frequencies becomes much larger than
the linear dimensions of the apparatus and the wave
velocity depends on frequency. At high frequencies the
inertia of the liquid becomes too large, and the waves are
changed into strongly damped skin waves in a solid

body, which also sufFer from dispersion. If the condi-
tions are favorable enough, however, there exists an
intermediate "ideal" region of frequencies, where the
waves are propagated with approximately constant
velocity and moderate damping. The condition for
such well developed magneto-hydrodynamic wave
phenomena is"

~URING the last ten years the importance of
magneto-hydrodynamic phenomena in cosmic

physics has been realized in a great number of applica-
tions, such as solar physics, cosmic radiation, and the
problem of oscillating stars. The investigations of
general physical interest made by a number of authors
is given in a survey by Lundquist. ' By far the largest
part of the work on magnetohydrodynamics is of a
theoretical nature, and there exist only a few experi-
mental investigations, all carried out with mercury. ' '

When the theory is applied to special problems in
cosmic physics, an exact solution often leads to great
mathematical difFiculties. Thus, in addition to being a
valuable verification of theory, the experimental work
serves the purpose of solving problems associated with
complicated geometrical configurations through model
experiments in the laboratory.

When treating an electrically conducting liquid in a
magnetic field from both a theoretical and an experi-
mental point of view, an analogy between magnetic
field lines and elastic strings given by Alfven' is often
a convenient tool. A motion of the liquid perpendicular

' S. Lundquist, Arkiv Fysik 5, 297 (1952).
2 J.Hartmann and F.Lazarus, Kgl. Danske Videnskab. Selskab,

Mat. -fys. Medd. 15, No. 6 (1937); J. Hartmann, Kgl. Danske
Videnskab. Selskab, Mat. -fys. Medd. 15, No. 7 (1937).

s S. Lundquist, Phys. Rev. 76, 1805—1809 (1949).
s B.Lehnert, Arkiv Fysik 5, No. 5, 69 (1952); Tellus 4, No. 1

63 (1952).' H. Alfvhn, Cosmical Electrodynamics (Oxford University Press
London, 1950).

s H. Alfvhn, Arkiv mat. astron. fysik 829, No. 2 (1942).

Bl.o" (tt/p) &))1,

where 8 is the magnetic field strength, 7 I. the linear di-
y ' Mks units are used throughout this paper. The unit for mag-

netic 6eld strength is volt sec/ms= 10' gauss.
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TABLE I. Values of the left-hand side of the inequality (1) at
different applications. Large values of this quantity correspond to
states of motion greatly influenced by electrodynamic forces.

ApplicatIon
B (volt L Ir P

SeC m 2) (m) (0 I m ') (kg m 3) BLO'(p/p)&

0.1 13 600Experiments with 1
mercury

Experiments with 1.

liquid sodium
Sunspots
Magnetic vari-

able star
Interstellar space 10 "?

10'

970 500.1 14X10'

0.01 10"
1 10"

10'
106?

10' 3X10'
10'? 3X10"?

10 "? 3X10"?10'?

t5
g (f&

Qrq

iIW////////n

mensions, o. the electric conductivity, p the density, and
p the (absolute) permeability. Some possible values of the
left-hand side of the expression (I) are given in Table I.
It is shown in the table that cosmic conditions are far
from being realized in laboratory experiments. Never-
theless the conditions of the experiments with sodium,
described in this paper, are improved to such an extent
compared to earlier experiments with mercury that it
has been worth while to make an experimental investiga-
tion with liquid sodium.

The following sections will give an account of some
experimental and theoretical investigations of magneto-
hydrodynamic waves in liquid sodium in the "ideal"

region. Section 2 gives a description of the experimental
equipment, and a theory of cylindrical waves is pre-
sented in Sec. 3. The results are discussed in Sec. 4,
and an application to earlier measurements is given
in Sec. 5.

2. THE EXPERIMENT

(i) The Apparatus

In the experiment, torsional waves are generated in
an insulated column of liquid sodium (Fig. 1) placed in
a homogeneous, axial magnetic field the strength of
which is varied in the range 0.3—1 volt sec/m'. A copper
disk at the bottom of the column is set into oscillations
about a vertical axis and generates torsional magneto-
hydrodynamic waves which are propagated through
the liquid along the magnetic field lines to the free
surface. There they give rise to an electric potential
diGerence, which is measured by two probes. A fre-
quency of 30 cps has been used.
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FiG. 2. Joint between two parts of the pipe containing sodium.
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Fro. 1. Outline of the vessel where the waves are generated.
1—Magnet with pole shoes. 4—Pipe for sodium. 11—Axis, iso-
lated with a glass cylinder. 12—Box with packing. 13—Duct bolt.
14—Driving arm. 15—Copper disk. 16—Holder with ball bearing.
17—Cylinder made of brass. 18—Layer of glass tape and silicone
resin. 19—Packings of rubber. 20—Probes with holder. 21—
Heater.

To keep the surface of the liquid clean and prevent
fire, the interior of the apparatus contains an atmos-
phere of pure nitrogen. The details are made of non-
magnetic materials, which are not chemically attacked
by liquid sodium. Thus the vessels and pipes are made
of stainless (nonmagnetic) steel, and the packings in the
pipe containing sodium are made of aluminum (Fig. 2).
Brass has been chosen with good result for details which
are unimportant as regards security and which are not
subject to considerable mechanical strain. As shown,
e.g. , in Fig. 1 all packings not in direct contact with
sodium are made of temperature-resistant rubber. A
nonconducting surface as that of the inner cylinder in
Fig. 1 is obtained by coating a cylinder of brass with
glass tape and silicone resin, baked for about 3 hours
at 250'C.

Figure 3 is a diagram showing the arrangement of
the apparatus. The liquid sodium in the vessel A, which
is placed in the magnetic field, is taken from the reser-
voir 8 through the pipe C. The levels in the vessels are
regulated through the taps J with nitrogen from the
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tube E. The gas is cleaned in the tube P containing
pulverized copper at 250'C. The heaters keep the vessels
and the middle pipe at about 120'C, controlled by the
thermo elements G. The parts containing sodium are
shielded by sand as shown by the lined regions in
Fig. 3. The position of the surface is indicated by
signal lamps H.

The copper disk at the bottom is set into oscillations
through an eccentric shaft, driven by a motor. The
vessel in Fig. 1 is strapped between the pole shoes to
prevent shaking.

When handling the apparatus, the author wore
asbestos clothing as a safety precaution.

FIG. 4. Calculation of the potential difference between the
probes at the surface of a moving liquid in a homogeneous mag-
netic 6eld Bo. Z is the impedance of the external circuit.

(ii) The Method of Measurement
which results in a measured potential diGerenceThe potential diHerence at the surface oi the liquid is

measured by probes placed as shown in Fig. 4. The im-
pedance of the external circuit is very large compared Vsg= E ds,
to that of the liquid. Since the diameter of the probes is "CZD

(3)
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if the potential drop in the wires is neglected. The same
result is deduced for the arbitrary path C, since

E ds= E ds= ~ E ds+Vaz
Ci C "ezD

FIo. 3. Sodium system in outline. A—Vessel placed in magnetic
field. 8—Reservoir. C—Pipe for sodium. D—Pipes for nitrogen.
E—Tube for nitrogen. F—Gas-cleaning equipment. G—Thermo
elements. H—Signal lamps. J—Taps.

only 0.5 mm, the disturbance caused by the measuring
equipment is assumed to be negligible. Above the sur-
face (medium III, which also contains the wires) a
homogeneous, axial magnetic fmld Bo is assumed since
the displacement current can be neglected at low fre-
quencies, and it is shown in Sec. 3 (ii) that the induced
currents give no external magnetic field.

The closed paths ACEDBA, ACIiDBA, and CEDPC
are called C, C3, and C~, respectively, where CFD has
been chosen immediately under the surface and CED
is an arbitrary path in the liquid. Since the electric
field is

due to Eq. (2), and Eq. (3) is obtained from the first
and last member.

The measurements are carried out with the arrange-
ment shown in Fig. 5. The amplitude of the potential
diGerence V~~ is measured with the switch J in "direct"
position. The amplified signal is measured with a
harmonic wave analyzer B.The cathode-ray tube G and
the wave analyzer II are adjusted to the right frequency
with the oscillator F, whereupon the excited frequency
in the vessel A is adjusted until the pattern on the
tube G is stationary.

The phase of the potential difference V~~ at the sur-
face is measured with the compensating apparatus
shown in the lower left-hand corner of Fig. 5, when the
switch J is in the upper position. The eccentric shaft 8
aGects the strain gauge C giving rise to a compensating
voltage over the resistance E2. The phase of the voltage

0

we have 6

8 8
E ds= —— A ds= ——

~~ n BodS=O. (2)
&8 Bi &( 8$ ~ c(

Further,
FIG. S. Diagram of the method of measurement: A—Vessel

with probes. 8—Axis with eccentric shaft. C—Strain gauge.
D—Holder. D'—Scale. 8—Amplifier. F—Signal generator. G-
Cathode-ray oscillograph. JI—Harmonic wave analyzer,
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and the potential energy

sponding expression f th
From t e theory of elasticit 't k

'
i yi is nown that

ort etor ueof
the corre-

q an elastic rod with
o orsional rigidity is

Ã=G -'mE.4 I.'po

i Z=4
(6)

r ('l
ll
l ~

I)

From the results (4) and 6 we de
modulus

an (6) we define an equivalent

G.,=&0'/t .

The dynamic equation of
' ' '

s is givenq ion of a disk with height (Es is given

8+88+
Qg 2 %JR

a. a& p Bt

which becomes
82 (Geq ~

atm ( p ) (/s'

where the wave velocity is

V== (G q/P)'=+0/(//P)*.

quantities are assumed to var harm
time the solutions of 8 have the form

FIG. 6. Twistin of a
'

g o a cyhndrical column f
coll uctn/'lty Placed ln an axial hon axia omogeneous magnetic Geld Bp.

at the surface is given by the scale D' w

and resistance E
e sca e when the holder D

ce 3 are adjusted to iv
lt t B Th

a maximum ma netic
d lo o bls posse e frequency (about 5 cps

3. THEORY OF THE EXPERIMENT

(i) Cylindrical Waves at Infi 't Cn ni e onductivity

~ ~

Before an exactt treatment is carried out le
sider a simple exa l l dl'quid wit ensity p and

c rica conductivity. If a ma netic
is assumed to exist with' th 1'o

b h
' ' qwi in t e liauid no r

'g. » ' p

Cylindrical coordinates are introd
pl ch po/L.

written
ina es are introduced, and the field is

B= (o,f,a,),
where b=Bp r. pp

' ' pp L is the corn onent "
ease o magnetic energy is

(f/'/2t() L2mrdr (I3 '/2p) —' R' ' 'I..o / 2~ (oO' L. (4)

LA 8jr@z/ v+ I3/z g ru z/v] gjzz/—'

If the oundary conditions

and
y(p, t) = yoe'"' at s=p

M(L, t) =0 at s= I.)
are imposed we get the motion at the f
of ol of Io iqui which is in a sa " o "o 0

wi a given amplitude at the bottom a=0:

v/(L, t) = q Oe/"'/cos ((oL/V). (10)

(ii) Cylindrical Waves with Ne li
'

eg1igible Viscous
Damying

The notations shown in Fi . 7 are
lations of the

n in ig. are used in the calcu-
e waves generated in the

'bd' S 2 Th l

ec rica conductivit 0.

a e nonconductin su
r=R. The co er

g ur aces r=rp and
opper is at the bottom re i

the conductivity d th' k . So-2 an t ickness 8. Sin 0
e t e ollowin boun

imposed:
g oundary conditions are

(1) The radial component i of "y

in region I.
r= in regions I andd II and at r=ro

(2) The axial corn onen
s=J.

ponent, i„vanishes at the surface
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(3) The result of the following analysis shows that
the influence of the sodium layer between the disk and
the bottom is equivalent to a slight increase in the
thickness 6. Thus the boundary condition at the bottom
is approximated to

t',,(r, —8, t)=0.

(4) The solutions in regions I and II are fltted at the
boundary z=0, where the axial component i, and the
tangential components h„and 8, are continuous. h„ is
the induced magnetomotive force (b=tih).

(5) The mechanical influence of the axis is estimated
with the results of Sec. 2. At a magnetic Geld strength
Bp 1Vs/m—'—the equivalent modulus of rigidity is

Gir ~ Bp'/tj, = 7——.80X 10' newtons/m'

whereas an axis made of steel has a modulus of about

G~= 7.85X 10"newtons/m'

In this case we have E.=0.068 m and the radius of the
axis r =0.010 m. At a given twisting, aq/as, the ratio
of the corresponding torques is given by (5):

Miv./M, = (Elr,)'Giv /G, =0.02.

Thus, with the dimensions given in Fig. 7, the me-
chanical influence of the axis can be neglected, and the
velocity of the copper disk is

wl'"= vp (r/R) e&'"=Qpre&'"'

where Qo is the peak value of the angular velocity of the
axis and or the frequency.

A general treatment of magneto-hydrodynamic waves
has been given in earlier works' and will not be de-
scribed in detail here. If the liquid and the disk in
Fig. 7 are assumed to oscillate around the axis of sym-
metry and a homogeneous magnetic field Bp=tiHp,
parallel with the axis, is generated by external sources,
then an induced emf. will arise in a direction per-
pendicular to the axis. Thus the induced currents will
flow in planes through the axis and the induced mag-
netic Geld is parallel with the particle velocity. It is
shown in the following that the induced magnetic field
disappears at the free surface and the bottom of the
vessel (see Fig. 7), and the total magnetic field becomes
homogeneous all over the region outside the vessel
[see Sec. 2 (ii)). The general solution of a cylindrically
symmetric state of torsional oscillations with fre-
quency or is discussed in the system of cylindrical
coordinates given by Fig. 7:

8/ap =0, 8/at=j pp,

v= (O,n, 0), h= (O,h, 0), Hp= (O,O,Hp), (12)
i= (p„,o,p,), E= (Z„O,Z,), H= Hpyh,

)
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Fio. 7. Notation and starting points for the calculation described
in Sec. 3. Inner radius of the outer, nonconducting cylinder and
position of outer probe, R= 6.8 cm. Outer radius of glass cylinder
at the axis, r0= 1.2 cm. Position of inner probe, r1 =3.2 cm. Radius
of axis, made of stainless steel, r =1 cm. Height of the column
of liquid sodium, L=10.5 cm. Thickness of the copper disk at
the bottom, 8= I cm.

equations at constant permeability p are

curlh= i,

curlE= tiahlat, —
divh =0,

i= r&+t (vXH)j.

(13)

In the liquid, which is incompressible, are added the
conditions

dv
p—=ti (iXH) —gradp,

divv= 0,

where p is the hydrostatic pressure. In the copper disk
the condition expressed in Eq. (11) is added to the
system (13).The solution at small amplitudes is:

8'h 1 8 8'h 1 Bh h 8'h, 8'h
+ + +&'

BP pry Bt Bf2 1' BF t'2 Bz2 Bz~

88 Bh—= (t IIp/t) , I"=(t/t) IIp'—
Bt Bz

(15)

Solltiosz ie Eegioe I
The equations for cylindrical waves are deduced

from the expressions (13) and (14) s

where v is the velocity of the liquid and b=tih the in-
duced magnetic Geld. At low frequencies the displace-
ment current can be neglected, and the fundamental

' C. Walen, Arkiv mat. astron. tysik ABO, No. 15 (1944).

The Grst equation has the form

8'h 1 ah t' 1 )+-—+ i
hs ——jh=o,

ar' r ar ( r')
(16)
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with
p'= (k'+ j~pa, )/(1+p~, V'/ j~), (17)

for travelling waves, where all quantities vary as
exp(jp)&+ps). The solutions of (16) have the form

h&'&= [A'J, (kr)+8'X, (kr)][C'e&'+e )']e'"'. (18)

Solmtioe ie Region II
From the fundamental equations (13) and the condi-

tion (11), the equations for region II are deduced

Bh—/Bz =apE, +. va pH ps)

—8'h/Bs'= apBE-,/Bz,
The constants 3' and 8' are determined by the bound-
ary conditions

which give

and

8
(rh) =—opE„-

Pjr Br

which is combined with
A Ji(krp)+8 Ei(krp) =0

A'Ji(kR)+8'1Vi(kR) = 0,

since i„=—Bh/Bs The. solution of (19) corresponds to
a number of modes with possible values k, deter- ivi
mined by

Ji (k rpP i(k R) —Ji(k RP i(k rp) =0. (20)

The condition at the surface,

BE„BE,—japh,
Bs Br

(26)

gives the relation

since

i, (r,L,t) = 0,

C'e&~+e &~=0

1 8
i,= —(rh—).

r Br )~' =k'+ jp))Leap. (28)

Equation (26) is also obtained by putting p= pp, V=O
in the first expression (15).

A separation in the usual manner leads to the par-
ticular solution

h'"' = [A"J 1 (kr)+8 "F 1(kr)][C"e"*+e "']e)"' (27)

where

If we introduce

Ji(k,rp)
Zi(k„r) =Ji(k„r)— ¹ (k„r)

¹ (k„rp)
(22)

and 8' is eliminated by means of Eq. (19), a particular
solution of (16) becomes

A small error is committed in neglecting the currents in
the region r & ro at the junction of the disk and the axis.
Kith this approximation the radial boundary conditions
become the same as in region I, and the modes are given
by (20). With

h&'~=A)Z, (k„r)e &i[e&&r-'& e &—&r '~)]e)"' —(—23) an analogous treatment gives the general solution in
region II:

Finally, from the expressions (13) and (15),

E„=i„/a i vHp&, &= (vH—p/j cup) (Bh/Bs). (24)

Thus the general solution in region I has the form

h~n =P A„&i&Zi(k„r) sinh[y„(L —s)]e)'"',
v=1

h'"'=Q A &"&Zi(k„r) sinh[K„(s+5)]e) '

v=1

i,(iii=g k A (ii&Z (k„r) sinh[a. (s+5)]e'"'
v=1 (29)

iP&=g k„A "&Zp(k„r) sinh[y„(L —s)]e' ',
v=1

E, ' = Q (p„/ &) a(1+po 1V'/ jp))A„'"Zi (k„r)
v=1

Xcosh[y„(L—s)]e'"',

(25)

E,~ & =P —(t&„/op)A„&ii&Zi(k„r) cosh[c„(s+8)]e' '
v=1

~(II) Q r~j(uf,

—pIIOQore7"',

'The velocity distribution vII is now developed into
modes

p&'& =P —(vH py„/j (ap)A„&"Zi(k„r')
v=l

Qpr=g W„Zi(k„r); rp&~r&~R.
'

v 1
(30)

Xcosh[p„(L—s)]e'"'. From the orthogonality relations the coe%cients W„are
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derived in the usual manner

8'„=—2

Fitting of the Solutions at the Boundary Z=O

QpR

k„RZp(k„R)

1—(rp/R) '[Zp (k„rp)/Zp (k„R)]
X . (31)

1—(rp/R)'[Zp (k„rp)/Zp (k„R)]'

3. If the magnetic 6eld Bp tends to in6nity, we have

(» =Qpre

and the liquid behaves like a solid attached to the disk
at the bottom.

4. If the disk at the bottom is assumed to be ideal
(o.p= pp), the factors F„ tend to the value

F„=1/ (1+j&p/po. iV').

The field quantities i„E„,and h of the ) th partial In particular, if rp ——0 and p)/tio. iV'((1, the formula
wave given by (25) and (29) are fitted at the boundary given by I,undquistp is obtained:
a=0:
A„( ) sinh(y„L) =A„( ' sinh(«„&)),

(y,/o. i) (1+tio.i V'/ jp))A „&') cosh (&„L)

(Kp/0 p)A. &"' cosh(~, 5) —tiIIpW, . (32)

X„P=kP+j&ptioi (33)

is introduced and Eq. (32) is solved for A „&'), the veloc-
ity in the liquid is given by (25):

cosh'„(L—z)]
v(') =P W Z, (k r) F„e&"', (34)

cosh(rpL)
where

2Ji(k.r) cosh'. (L—z) 7
v&') =QpR Q e' ' (36)

~& k„rJp(k„R) cosh(y„L)

Indicated Potential Difference at the Surface

The potential diGerence between the probes at the
points r=rj and r=R is

V
1'1

as shown in Sec. 2 (ii), Eq. (3). Since

1 ( j&p l t' ai y.)&v tanh(y. L) ) and
1/

) /
1+— [. (35)F„E tioiV'j (. op XP tanh()&, t)) )

p, (&) = —(1+j&d/ti&ri U&)Bpv(i)

R

Z, (k„r)dr= —(1/k„)[Zp(k„r)] ri,

The result is illustrated by some special cases.
1. If the conductivities o.

& and o& tend to infinity, we the voltage at the surface is found by integrating (34):
have

Thus
y„=j&p/V and F„=1.

cos[(I—s)/V].(»=n« g)co'g

cos[p)L/V]

V.in= (1+jp)/poiV')Bp g (W„/k„)
v=1

X [Zp(k„R) —Zp(k, ri)]F„e&'"'/cosh(y„L). (37)

which is the expression for an ideal column of liquid dis-
cussed in Sec. 2 (see also the discussion of convergence
at the end of this paragraph).

2. With 6nite conductivities and vanishing thickness
of the disk, e&" tends to zero.

The asymptotic value for Bp—+~ is

Vr in (Bp—+~ )—+—QpB p-', (R'—ri'),

fromwhich a normalized voltage U = Vrin/V rim(Bp~ po)

is defined:

(k„R)'

(c) (e)

4 w 1 Zp(k„)/rZip(k„R) 1 (rp/R)'[Z, (k„rp)/Zp(k„R)]
U= (1+jp)/pa. iU') .F„e&"'/cosh(y„L),

1—(ri/R)' =i 1—(rp/R)'[Zp (k„rp)/Zp (k„R)]'
(b) (d)

(3g)

where F„are given by (35) and the expression (31) for
W„has been used. The factor (a) is due to the finite
conductivity of the liquid forming a part of the measur-
ing circuit, (b) and (c) are due to the position of the
inner probe and the special radial velocity distribution
which has been chosen, and (d) corresponds to the
finite radius of the axis; (e) is the "axial" factor, where

~ E. Jahnke and F. Emde, Tables of J unctions (Dover Publica-
tions, ¹wYork, 1945).

F„represents the eKciency of the generating mechanism
and 1/cosh(y„L) is the factor of main interest which can
give rise to resonance phenomena. This factor reduces
to 1/cos(&dL/U) in an ideal liquid.

Discussion of the Convergence

With the asymptotic formulas for J„(k„r), X~(k„r)
and the roots k. (see the tables by Jahnke-EmdeP),
it is easily shown that the remainders, n„and U„,
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(20) for three values of ou e

e ond to th tio J k„radius ro o ef th axis. ro=ocorrespon s o
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Even if the phase is measured more precisely than
the amplitude, the discrepancy between theory and
experiment as regards the amplitude is hardly wit in
the limits of error. The deviation has the same direction
as in earlier investigations being greater in the measure-
ment of amplitude than in that of the phase )see Figs.
11 (a), (b) and 12 (a), (b)$. The elasticity of the upper
part of the axis in Fig. 1 may introduce an error. Other

bl f error are mechanical disturbances y
~ ~ ~ ~ ~

the inner probe (r=rt) and impurities of the iqut,
the disk at the bottom and the boundary layer between
disk and liquid; all these eGects increase the apparent
damping. An impurity of the free surface may have
some mechanical inQuence but it is not so important
as in mercury (Sec. 5). In Sec. 3 it has been pointed out
that the currents at the junction of axis and disk and in
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iven h E (38) L'near dimensionsdifference at the surface as given y q.

co di togag.F7 daf q y =188.5 sec . c
with inffnite conductivity; ————6rst mo e v=
ing theoretical curve; XX X measurements. ase
the normalized potential difference.

0
0 2

(b)
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(ng/su j

10 (a) Amplitude (lS, l of the axial factors (c "(35) (39)of

h h 6 fthw th infinite conductivity, ————
disk at the bottom is neglected gP„= l~, resu i
curve; (h) Phase gS„of the "axial factors. "

the layer of sodium below the axis have been neglected.
This reduces the eGectiveness of the generating mecha-
nism an ad appears as an increase in t e amping when

the amplitude at the bottom is kept constant. Fina y,
the velocity distribution at the bottom has been as-
sumed to have a finite value at r=E., which is an ap-
proximation w enh the viscosity is taken into account.
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After the application of Eq. (34), however, there still
remains a discrepancy for the amplitude [Fig. 12(a)].
It has been pointed out by I undquist that a source of
error may be the tenacious surface layer of mercury.
Another possible source is a slipping of the liquid round
the strips at the bottom, . i.e., the mercury between
the strips cannot be considered as a solid. Finally, the
inertia of the mirror and impurities of the mercury may
introduce some error.

ii )'
'I20-

0100-

80-

60-

40 -.

Fro. 12. (a) Amplitude, q, at normalized velocity at the point
r=4.1 cm at the surface of a vessel with mercury with radius
R=15 cm and height L= 15 crn as given by Lundquist. ' theo-
retical results by tundquist; —.—experimental results by
Lundquist; ————theoretical results after application of the
factors E„give bny (35). (b) Phase y of normalized velocity.

5. A NOTE ON LUNDQUIST'S INVESTIGATIONS

Earlier investigations of cylindrical magneto-hydro-
dynamic waves have been carried out in mercury' with
an apparatus similar to that of Fig. 1. The waves were
excited with a disk furnished with 1-cm high radial
strips and the motion indicated at the surface with a
Aoating mirror and a scale. If the liquid between the
strips is treated as a solid disk of mercury, the result
(34) may be applied to the velocity s'". Z&(k„r) is re-
placed by J,(k„r) in this case, where rs ——0. The result
when the inhuence of the disk has been included is shown
in Figs. 12 (a), (b), which also show the results given

by earlier investigations. "
'3 Dr. Lundquist has kindly placed his numerical calculations

at the author's disposal for the application of the factors P„
given by (35).

6. CONCLUSION

The investigations of magneto-hydrodynamic waves
in sodium and mercury show a satisfactory agreement
between theory and experiment. The conditions for
model experiments in the laboratory scale, however,
cannot give a very good picture of cosmic phenomena,
even with such a medium as liquid sodium. A velocity
profile with sharp edges, which is demanded, e.g. , in an
experiment on whirl rings, representing a mechanism
for sunspots, becomes rather di6use and damped after
travelling through an experimental arrangement of
laboratory dimensions Lsee Eq. (17) and Figs. 9(a) and
9(b)]. In experiments on resonance phenomena the
conditions are more unfavorable since the rejected
waves, which virtually travel several times through the
experimental arrangement, are damped too strongly
to have considerable inhuence on the resulting ampli-
tude. A liquid with better properties than sodium can
hardly be found, but an improvement may be obtained
with an increase in linear dimensions. Experiments have
been carried out with an ionized gas in a magnetic
field. "At this stage, however, it may be premature to
draw definite conclusions about the possibility of
improving the conditions for magneto-hydrodynamic
waves in the gas.
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