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Application of the Rayleigh-Schrodinger Perturbation Theory to the Hydrogen Atom
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The motion of a single electron in the electrostatic Geld of a nucleus is treated by the Rayleigh-Schrodinger
perturbation method, the whole electrostatic potential being considered as the "perturbation. " The con-
tribution of the Grst approximation to the energy vanishes. The second approximation gives a Gnite
ionization energy which is, however, incorrect numerically. The Grst approximation also vanishes for poten-
tials ~r "with 0&m&3 but the second approximation is Gnite only for @=1:it vanishes for e&1, and is
inGnite for n&1.

'HERE are several instances in which simple
approximation methods yield correct results even

though the conditions for the applicability of those
methods are not fulfilled. The best known example is
the calculation of the Rutherford scattering by Born's
approximation. ' The calculation of the interaction of a
large number of particles by the Rayleigh-Schrodinger
method is another example. In all these cases, the wave
function given by the approximation method is quite
meaningless. Thus, in the case of the interaction of many
particles, the wave function obtained by the Rayleigh-
Schrodinger perturbation calculation's second approxi-
mation represents a state in which, at most, two par-
ticles are in excited states while, actually, the average
number of particles in excited states is, if the number of
particles is large, a constant fraction of the number of
particles. Nevertheless, the energy given by the second
approximation of the Rayleigh-Schrodinger theory
appears to be meaningful. One may gain the impression,
from these examples, that the second approximation is
always correct if it gives a 6nite result and that this
applies particularly to the electrostatic interaction.

It may be of some interest to note, in this connection,
that the aforementioned perturbation method yields,
in second approximation, a finite result if applied to the
problem of an electron moving in the attractive field
of a nucleus. In fact, among all the potentials cr ", this
applies only in the case of m= 1. The starting point, in
every case, is a free electron moving in a very large
"box." Nevertheless, the numerical result of the per-
turbation calculation gives a grossly inc,ccurate result
for the Coulomb potential. The wave function is not
only inaccurate but virtually meaningless, but this fact
does not entail an inaccurate energy value in the cases
discussed in the 6rst paragraph.

As the starting point we choose a spherical "box"
with a radius E.The unperturbed spherically symmetric
wave functions are, then,

f„=(sinn„r)/C„r, (1)
with the normalization constant C„being equal to

C„'=(2sr/a„)(n„R—sin(r„RcoRr„R). (1a)
' See G. Wentzel, Geiger SsheePs Pagdbuc-h der Physsh (Springer,

Berlin, 1933), Vol. 24, Part 1, p. 703.
s S. Watanabe, Z. Physik 112, 159 (1939); 113, 482 (1939);

W. Macke, Z. Natnrforsch. AS, 192 (1950).

The n„are determined by the boundary condition to
be used at the surface of the box. The 6rst approxima-
tion to the energy, because of an e'/r potential, goes to
zero with increasing R because the average distance of
the particle from the origin is of the order R in the
state fr. The second approximation becomes
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The integrals can be transformed by substituting
x= ((r„—nr)r and x= ((r„+nr)r, respectively.
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In order to de6ne the unperturbed system com-
pletely, one has to give the value of the logarithmic
derivative of the unperturbed wave functions (1) for
r=R. We set pf'(R) =P(R), which gives

cotn~= +
(rap

(3)

This equation determines the values of 0, . We have
two cases to distinguish: p is either in6nite or 6nite. In
the latter case, we assume that p remains the same as
we increase the size of the "box," i.e., increase E to

The denominator contains the energy difference be-
tween the states ib„and fr. Inserting (1) into (2),
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inanity. If this is the case, n„R—+nx as R—+~, no
matter what the value of p is. In other words, the value
of the expression (2b) converges to the same value as
R—+, no matter what the value of p is as long as p
remains Qnite as R~~. In this case, then, C'= 2xR, and

2e'm ( I
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2 R'(n„' ni—2)h' (& (n—i)w

dS)
(1—cosx)—

ix)

(4)

where Ci is the cosine integral

coss—j.
{ jg= dS. (4a)

As we anticipated, the second approximation (2)
gives a finite value in this case. The sum (4) was
evaluated numerically and gave

—E=0.1093e4m/h', (5)

as contrasted with the correct value of 0.5 e'm/P. As
a rnatter of fact, it is not surprising that the value (5)
is so far from being correct. Although the erst approxi-
mation correction to the eth characteristic value of the
problem,

pB
P„2(e'/r) err'dr = Ci (2nn ), —

0 R
(6)

vanishes for very large R, it vanishes only as 1/R.
Furthermore, it increases with n roughly like y+ln2gm.
The unperturbed energy differences, on the other hand,
go to zero as R '. Hence, in first approximation, the
energy of P2 is actually lower than that of Pi if R is
large enough, and the same holds for a large number of
other P„.This reversal of the order of the first-order
energy values shows again that the perturbation calcu-
lation cannot be given a direct physical interpretation
in this case.

It remains to be seen whether the other boundary
condition, P'(R) = 0, gives more satisfactory results. In
this case fi is a constant,

R e2 (1+.~ 2)$+ ( )a
Pi (e'/r)$„4mr'dr= 6~—

0 R gn
(9)

while the other P are still given by (1). The equation
de6ning a„becomes

a„R=tana„R; o.g= 0.

Denoting the solutions of this equation with g„=a~
= tang„, the integral

can be expressed in closed form. For the ionization
energy —E one obtains

12e4m k(1+V ')~+ (—)"3' e4m
0.05, (10)

i.e., a substantially smaller value than (5).
The reason it was at all possible to expect that the

Rayleigh-Schrodinger perturbation method yield a
correct expression for the energy is that this approxi-
mation method gives a power series expansion for the
energy in terms of the perturbation parameter. A
power series expansion in terms of the perturbation
parameter X=e' in fact does exist for the energy values
of a particle in a Coulomb 6eld: the coefficients of all
powers of X are zero, excepting that of the second power
which is m/2h& for the normal state. The reason that
the perturbation method nevertheless gives an incorrect
value in second approximation is that the energy is a
function of the size R of the "box" which underlies the
perturbation calculation. This function could well be of
a form similar to

(e'm/2h') t 1—c exp (—me'R/h') j
This expression gives the correct energy value for R= ~
and has a convergent power series expansion in terms
of e'. However, this power series expansion does not
converge term by term to the power series expansion
of the energy for R= ~ and, in particular, the coefFicient
of the e4 term is too small by a factor 1—c.

The fact that the Rayleigh-Schrodinger second ap-
proximation gives a definite value for the potential X/r,
but for no other potential of the form Xr ", can be seen
already by means of a dimensional argument. The
dimension of X is Lenergyfr lengthj". Since the dimen-
sion of the matrix elements of the perturbation energy
have the dimension of energy, they are proportional to
R ". The square of the matrix element, divided by a
typical di8erence of the unperturbed energy h2/2mR',
is therefore proportional to R' '". This gives a de6nite
value only for e= i but tends to infinity as R increases
for 0&1.It tends to zero if n& j..

The square integral of the first approximation to the
wave function tends to indnity with increasing R for
all @&2.In order to calculate it we have to divide the
square of the matrix element with the square of a
quantity of the order h'/2mR'. Hence, the square
integral will be proportional to R4 '" and increase
beyond all bounds also in the case of the Coulomb
potential v= 1. In fact, the erst order wave function in
our case is closely approximated by f, multiplied with
a very large factor and is almost as poor an approxima-
tion to the real wave function as the unperturbed wave
function Pi. The second approximation to the energy
can be 6nite because it is not the expectation value of
the 6rst order wave function.


