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A Complete Bacher and Goudsmit Method
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A complete Bacher and Goudsmit method for the calculation of atomic energy states in terms of the experi-
mentally observed energies of ions of higher ionization is developed. The method has been extended to include
con6gurations containing electrons of any angular momentum. A term in d4 is calculated as an example.

I. INTRODUCTION

ACHER and Goudsmit' developed a theoretical
method for finding the term values in atomic

spectra from the experimental term values of the higher
ions. Their results applied to configurations of s and p
electrons only. Using the coeKcients of fractional
parentage of Racah' and Meshkov, ' it is now possible
to give a direct method for obtaining Sacher and
Goudsmit's results and to extend these results to con-
6gurations containing electrons of higher angular
momentum than /= 1.

and the coeKcient of each con6guration is equal to the
number of times the con6guration occurs. This process
is continued until the ion consists of a single electron

fnl
outside closed shells. In general, there are

~ ~
ways(r)

of choosing configurations of r electrons, and the coef-
ficient of each con6guration will be equal to the number
of times this configuration occurs. The energies con-
tributed by the diGerent stages of ionization are in the
ratio of the number of ways of obtaining con6gurations
for each ion, i.e., in the ratio

II. CONFIGURATION CONTRIBUTIONS TO TOTAL
ENERGY

A term in a given con6guration is expressed as a
linear combination of the terms of the con6gurations of
the ions on which it is built. Our problem is to 6nd the
coeKcients of this linear combination. First, we remove
one electron from the original con6guration and obtain
the configurations of the next higher ion. The con-
tribution of each of these con6gurations is proportional
to the number of ways of forming it from the original
con6guration. If the original con6guration has only
equivalent electrons, then we get only one ion con-
figuration; the number of ways of forming this higher

( n
ion coniiguration is

~ ~
=n. If the original con-

(n —1)
(n —1)

figuration is of the form /" 'l', then there are
~

qn —2)
=e—I ways of forming the configuration, /" 'l', and
there is but one way to form the configuration /" '.

( n
Again, we obtain

~
~=n ways of forming con-

6gurations of the ion. In general, for any conhguration
of e electrons, there are e ways of choosing con6gura-
tions, and the sum of the coefficients of the terms of any
configuration will be equal to the number of times this
configuration occurs.

Each higher ion is broken up into its higher ions in a
similar way. The number of ways of obtaining con-

n l
6gurations for the ion with n —2 electrons is

~

qn —2) '

' R. F. Bacher and S. Goudsmit, Phys. Rev. 46, 948 (1934).
s G. Racah, Phys. Rev. 63, 367 (1943), referred to as R-III.
s S. Meshkov, Phys. Rev. 91, 871 (1953), referred to as M-I.

The fractional parentage coefBcients are normalized such that the
sum of the squares of all the coefficients in any row of a table
equals one.

f n ) f n $'(n)
~ ~ ~ ~ ~ e g

(n —1) «—2)

When the configurations of each successive ion are
added to obtain the total energy of the term of the
original con6guration, each ion occurs with alternating
signs. The alternation happens because it is necessary
to transpose terms to obtain the energy in terms of the
observed values of the energies of the successive ions,
as was done in (15) of Bacher and Goudsmit.

As an example of the procedure so far, consider a d4

con6guration. The energy of a term may be written in
terms of the experimentally observed energies of d',
d', and d. The d'. d': d energy ratios are determined by
the coefEcients of the binomial expansion. There are
four ways to group four electrons, three at a time; six,
to group four electrons, two at a time; and four, to
group four electrons, one at a time. Therefore, we write
in the approximation used by Bacher and Goudsmit

W(d4) =4W(d') —6W(d')+4W(d)

Similarly, for 6ve electrons,

W(d') = SW(d') —10W(d')+10W(d') —5W(d). (2)

III. INDIVIDUAL TERM CONTRIBUTIONS
TO TOTAL ENERGY

Having obtained the contributions of the electron
configurations of all the ions to the energy, the next
step is to express the energy of each con6guration as a
linear combination of the observed energies of its
terms. The coeKcients of this linear combination are
obtained by using coeScients of fractional parentage
together with (16) of M-I. We denote by IR the energy
of the term we are computing as given by (16) of M-I.
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We must And how many R's of energy there are in each
stage of ionization.

In the erst stage of ionization, we found that the sum
of the coeScients of the terms of the configurations
with e—1 electrons is e. The energy of e electrons is

t' m
made up of the sum of the energies of

=e(e—1)/2 electron pairs. The energy of ri —1 elec-
(t-1i

trons is made up of the sum of the energies of
~

= (n —1)(e—2)/2 electron pairs. The energy of
electrons is thus m/(e —2) times the energy of ri —1
electrons. Therefore, in one R of energy the sum of the
coeScients of the terms of the e—I con6guration is
e/(n —2). We now require x R's of energy to obtain m,

the sum of the coefficients of the terms of the e—I
con6guration. Therefore,

x~/(~ —2) =I, (3)

rI, q t
e—ly n(n —1)

&~—2j E~—3) 2
(5)

where e/(n —2) is obtained in going from is to n 1—
electrons and (rl, 1)/(rs —3) is obtain—ed in going from
n —I to e—2 electrons. Therefore,

y= (e—2) (e—3)/2. (6)

In general, the number of R's to be added or subtracted
t'e —2l

is given by ~ ~, where r is the number of +electrons
2

considered at a time.
For example, in the d' configuration, we first find how

many R's of energy, expressing d4 in terms of d', we
must have. From (1) there are four d' energies. From
(4), x=e—2=2 for I=4. Therefore, we must have
two R's of d' energy expressed in terms of d' energies.

To Qnd the number of R's, which, when converted
to d' energies, are subtracted, we change d4 energies to
d energies and finally to d' energies. From (6),

y= (n —2) (rs —3)/2
=1 for n=4. (7)

(4)

In all our discussion, except in special examples, we
assume we are considering e electrons, with no speci-
fication of equivalence or nonequivalence.

For the second stage of ionization, we require y R's
to yield e(e—1)/2 terms. To find y, the number of R's,
which, when converted to the energies of e—2 electrons,
are subtracted, we change the energy of e electrons to
the energy of m —I electrons and finally to the energy
of e—2 electrons. To express an e electron energy in
terms of the e—2 electron energies, we write

Therefore, one R of d' energy expressed in terms of d'
energy must be subtracted. The final result is

W (d4) =2R (d') —R (d')+4d.

IV. ENERGY OF (d4 4'I)

(8)

V. COMMENTS

When terms of the same kind appear, the method
gives the elements of the energy matrix rather than the
term values themselves. It is therefore necessary to
devise a scheme to calculate the values of the matrix
elements in terms of the observed energies. A possible
method for the calculation of these matrix elements has
been applied to the d' and d4 configurations of vanadium. 4

One drawback to calculating absolute energies by
the Bacher and Goudsmit method is the lack of precise
experimental values for the ionization potentials of
many atoms. However, the method will give the separa-
tions of the terms of the same ions, since the separations
are independent of ionization potentials.

Some of these ideas have been developed inde--
pendently by Trees. 5

4 S. Meshkov, Phys. Rev. 93, 270 (1954).
s R. E. Trees (private communication).

A specific illustration of the general Bacher and
Goudsmit method is the calculation of the term energy
W(d'4'I). From (8), we need two R's of energy ex-
pressed in terms of d' energies. Using Tables II and.
III of R-III and (16) of M-I we get

2R (d'd4 4'I) =2 .2 .$ (3/10) W (d' 'G)

+ (7/10) W (d' s'f7) $
= (6/5) W(d' 'G)+ (14/5) W(d' 'H) (9)

To obtain 1R(d'd4 4'I), we first take 1R(d';d4 4'I) from
(9) and transform each d' energy into d' energies

W(ds s'G) = (3/42) (10W(d' 'B)/21W(d' 'F)
+11W(d' s'G) j, (10)

W(d' ssEI) = (3/2) [W(d' ssp)+ W(d' s'G) ). (11)

Substituting (10) and (11) into R(d';d44'I) which is.
obtained in (9), we find

1R(ds.d4 iI) (3/7) W(d2 1D)+3W(d2 3P)

+ (18/7) W(d' s'G). (12)

Substituting (9) and (12) into (8), we find

W(d' 4'I) = (6/5) W(d' s'G)+ (14/5) W(d' s'a)
—(3/7) W(d' s'D) —3W(d' ssF)

—(18/7) W(d' 'G)+4W(d 'D) (13)

Although we have illustrated the method for con-
figurations of equivalent electrons, configurations of
nonequivalent electrons can be treated in similar-
fashlon.


