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elements of the S matrix could then be expressed in
some simple manner in terms of these eigenstates. The
main problem facing the theory would then be shifted
to that of calculating these eigenstates, where one would
have a much better chance of separating out the in-
finities which arise in the present theory.
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A technique is developed for deriving rigorous expressions for zero-energy mesonic processes. Making use
of the ambiguity of mesonic charge renormalization, the coupling constant is defined by zero-energy pion-
nucleon scattering. The threshold photomeson production amplitude is also calculated. The experimental
value of the coupling constant de6ned by scattering is at least an order of magnitude less than that of the
coupling constant deduced from the photoproduction data. It is shown that pair suppression effects are
absent in both cases. The possibility that the results obtained imply disagreement of pseudoscalar theory
with experiment is discussed.

I. INTRODUCTION

' 'T is almost universally accepted at present that +
~ ~ mesons are pseudoscalar, and that to a very good
approximation isotopic spin is a good quantum number
in mesonic-nucleon processes. Unfortunately, it is not
at all clear to what extent the conventional pseudo-
scalar symmetrical meson theory correctly describes
such processes. Because of the difhculty of carrying out
accurate calculations, it has been hard to distinguish
between the predictions of the theory and. the eGects
of the particular approximation schemes hitherto em-

ployed. In order to avoid extraneous difficulties, it
seems advisable to concentrate on understanding low-

energy phenomena, where both nucleons and mesons
are nonrelativistic. Two such processes, which will be
discussed in the present paper, are threshold photo-
meson production and meson-nucleon scattering at
zero energy.

By the use of special techniques it has been possible
to evaluate the matrix elements for these two processes
rigorously in the limit of vanishing meson mass. These
are, of course, purely formal results; however, as is
discussed at length below, one of them, say the meson

scattering, may be used to assign a precise numerical

value to the coupling constant and the other then in

principle serves as a check on the agreement between

theory and experiment. Unfortunately we are not able
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to evaluate the photo-meson matrix element explicitly,
and thus unambiguously settle this crucial question;
nor is the present experimental data su%.ciently ac-
curate to give a reliable number for the coupling con-
stant. We can, however, say the following: If in the
computation of meson-nucleon scattering one may
without serious error set the mass of the real mesons
equal to zero in the portion of the scattering amplitude
which is independent of isotopic spin, one deduces from
the existing data the value g'/4n. ~-', . If one may assume
that with such a small value of the coupling constant
perturbation theory is valid (at least in an asymptotic
sense), then one may conclude that the present theory
does not correctly describe the behavior of x mesons.
Of course, should the value of g'/4n turn out to be much
larger or should the neglect of the meson mass men-

tioned above prove unwarranted, we can make no
definite statement.

Before the theory can be compared with experiment,
it must, of course, be renormalized. Pseudoscalar theory
(with pseudoscalar coupling) is .a "renormalizable"
theory in the conventional sense of the term; however,
in contrast to quantum electrodynamics, the renor-
malization program may here be carried out in a variety
of nonequivalent ways. This fact is of great importance
in any attempts to ascertain the physical content of me-

sonic calculations. Charge renormalization is uniquely
defined in electrodynamics this is closely related to
the existence of a charge conservation law and finds its

' G. Killhu (to be published).
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formal expression in the well known Ward identity. '
One can define the charge either from the requirement
that Coulomb's law should hold for large distances, or
that the motion of a low-energy electron in a slowly
varying field be describable classically, or that low-
frequency Compton scattering be given by the Thomson
formula. It turns out that all of these definitions lead
to the same value for e. The underlying physical reason
is that a slowly varying electromagnetic Geld is in-
sensitive to the shape of the charge distribution, and
radiative corrections cannot change the total charge.
The above-mentioned experiments are characterized by
interactions over macroscopic distances or by processes
in which there is negligible energy-momentum transfer
to the charged particle. In meson theory the finite
meson rest mass precludes the first type of definition
(as it implies a finite range of forces) and introduces a
difference between processes in which the four-mo-
mentum transfer to a nucleon is zero (such as forward
scattering of mesons by nucleons), or those in which
the transfer is of the order of the meson rest mass (such
as threshold. photomeson production, or threshold pro-
duction in a nucleon-nucleon collision). The ambiguity
introduced by the necessity of choosing one of the two
types of processes as a basis for the definition of the
coupling constant g has been stressed by Thellung. '
As we shall see, however, even in the limit of vanishing
meson mass, the two alternatives lead to different defini-
tions of the renormalized coupling constant. There is
another (physically less important) ambiguity intro-
duced by the absence of a conservation law for mesonic
charge which will be discussed in Sec. II.

By analogy with electrodynamics, one would like to
define the Inesonic charge by one of the zero-energy
phenomena discussed above, choosing the renormalized
coupling constant in such a way that the rigorous
matrix element becomes identical with the result of
lowest-order perturbation theory. In a recent paper. 4

Kroll and Ruderman have shown how this may be
done for the process of threshold photoproduction of
charged mesons in the limit of vanishing meson mass.
To carry out this program, they give very explicit
instructions as to how the various finite functions of
the theory are to be obtained, and any computations
based on their coupling constant must be performed in
accordance with their rules. As we have mentioned,
such a procedure is only one of many possible and one
of the purposes of the present paper is to discuss an
alternative prescription.

A natural way to define g would appear to be (in
analogy to Compton scattering) the scattering of zero-
energy mesons by nucleons. This process has the virtue
of involving only the nucleon and meson fields, and
further is one in which the condition of zero four-

' J. C. Ward, Phys. Rev. 77, 293 (1950); 78, 182 (1950); 84,
897 (1951).

3 A. Thellung, Helv. Phys. Acta. 25, 307 (1952).' N. M. Kroll and M. A. Ruderman, Phys. Rev. 93, 233 (1953).

momentum transfer is actually met. More specifically,
we shall base our definition of g on the scattering of
zero kinetic energy meson in the limit'of vanishing
meson mass, and insist that the rigorous matrix ele-
ment in this limit be just the second order perturbation
theory result with renormalized coupling constant and
nucleon mass.

In order to do more than merely state this require-
ment on a renormalization procedure, we must develop
a method for computing the exact matrix element for
meson scattering in the limit of vanishing meson mass.
We will then know what the consequences of our pre-
scription are, that is what functions are absorbed into
the definition of g. In Sec. II such a technique is de-
veloped. It is based on the ideas of Schwinger' and
Feynman' who have shown that if the motion of a
particle in external fields is known one may compute
all relevant quantities by means of appropriate varia-
tional derivatives with respect to these fields. ' In our
case, since we are concerned with zero four-momentum
transfer, we may specialize to a constant external field
(which cannot transfer momentum) and thus replace
the relevant variational derivatives by ordinary de-
rivatives. A detailed discussion of the renormalization
of the nucleon propagation function is given and a new
method of renormalizing the meson vertex operator F5
is presented. In Sec. III, an exact computation of
meson nucleon scattering is carried out and the re-
normalized coupling constant is introduced. The appro-
priate generalization of our formalism to include electro-
magnetic effects is treated in Sec. IV, and is used to
compute the threshold photoproduction of mesons.
The well-known result' of the vanishing of radiative
corrections to Compton scattering for zero-frequency
photons is also rederived using our formalism. The
various formal considerations in Secs. II, III, and IV
are illustrated in detail by explicit perturbation theory
computations of radiative corrections with the different
renormalization prescriptions.

In Sec. V, we compare our general results with ex-
periment. The meson scattering amplitude derived in
Sec. III cannot be directly compared with experiment,
since, of course, the meson mass is not zero. It has
recently been pointed out, ' however, that the general
structure of the zero energy scattering amplitude is

R;„=A3;,+ (lJ/M) $r;,r;jB, (1.1)

where A and 8 are even functions of the meson mass
which we assume are well behaved in the limit p—+0. By
our choice of mesonic charge renormalization we can
compute 3 exactly in the limit of p going to zero;
hence, if we assume that the (1i/M)' corrections to A

s J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951).' R. P. Feynman, Phys. Rev. 80, 440 (1950).
7 The explicit formulation of the meson-nucleon problem in

these terms has been given by S. Deser and P. Martin, Phys. Rev.
90, 1075 (1953).

s W. Thirring, Phil. Mag. 41, 1193 (1950); See also reference 4.' M. Gell-Mann and M. L. Goldberger (to be published).
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are negligible, knowing the 5-wave scattering lengths,
we can compute the coupling constant (A(0) gs). We
do not assume that the masses of virtual mesons are
zero. In fact, our considerations remain valid irre-
spective of the nature of the virtual particles, provided
only that the various symmetry principles assumed are
not violated by their presence. We find by this means
coupling constants of at least an order of magnitude
smaller than those previously considered in pseudoscalar
theory. The significance of this result is discussed in
relation to various suggested approximations to the
theory and to its consistency with experiment. Finally,
in the appendix, a technique is developed to compute
p/M corrections to the various functions in the theory
and applied to obtain the form of the 8 in (1.1). [5' '(—p, —n)] =C '[S' '(p, n))C, (2.5)

5'(p, n), mentioned above. From invariance require-
ments, we conclude that the most general form may be
written as

5' '(P,n) =iy Pgo+222fo+in' rypdo+iy Pn. ryshp, (2.4)

where gp, f o, dp, and Irp are scalar functions of P', m2,

o.', p,
' and, of course, the masses of any virtual fields

which may be coupled to the meson-nucleon fields.
Whereas all four terms may be present from the stand-
point of invariance with respect to the full I,orentz
group, we may actually eliminate ho by utilizing another
symmetry principle: an examination of the general
perturbation theoretic expression for S' '(p, n) shows
that

II. FORMAL THEORY

Consider the motion of a free nucleon in a constant
symmetric pseudoscalar meson field, n;. The Dirac
equation (for a nucleon of four-momentum p) becomes

(iy P+222+in res)P(P, n) =0, (2.1)

with the energy-momentum relation p2+m2+n2= 0
The corresponding propagation function, 5(P,n), is
defined by

(2.2)S '(p, cr) =—iy p+m+in ryp.
We observe that

8
S= —S~,y5S,

z BQg

(2.3)

and that consequently the interaction between a meson
of zero four-momentum, charge index j, and a nucleon
may be represented by differentiation of the propaga-
tion function with respect to o,

When the nucleon interacts with the quantized
pseudoscalar meson field, 5(p,a) is replaced by a modi-
fied propagation, 5'(p, n). In view of Eq. (2.3), the
effect of differentiating S (p,n) with respect to cr, is
equivalent to the interaction of the coupled nucleon
with a zero four momentum meson of charge j."
Similarly, its interaction with m such mesons may be
obtained from the 22th derivative of 5 (p,n). This is a
special case of the general variational derivative tech-
nique developed by Schwinger and others'" in which
variational derivatives may be replaced by ordinary
derivatives. " Our method is somewhat analogous to
use of the Ward trick" in quantum electrodynamics
which has been extensively applied in connection with
zero-frequency photon problems.

To proceed with our development we must exhibit
the structure of the modified propagation function,

"This may be seen by noting that differentiation of any graph
composing inserts the meson vertex in all possible ways."If we were to set the external fIeld n equal to zero after all
differentiations, our results would coincide with usual pseudoscalar
theory; we are not, however, forced to put a equal to zero and for
the time being will not do so.

"Reference 2. Its statement is that 2&/&P„S' —'(Pl =I' s'(p, p)

S' '(P,~) =2y—
Pg p+222f p+2Q' rgsd p. (2 7)

As a result of the interaction between the nucleon
and the quantized meson field we know that a free
nucleon satisfying the modified Dirac equation,

5' '(p, ~)4'(p, ~) =o, (2.8)

behaves as though it had an effective mass, diRerent
from m, and were moving in an external meson field
different from a. Just as in electrodynamics it is con-
venient to introduce a mass renormalization so that a
free, but "clothed, "electron has the energy momentum
relation p2+M2=0, with M the experimental mass, we
shall introduce a renormalization of M and n. Our
demand is that a free, but clothed, nucleon must satisfy

p2+M2+n"=0 (2.9)

This will be possible if 3f and n are suitably defined.
If one iterates the modified Dirac equation, (2.8), one
obtains

[P2g 2 {P2~2)+ 2N2f 2(P'2 ~2)

+nsdp2(P2, n2)]$'(P, n) =0. (2.10)

We may evidently satisfy the requirement (2.9) by
choosing M and o.

' such that

go( —M' —u", a') = (m/M) fo( M' rr", cr')— —
= (rr/cr')d ( M' n"—n') —(2.11)

We assume that these equations may be solved for M
and o.' in terms of m and o., or rather, as is usually don™,
imagine that nz and n are expressed in terms of the re-
normalized quantities M and o.'. We shall in the future

"It might be noted that while fipp, n. vp5} does satisfy the
charge conjugation requirements, it is identically zero.

where C is the charge conjugation matrix augmented
to act also in isotopic spin space, with the properties

C 'y„C= —y r C 'ypC=y r C 'rC= rr (2—.6)

(In the usual representation, C=y4ysr2. ) If we apply
the requirement (2.5) to (2.4), we conclude that hp

must be zero. Our propagation function is then"
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also regard M as a function of o.'. It is convenient to
introduce new functions in place of gp fp aiid dp ac-
cording to the de6nitions

g (p' n") = gp (p' m' n2) . f(p' n") = (m/M) fp(p' msn2) .
d(P2 a")= (n/n')d (p' m2 n2) (2 12)

We have then

and differs from |P' by a constant factor. Physically,
our requirement is that the particle current density of a
one particle state is unmodi6ed by interaction with the
virtual Geld provided the appropriate adjustments of
m and 0, are made. In the usual notation we write

4'(P,e2') = PZ2(n'))ig, (P,n'),

S' '(p,~') =iv pg(p.' ~")
+Mf(ps, n")+in' rypd(ps, n"), (2.13)

~(p ')=rZ('))V. (p ')

S'(p, ')=Z ( ')S,(p, ').

Our demand becomes

(2.21)

=4.(P,~')7A" (Pp'), (2 22)
whereThen for a free nucleon,

1 8
S. '(P ~')

Z 8 p
(2»)S'—'(P,n') = (sy P+M+~n' res) f.

g ( M2 ~12 ~&2) f( M2 ~I2 ~&2)

d( M2 &l2 &&2)—f (2 14) kc(P i) IPc(p)PP )Pc(P )

Up to this point, we have been acting as though
everything were 6nite in our theory. In practice, of
course, the various functions gp, fp, and dp are divergent,
and we must imagine a suitable cutoff to have been
introduced so as to give meaning to our mass and n
renormalizations. (It is worth pointing out that these
particular renormalizations would be required even if
the theory were completely convergent. ) We wish now
to extract the convergent part of our function S' just
as is done in electrodynamics. We shall in fact follow
the conventional procedure of Dyson'4 and Ward'
except that we retain our n field, and state the procedure
in a somewhat different manner. We remark that for a
bare nucleon one may define a particle current density,
x„, (not to be confused with the conventional electric
current density j„=ieger„P) by

We have, carrying out the diGerentiation,

g„,=Z2(n')fy„g 2ip„(iy —pg'+Mf')
+2n' rysp„d'), (2.23)

where g'=8&/BP2, etc. Using Eq. (2.20) and the ele-
mentary results deduced from it, namely,

~.(p,-)..~.(p;) =(p./'M)~. (p,- V.(p,-),
4.(Pp') rJv 24.(Pp') = (~'/2M)0. (P ~')4.(Pp'),

one finds

4.(P,~')Z" (P,p,~'8"(P,~') =Z2(~') 9+2M'(f' g')—
+2~"(~' g')34.7A", —(2 25)

and all of the functions are to be evaluated at p'
= —M' —n". Our requirement (2.22) fixes Z2(n'):

8
=i(p;) —.—S- (p,-) ~(p,-).

$8

The analogous quantity for a clothed nucleon is
F=Z2f, G=Z2g, D=Z2d, (2.27)

our convergent propagation function S,(p,n') becomes

2(~')=if+ M'(f' —a')+ ~"(d'—C')) ' (. )

(2 16) In terms of new finite functions F, G, D, defined by

where
x. (p,-)=~ (p,-)~. (P,p,-)~ (p,-),

1 8
q„'(p,p,n') = —S' '(p, n'). ——

zlzz

p

(2.18)

S,—'(p, n') = iy PG(pp, n")+MF (ps,n")
+in' rysD(ps, n"). (2.28)

The unrenormalized meson vertex operator,
I' s', (p,p,a'), is defined by

In the limit as o.'—&0, this becomes exactly the unrenor-
malized vertex operator of the usual theory (see Sec.
IV). We now demand that after renormalization y„'
shall be numerically equal to the current density as
computed from the renormalized spinors according to

8 Bclg
I'2/(P, P,n') =—— S' '(P,n') = {rpysd 2ing,'—

$8Gj Bo.j

X/iy pg+Mf+Mf+ia' rpsd)} (2.29)

x,"=A(p, ~')v A"(p,~'),

where f, is a solution of

(iy P+M+in' res)IP, (P,n') =0,
"F.J. Dyson, Phys. Rev. 75, 1736 (1949).

(2.19)

(2.20)

where g=Bg/Bn", etc. Using Eqs. (2.24) one finds

immediately,

Bo.j-

X{d+2MMf+2M2(f g)+2n" (d g)}.—(2.30)—
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If we substitute for 5' its expression in terms of S,
given in Eq. (2.21), we obtain

where we define the convergent vertex operator,
I'», (p,p,n'), by

1 8
I'5i, (p, p,n') =— S,—'(p, n').

Z l9nA;

(2.32)

If we substitute (2.32) into the right-hand side of
(2.31), and use Eqs. (2.21) to express the spinor
amplitudes in terms of renormalized quantities and use
(2.26) for Z2(n'), we find

p, (p, ')r», (p,p, ')g, (p, ') =y, (p, '),v,p, (p, ')

f(1+2MM)+2M'(f —g)+2n" (d —g)
1 (2.33)

f+2M'(f ' g')+ 2n"—(d' g')—
where all quantities are evaluated at p'= —M' —n"
and we have used the fact that d= f under this condi-
tion. Derivatives of the various functions f(p', n"),
etc. , with respect to p' and n", evaluated at p'= —M'

n" ca—n be related to each other using Eq. (2.14)
which we rewrite very explicitly as

f[ M2(ni2) n~2 ni23 g[ M2(n&2) n~2 ni2
(2.34)

d[ M2(+n&2) n&2 n&21 g[ M2(n&2) n~2 n&2$

Differentiating with respect to n", we find

(f'—g') (1+2MM) =f—
t7,

(d' —g') (1+2MM) = d —j.
Thus Kq. (2.33) reduces to

(2.35)

0'.(P )I'». (P P )0"(P )
= (I+2MM)|P, (p,n') y22.2f.(P,n') (2.36).

The presence of the factor Bn~'/Bn; in Eq. (2.31) and
of (1+2MM) in Eq. (2.36) shows that even in the
limit as n~0, there is no analog of the Ward identity
in meson theory. In terms of the finite functions Ii, G,
and D defined in Kq. (2.27) there are two identities
worth recording:

F+2M'(F' G')+2n" (D' G') —= 1, (237)—

F(1+2MM)+2M'(F 6)+2n" (D G)— —
= 1+2MM. (2.38)

These relations play a fundamental role in our later
work.

Bn2' I'», (p,p,n')
I'2 (p,p,n')=

Bn; Z2(n')
1 l9

+S, '(p n')—,(2.31)
2 Bn; Z2(n')

Our renormalization procedure gives, in the limit of
+~0, precisely the same convergent propagation func-
tion S,(p) as would be computed by the conventional
Dyson-Ward procedures. More precisely, our method
can be shown to be exactly equivalent to casting 5' '
as given by (2.7) into the form

S' '(p, n) =S '(p,n')+AS '(p, n')

+S '(p ')J3S '(p '), (239)

where S '(p, n') =iy p+M+in' 2y2, A is a divergent
function of M' and n" and 8 is an operator involving
iy p, M, and in 2.y2 which is nonsingular on the one-
particle energy shell. A is related to Z2(n') by the rela-
tion Z2 '(n') =1+A. It is very important to notice
that the convergent part of the vertex operator I'5,
computed in our scheme, in general, diGers from that
computed by the usual procedure. As has been pointed
out by Kroll and Ruderman, a precise statement of the
conventional procedure is that

lim ip, (p') I"„(p',p)ip, (p)/ip, (p') &2r2P, (p) = 1, (2.40)

whereas our method is that detailed in Eqs. (2.31)
and (2.36). The reason for the ambiguity at this point
(which has nothing to do with the ambiguities of mesic
charge renormalization discussed in Sec. I) is that as
n~0, the expectation value of ys in a state of given
momentum p vanishes; the usual procedure is based
on the limit, as P' approaches P of g(P')y2|P(P), whereas
our method is based on considering the limit, as n —&0,

of |P(p,n')ygf (p,n'). These two limiting processes are
entirely independent of each other. It is perhaps worth
remarking that our procedure is well defined with a
nonzero value of n', and consequently has the advantage
of avoiding the ratio considerations [see Eq. (2.36)]
of the usual method. In a sense, our renormalization
scheme is not yet completely speci6ed in that we have
said nothing about what shall be called the renormalized
coupling constant. A little consideration shows that
this is a decision which can be reserved until a later
time; the essential in6nity to be absorbed in the coup-
ling constant is evidently the quantity Bn'/Bn (aside
from the usual Z2) and any finite multiple may be
chosen at our convenience. We shall return to this
point later on in Secs. III and IV.

Rather than go into detail and show how all di-

vergences are removed in perturbation theory, which

would essentially require a repetition of previous work, "
we shall illustrate our method by a second-order per-
turbation calculation which will also be useful in later
applications.

Using the standard Feynman techniques, the mass
operator Z (p,n) [which is related to S' ' by the relation
S' '=S—'—Z(p, n) 1 is easily found to be (to order g',

"P.T. Matthews and A. Salam, Revs. Modern Phys. 23, 311
(1951).
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p d4q 1
Z(p, n) = lim ig' ~~'

—— to~I,
(2or) 4 q' q'+ lI.'

( gog2) pl X

lim ~' dx dy
(4~)2 J

3iy p(1 y)+—in ~go+3m
X (2.41)

,y(1—y) 3(1—y) .+5 ' (oy p+in ryo —m)
~p2

and with the neglect of the mass of the virtual meson) where Ap' ——M'y'+'A'(1 —x) and A' is given by (2.42)
with n set equal to zero and m replaced by M.

This simple procedure is to be compared with the
usual" one in which one is required to cast the mass
operator into the special form related to (2.39):

XLpy (p q)+—m+kx syph 'pp71„. .

Z(p, a) =—,dx
~

dy +zQ'T ro
(4or)'& p ~ p Ap' Ap2

g—1- 3m'y'(1 —y) (3y —2)y(1 —y) 2n'-
+—3(1—y)—

Ap2 A.p2 Ap2

where

A.'= (m'+n')y'+X'(1 —x)+ (p'+m'+a')y(1 —y). (2.42)

Reference to Eq. (2.7) shows that (dropping the ex-
plicit passage to the limit of the cutoff X going to
infinity)

3g2 p1

f (p'n')=1+ X' ' dx ' dy—
(-)-
3g2 ~1 pe $ y

go(P', no) = 1+ y' dx I dy, (2.43)
(-) ~

g2 ~l pe
do(p', a')=1+ Y' ' dx '

dy—.
(4 )" ~o o A.'

In the limit of n approaching zero, the various quan-
tities that appear in our formalism can be calculated
directly from (2.43). We summarize below some of the
relevant ones:

( 3g~ f" &* y l
M=m( 1+ ~~ dx dy

(47r)'" o o Ao'&

g9.' p' p* 3y —2 q
=~~'I 1+ dx dy-

(4ir)' p &o Ap' )
3g2$2 pl ~ z $ y 3g2

Z (0)=1— —
~

dx ~~ dy +
(4~)», &, A,' (4~)

1+2'= 1—3g'/(4~)',

I''(p') = 1+3g'/(4~)'

(
(4~)'& o 4o I A' Aoo j

G(p') = 1+3g'/(4s. )'

3',' t' p* (1 1 )+ ~ dx ~' dy) ——~(1—y),
(4~)'& o J o (A' Aoo)

D(p') =1+3g'/(4~)'

gogo

dx dye
——i,

(4s)'& p & o EA' Ap')

3my+ (3y —2)on o.yp 6my 5 'y(1 —y)'
+ 5'+

A.'" Ap2 X2X,4

X/6my'(iy p+in oyp) —(3y—2) (2n')]

X(iy p+oa rye m)5—'

III. APPLICATION TQ MESON-NUCLEON SCATTERING

We shall now apply the techniques developed in
Sec. II to the problem of meson-nucleon scattering.
The first application will be a derivation of the exact
scattering amplitude in the limit of zero kinetic energy
and zero external meson mass. The result obtained will
be compared in detail with a perturbation theoretic
treatment of the same problem and the precise way in
which radiative corrections disappear in our scheme
will be exhibited.

The exact scattering amplitude, expressed entirely in
terms of unrenormalized quantities, is given by'7

T =g " 'p '+'g ' limp'(p n')5' '(p n')
a~p

5'(P n') 5' '(P,a')4'(P, a') (3 1)
2 8cY&'8(Y;

This is the scattering amplitude for the process: meson
in charge state i going into meson in charge state j with
the appropriate changes in the charge states of the
nucleon of momentum p, in the limit of zero total
energy mesons; g is the unrenormalized coupling con-
stant. Carrying out the indicated differentiations and
using the definition (2.29) we obtain

TJ'=&2" '4''"'g-'»m0'(P, n') 1'pJ'(P, p,a')5'(P, a')

Xr, ,'(p, p, ')+r, ,'(p, p, ')5'(p, ')r„'(p,p, ')

1 8
1'p''(P P,a') 4'(P a') (3 2)

$80!g'

"See, for example, R. Karplus and N. M. Kroll, Phys. Rev. 77,
536 (&9SO)."This is a special case of the general expression for the scatter-
ing amplitude given in reference 7 in terms of variational de-
rivatives.
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We now substitute for the unrenormalized quantities
their expressions in terms of renormalized quantities.
The only renormalization which has not yet been de- .

fined is that relating to the meson field."This is, fol-
lowing the usual convention,

y'= (Qzo)y.

Gi

N:c,

Vz

X {28/F'yoSc(P)go+28'/. (MF+FM+M6) g'c(P) (3 3)

I We have set D(—M' —n")=F(—M' —n") since we

may now go on to the energy shell. ] Recalling that on
the energy shell with a=0, S,(p) =F '(ip p+M) ' and
that p,y, (iy p+M) 'pop, = (2M) 'p,f„we have

Bu'
&,'= 0,' '4"+'zc-'I

I 4.(p)—
I an).=oM

X fF(1+2M')+2M'(F —G) g'c(P) (3 4)

By using (2.38), this result may be written as

'~'"&(g.~';/M)~. (p) a.(p), (3.5)

where we have defined the renormalized coupling con-
stant g,' to be

(Bn )
&,o=g.oZ.

I I
(1+2MM).

EBQJ ~=o
(3.6)

The scattering amplitude as given by Eq. (3.5) is
identical with the result of second-order perturbation
theory in the limit of zero meson mass with, of course,
the replacement of the unrenormalized coupling con-
stant and nucleon mass by the renormalized quantities.
The significance of this result will be discussed in Sec. V.

In order to illustrate our formal procedure in detail
we present in Table I a summary of the calculation of
the same process in second-order perturbation theory.

"One may speculate that there exists a close connection be-
tween QZ3 and (Bcx'//Ba) since both are meson field renormal-
izations.

In order to avoid any possible ambiguity in the evalua-
tion of (3.2), it, is convenient to imagine that the mo-
mentum p of the internal nucleon lines is kept slightly
different from the actual momentum p appearing in
the spinors until n has been set equal to zero.

In carrying out the operations indicated in Eq. (3.2),
the following facts should be borne in mind: (1) a', the
renormalized external field, must be an odd function
of n since it is a pseudoscalar; consequently in the limit
as n—+0, Bn,'/Bu; 8,, and we shall write the coefficient
of 5;; as simply Bu'/Bu. (2) The renormalization con-
stant Zo(n') is a function of n" alone and therefore
Bz,/Bn' is zero in the limit as n~0. (3) As n—+0, the
expectation value of p5 approaches zero. Using Eqs.
(2.29) and (2.31) to evaluate Eq. (3.2) we obtain

Bn )~
T,, =y, & ~@,&+~z,g„'I , I 4, (p)

(Bu / u=o

VX1

C
~/

FIG. 1.Feynman diagrams for meson-nucleon scattering. Nucleons
are represented by solid lines, mesons by dashed lines.

The appropriate Feynman diagrams are shown in
Fig. 1. The calculation is completely standard and one
need only use the values of F, G, D, 3E, and n' given in
Sec. II to carry out the evaluation. The results of the
conventional procedure of calculating the scattering
are also given in Table I.

In the appendix we derive an expression for the p/M
corrections to the scattering amplitude in terms of
quantities which can be computed (in principle) from
the theory.

TABLE I. Lowest order corrections to meson-nucleon scattering. '

Method Contribution Type of graph

o. formalism
Finite

n. nite

CI+~II ~I+~II ~I +~II ~I+~II++
—6 0 0 3

0 6y —6

Finite
renorm.

Conventional Infinite
renorm.
Finite
correction

0 7/6 7/6

6y—6

a All finite terms are multiplied by g2/(4~) ~, all infinite ones by
Lg2/(4~)2] J'Did' J'0&dyX2/[m2y2+M(1 —x) ], both times the lowest order
matrix element. Types of graph refer to Fig. 1. It will be noted that the
sum of all terms in the e formalism is precisely (Be'/Be)2(1+2MM) to
this order, as can be seen from Eq. (2.44). The infinite contributions, but
not the finite ones, are the same in each column for both methods; the con-
ventional method yields finite corrections to scattering. Effects from vacuum
polarization, giving rise to an over-all Zg factor, have been omitted.

IV. THE THREE-FIELD PROBLEM

Having established a method to handle the meson-
nucleon problem, and settled upon a renormalization
scheme, we now turn to the more involved three-field
situation.

We begin by suitably generalizing the technique de-
veloped in Sec. II in order to include interactions with
the electromagnetic field. The construction of the elec-
tric current operator, j„=iePI'„Q, is complicated by the
fact that charge is exchanged between the meson field
and the nucleon. As will be seen in more detail below,
the difficulty is not due to the virtual meson field but
rather to the charge bearing external field. The direct
use of the vertex operator, 1„(P,P), as defined in Eq.
(2.18) does not provide us with the desired quantity.
The appropriate electric current vertex operator F„can
be constructed by variational differentiation of the pro-
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s= ', (1+rp-)x„A„,

n' r=exp( —iS)n' r exp(is),

(4.2)

and x„ is to be interpreted as a diGerential operator,
i8/BP„In .the absence of the external meson potential
0,, the sole eGect of the transformation S would have
been to replace p„by the gauge invariant combination
p„ip(1+—rp)A„; this must still be true in the more
general case, hence the replacement of n' by a'. Since
the transformation is a rotation in isotopic spin space,
n", a scalar, is of course equal to a".

At this point we must recall that, of the terms per-
mitted by invariance and charge conjugation con-
siderations in S' '(p, n'), one, having the form (iy p,
nx' i.pp}h was identically zero. Such is no longer the
case when n' is replaced by a', since n' and p no longer
commute, and this term must be reinstated. Further,
the term in' rpsd must now be properly symmetrized
because 0.' and d do not commute. Therefore, according
to Eq. (4.1) and the above remarks, our complete
propagation function becomes

8, '(p,a', A)=exp(iS) iy PG(p', n")+MF(p', n")

exp( —iS). (4.3)

(None of the renormalization considerations of Sec. II
are affected since n"=o.", so we discuss only the con-
vergent function. ) We now define the electric current
vertex operator I'„,(p,p,n', A) as follows:

BS, ' 1+i.p 1+ip

I'„,(P,P,n', A) =i =exp (iS) y„G—— 2iP„BA„2 2

X (iv ' pG'+MF')+v pppD'(as'+0. '
~)

iH 1+ip
H'

+ ~„yp[rp, n' r]+ 2ip„
4M 2 4M

X(iy p, ia' imp} exp( —iS). (4.4)

pagation function with respect to an external vector
potential A„(x) together with consistent use of the iso-
topic spin formalism. As we shall be interested only in
low energy phenomena we restrict our attention to a
constant external potential A„, so that variational
derivatives may be replaced by ordinary derivatives.
A convenient way of introducing such a potential into
the propagation function is by a gauge transformation:

S' '(p, n') +S' '(p—,n', A—„)
=exp (iS)5'-'(p, n') exp (—iS), (4.1)

where

In the limit as n' and A„approach zero, I'„,(p,p) is
indeed given by -,'(1+ r)p(8/iBP„)S, '(p) and is thus
[except for the factor —', (1+rp)j the same as the
'1„(p,p) of Sec. II. The actual vertex operator in the
presence of the n 6eld is, of course, the limit of Eq.
(4.4) as A„—&0; the complications introduced by the
external field are evident.

The meson vertex operator I's~'. (P,p,n', A) is defined
as before as the derivative of S, ' with respect to Axj'.

In the limit of A„—+0, it approaches (2.32).
We may remark at this point that the transition

matrix element for the zero frequency Compton e8ect
on a nucleon may be written as

g2

T~xp ——ep'A„'& '(Xg'(P) lim S'—'(P) i' S'(P)
A —+0 BA„BA,

where X, Xo are polarization indices, eo is the unrenor-
malized electric charge, A'(+) are the unrenormalized
amplitudes of the photons. The external meson field

may be set equal to zero, consequently there are no
isotopic spin complications. An over-all factor of
ip (1+rp) insures that in the limit of zero frequency, the
light scattering from a neutron vanishes. For a proton,
—,'(1+i-p) =+1 and the derivatives with respect to the
external field A may be replaced by derivatives with
respect to the momentum p, i.e., 8/8( iA„)—=8/Rip„.
To evaluate Eq. (4.7) we replace the unrenormalized
quantities by renormalized ones, noting that all Zp(0)'s
cancel out and that as far as the photon amplitudes are
concerned, we must take eoA'=e~A, where e~ and A

are the renormalized quantities. Using (4.4), with n'

and A equal to zero, and choosing a transverse gauge
to describe the photons, so that all terms proportional
to p„vanish, we find for Trap the result:

g 2

T~xp ———A„& '(li)A„&+&(Xp)
3E

X[F+2~'(F'—G')1 =-A. (PN" (p)

(4.6)

The last step follows from Eq. (2.37). This is not a
new result and has been included simply to show pre-
cisely how it comes out in our formalism, which divers
in detail from the earlier work of Thirring and of Kroll
and Ruderman.

We turn now to the problem of threshold photomeson
production in the limit of vanishing meson mass, the
problem discussed by Kroll and Ruderman. There is
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one slight complication in this process which must be
considered before we can perform the explicit calcula-
tion. We must allow for the interaction between the
electromagnetic field (photon) and the meson produced.
We shall not go into this question exhaustively because,
as will be seen, the meson current contributions vanish
at threshold. If the propagation function for a meson
of four-momentum q, 6, (q), (i and j are isotopic spin
indices) is known, the effect of a constant vector poten-
tial may be introduced conveniently by a gauge
transformation:

6; (q,A)=(e' '"5'(q)e *' *'");,,

where T is the matrix

Vb

FIG. 2. Feynman diagrams for photomeson production. Nu-
cleons are represented by solid lines, mesons by dashed lines, and
photons by dotted lines.

zero, (i/2) (y„ys/M) (rT),F. We obtain, finally,

(Bn i
T,,=e,g„j I

Z, —:(F+H)p,&- A„&+&P)P,(p)
&Bn 2M

Xv.v ( T)A. (p).
0 1 0

T= —1 0 0,
0 0 0

(4.g) If we were to choose our renormalized coupling con-
stant to be

gi ——(Bn'/Bn) Zsl (F+H) g„, (4.13)
and x„ is to be interpreted as iB/Bq„The. transition
matrix T,q for the threshold photo production of a
meson of isotopic spin j by a photon of polarization ) in

the limit of vanishing meson mass, is given by

T = og- » 0'(p, ')4 " '(j)S' '(p, ',A)
AsQprAp +0

B BS'(p,n', A)
X&si' '(q, A) —— —Di„'(q,A)

BA P, BCXrt

XS- (P,-,A)A. i.l(~)~ (p,-) (4.9)

All repeated indices in Eq. (4.9) are to be summed

over; in the subsequent equations our notation will be
less specific, e.g. , g&(j) will be set simply equal to p,
as was done in Sec. III. We now remark that the term
arising from the meson current, i.e., from the derivative
of 0&„, vanishes in our limit since, by invariance, it
can only be proportional to q„." In terms of our previ-
ously de6ned vertex operators, we may write this as

we would obtain no 6nite correction to the photoproduc-
tion amplitude. The numerical value of gI, obtained
by comparison with experiment is of course the same
as that found by Kroll and Ruderman. It should be
carefully borne in mind, however, that the precise
structure of g&, regarded as a theoretically calculable
quantity, is dependent on the procedure followed in
carrying out the meson vertex renormalizations. The
form given in Eq. (4.13) is what results from using our
computational schemes throughout. This point has
been discussed at the end of Sec. II and is illustrated
in detail in Table II where an explicit comparison be-
tween the two procedures is presented. The appropriate
Feynman diagrams are shown in Fig. 2.

The relation between the coupling constants g, [de-
fined in Eq. (3.6)] and gp is seen to be

g '/gr ' ——(1+2MM) (F+H) ' (4.14)

Computing these functions in lowest order perturbation
theory, we get for this ratio:

T,i=e g. hm p'(p, ')np, '& '[I', 'S'I'„'+I'„'S'I'„'
cx y flu p A p,~0 g,'/g P'= 1—5g,s/16B'. (4.15)

/Bn/BAv)4'(P~n')Ay' + (~i) ~ (4 10) TABLE II. Lowest-order corrections to photomeson production. '

Method

n formalism

B'S, ' (Bn') 1
y„ys( T),H,

BnjBA~ E Bn 3 2M
(4 11) Conventional

The arguments of the vertex operators. are all p, p, n', A

and of the propagation function p, n', A [see Eqs. (4.3)
and (4.4)]. The renormalized functions may now be
introduced in the usual way. The third term in (4.10)
makes the contribution

Contribution C

Finite —2
Infinite 0

Type of graph
V Va +VIE B

0 0 0 3
1 —3y+3 3y—3 3y—3

Finite
renorm.
In6nite
renorm.
Finite
correction —2

0 7/6 3 3

2 1+2

0 1 —3y+3 3y—3 3y—3

where (tT);=r,T,;. The first two terms yield (aside
from a factor of Bn'/Bn), in the limit as n, A approach

"M. Kroll and M. A. Ruderman have shown more generally
that the outgoing meson current does not contribute to threshold
production.

a All finite terms are multiplied by g~/(47r)', all infinite ones by
t g~/(47r)'J J'0'dxf pdyV/ttm~y~+ (1 —x)Mj, both times the lowest order
matrix element. Types of graph refer to Fig. 2. It can be seen that there
are no net corrections in the conventional method, The infinite contribu-
tions are the same in both cases, but there is a finite correction in the
a formalism, as the first two lines do not add up to (Bn'/Be) {1+2MM)&
but rather to (Ba'/Ba) (I'+H), Vacuum polarization effects have been
omitted.
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The above result is consistent with the calculations of
scattering and photoproduction as given in Tables I
and II. If one uses the conventional meson vertex re-
normalization and the photoproduction definition of
mesic charge, one finds that the meson scattering
matrix element is proportional to gp'(1 —5g~'/(4~)'),
which (to this order) is just equal to g, . Similarly, if
one calculates photomeson production with our vertex
renormalization and uses the meson scattering defini-

tion of mesonic charge, one obtains a matrix element
proportional to g,[1+5/2g, s(4~)'7, which is just equal
to g& by Eq. (4.15).

V. COMPARISON WITH EXPERIMENT AND
DISCUSSION

We may now compare the various results obtained
in the previous sections with experiment. First, we shall
determine the value of our renormalized coupling con-
stant, and second, we shall investigate, in so far as it is
possible, whether or not the resultant theory is in agree-
ment with experimental data.

The general expression for the scattering matrix
describing the forward scattering of a meson of four-
momentum q by a, nucleon of four-momentum p is'

g
2

T;= 28 gA (q—'&M' p'/M')
23'

'g
[r;,r~7B(q'/M' p'/Ms) (5.1)

23P

where we do not write the various field amplitudes
explicitly. We have written the functions A and 8
with two arguments to emphasize that the external and
internal meson masses need not be assumed equal.
Designating temporarily the external meson mass by
p', we obtain, for zero energy, the scattering lengths
corresponding to isotopic spin states 3/2 and 1/2:

g' fv'
I+

I,Ms Ms) 2M &&s Ms)
(5.2)

g'
2M &Ms'Ms) I

In our renormalization scheme, A(0,p'/M') =1; if we

assume that A (p"/M', p'/Ms) may be approximated by
A (O,p'/M'), we may solve Eqs. (5.2) for g,s/4rr and B.
Little can be said as to the reliability of such an ap-
proximation. In lowest order perturbation theory A is

$1—p"/4M'7 ', so that the approximation is very good.
As far as higher terms are concerned, the numerical
value of the corrections depends on the size of the
coupling constant. In the appendix, a formal expression
for B(0 y'/M') will be derived.

Before going on to the experimental determination
of g s/4s by means of Eqs. (5.2), attention must be
drawn to one point concerning the definition of g,'. It

will be recalled that there appeared in this definition
(aside from inherently positive factors) the quantity
(1+2M3II). Its behavior as a function of M and g, is,
of course, unknown in practice. This is in contradis-
tinction to electrodynamics where the theory is known
to predict a definite sign for the Compton scattering
amplitude. If it were possible to obtain the sign of
(1+2MM), then a severe test of the theory could be
made with just the scattering data, as the signs of the
scattering lengths are known. That is, a direct contra-
diction could exist with experiment if the predicted
sign turned out to be wrong. We have not been able to
determine the sign of (1+2MM), however, and will

therefore take it as dictated by experiment.
Unfortunately there do not exist measurements of

meson-nucleon scattering cross sections at suKciently
low energies to permit an unambiguous extrapolation
to zero energy. Fermi and Steinberger have each given
extrapolated scattering lengths based on analyses of
the data for scattering at energies greater than about
40 Mev. These sets have both been adjusted to agree
with the x capture data. "This effect relates charge-
exchange scattering and photoproduction at zero energy
and leads to the requirement that

(a;-a;i =0.17/p. (5.3)

(a) Fermi" gives a;= —0.11/p, , @i=0.06/p, . This im-

plies that g,s/4~=0. 36, taking 1+2MM) 0.
(b) Steinberger" gives a,*=0, a;=+0.17/p. This

leads to g, '/47r=+0. 37. Here, however, we had
to take 1+2MM&0.

Recent preliminary observations at Columbia on x
scattering at 7 Mev, however, imply that g,s/4' may
be perhaps as large as 1 or 2."

It seems striking that all the above results yield far
smaller g,'/4s than usually employed for the pseudo-
scalar coupling constant, and in particular far smaller
than the value of 25 one obtains for gps/4~ by adjusting
it to agree with the photomeson production data. '4

We obtain very small values for g'/4s since our re-
normalization scheme is based on matching the s-wave
scattering amplitudes which are experimentally of the
order of 1/M, just the size of the Born approximation
amplitudes if g'/4s. is about unity.

It is frequently claimed" that the large values of the

20 Panofsky, Aamodt, Hadley, and Phillips, Phys. Rev. 80, 94
(&950)."E. Fermi (private communication).

~ J. Steinberger (private communication).' Cornelius, Sargent, Rinehart, I.ederman, and Rogers, Phys.
Rev. 92, 1583 (1953).

It may be mentioned that with a pseudovector coup]ing
theory (assuming that the theory exists in some sense) the re-
normalization to the meson scattering experiment would lead to
a pseudovector coupling constant f, equal (since this is the lowest
order perturbation theory requirement) to our g, . This is to be
contrasted with the photomeson situation where one has the
equivalence relation fI =gI (p/23'). Thus, whereas we had previ-
ously had gz) g„ in this new situation one would have f, )fI.

s' S. Drell and F,. Henley, Phys. Rev. 88, 1053 (1952); G. Went-
zel, Phys. Rev. 86, 802 (1953).
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coupling constant which are presumably needed to
explain the p wave meson scattering can still yield
the correct s scattering at low energies, provided one
computes more accurately than Born approximation.
This belief is based on the observation that the scat-
tering length obtained from an interaction of the form
g'qP/2M (which is supposed to represent, for low ener-

gies, the s wave interaction in pseudoscalar theory) is,
for g'/4z. ))1, given by the cut-off radius independent
of g'/4z. . It should be pointed out that the analogous
procedure in electrodynamics, in the problem of low-

frequency Compton scattering (where the interaction
is described by e'A'/2M) would again lead for large e'

to a scattering length which does not exceed the cut-
off radius. However, as we have seen, the exact value
predicted by the theory is e'/M, regardless of the size

of e'. This seems to indicate that the use of just the
qP part of the equivalent pseudoscalar interaction may
well be incorrect.

The expectation that one would find small s scatter-
ing in an accurate treatment of pseudoscalar theory
due to suppression of pair eGects26 is belied by the ob-
servation that the damping introduced through the
propagation function is (for low energies) precisely
cancelled by the vertex operator. It is easy to show,
using the results of Sec. II that the following equations"
are true:

S (p)I' .(p p)p (p)=S(p) ' yp (p)

p, (p)I's, (p,p)S, (p) =p, (p),y S(p).
(5.4)

These results do not depend upon our choice of the
coupling constant.

Two alternative renormalization methods exist, as
we have seen, corresponding to fixing the coupling con-
stant by two diGerent experiments. If the theory is
assumed to be consistent with both experiments, then
the method of renormalization yielding the smaller
coupling constant may well be of considerable practical
use; it electively re-sums the series in such a way that
the expansion in powers of the renormalized coupling
constant may have some significance, albeit perhaps
only in an asymptotic sense. If, however, one computes
in perturbation theory, using our small values of g,s/4z. ,
the threshold photomeson production, one obtains dis-

agreement with experiment by at least an order of
magnitude. If one uses the value g,s/4z s, the terms
in the series are decreasing very rapidly; with g, /4z. 2,
the decrease is so slow that one cannot say much. "

"Brueckner, Gell-Mann, and Goldberger, Phys. Rev. 90, 476
(1953).

sr Equations (5.4) are analogous to the results of Kroll and
Ruderman for S,l „and bear out their conjectures as to the be-
havior of products like S.F5."It is clear that a perturbation calculation of meson-nucleon
scattering using g,m/4s =-,'fails to reproduce the nonzero energy
data. On the other hand, a similar calculation of the m lifetime
does agree with the observed value. With g.s/4s. =2, the apparent
convergence is again too slow to enable one to reach any con-
clusions.

It is evidently desirable to obtain accurate experi-
mental data on very low energy meson scattering. If
the coupling constant as determined by scattering is
indeed as small or perhaps even smaller than the value
of about 3 given by the Fermi and Steinberger extrapola-
tions, the outlook for pseudoscalar meson theory with
pseudoscalar coupling seems dim.

In conclusion, it is to be emphasized that all of our
numerical results have been based on the assumption
that A (O,p,'/M') is a good approximation to A (fi"/M',
p,'/Ms). Very little can be said at present as to the
legitimacy of the assumption. On the other hand, if
such a small quantity as (p/M)' is not negligible, it is
dificult to see what can be neglected in any given
calculation within the theory. Perturbation theory
calculations indicate that (with our small coupling
constants) the error is small, but this point deserves
further study.
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APPENDIX

The evaluation of the p/M terms, that is of B(O,ii'/M)
in the notation of Sec. V, breaks naturally into two
separate parts, namely those diagrams in which there
is at least one free nucleon line (aside from the external
meson lines), and those for which there is never a free
nucleon line. (The general structure of the scattering
amplitude is of this form as can be seen from the exact
expression given by Deser and Martin. ') Since we are
still interested in the scattering amplitude at zero
kinetic energy, it is sufhcient to calculate the scattering
amplitude in the forward direction, the scattering being
entirely in s states. Let us take the two classes of terms
referred to above separately.

The total contribution of the first class to the for-
ward scattering amplitude (for a meson of initial and
final four-momentum q) is given exactly by

T "'=4 '4'"+'g-'1 0'(p ')
a~0

X t I'»'(p, p+V, ~')S'(p+~, ~')I's, '(p+q, p,~')

+I'''(P, P , ')~'(P , ')I' —(P—V —P ))
xy'(p, &'). (A. &)
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This expression is correct for any value of q; we shall,
however, in the following keep only the zero and first
order terms in q. The zero-order term yields, of course,
the first two terms in Eq. (3.2) and essentially requires
no further discussion. In order to proceed with the
evaluation, we must derive expressions for the F5's of
unequal arguments. The Sp"s present no di%culty
since we have an explicit expression for them which
may be expanded in a straightforward way. It is sufFi-
cient to work with the first term in (A.1) since the
second follows by interchanging i and j and replacing
q by minus q. Since there are no differentiations with
respect to o. to be performed, we may safely pass to
the limit n—&0 and retain only the obviously non-vanish-
ing terms. Expressing everything in terms of the re-
normalized quantities we have for the portion under
discussion the following:

(tin ) s

& '=y' 'y &'&g-'l
l

z,it, (p)
«tin) s

tion. The charge conjugation requirement is

G-'I' s;(pi, ps)&= —I' s''( —ps, —pl), (A.5)

H4(p')
+r'vs( i es), "—P. (A 6)

M'

It is evident that the term proportional to (ei+es) may
be expressed entirely in terms of F5's of equal argu-
ments, in fact 2'

where C is the same matrix defined in Sec. II, and the
transposition operation refers both to ordinary spin and
isotopic spin indices. One may then show easily that to
first order in e~, and e2,

&i(P')
I's'(p+et, p+es) =I' s'(p, p)+ (ei+es) p&'Vs

3P
II, (ps) & (p')

+ (e] e2—) 'pri'rsvp'p +z(el e2—) 'r&~ rs
M' M

Xf& (pp+ )$(p+ )I, (p+ p)}p(p) (A2) "+" P'-r'~'P M '(I''P+"'P+")
+I's'(P+es, P+es) —21's'(P, P)) (A &)

(We have dropped the subscript c from the renormalized
vertex operators. ) We may write $,(p+q) explicitly as

MFL(p+q)'7 iv (P+q)G—L(P+q)'7
S.(p+q) = (A.3)

(P+q)'G'L(P+q)'7+M'F'L(P+q)'7

By using the facts that p'= —M' and q'= —p', $,(p+q)
may easily be expanded in powers of q. It is necessary
to keep only terms which are quadratic in q in both
numerator and denominator; although one does not
obtain in this way all of the terms linear in q, those
which are omitted make no contribution to the matrix
element. Designating derivatives of Ii and G with re-
spect to p', evaluated at P'= —M', by primes, we find
for the relevant terms:

We may replace the unknown functions introduced
in Eq. (A.6) by previously defined ones by means of
certain identities between the off-diagonal elements of
F5 and the derivatives with respect to A of the diagonal
part of F5. These identities hold only to first order in

q, and are deduced by comparing the method of Sec.
IV and that used by Kroll and Ruderman for tracing
the charge in the photoproduction calculation. That is,
one finds (to first order in q):

p (P+q, p) =I. (P,p) q. (-F lp.--(p,p) l~)l.=.,
BA„

(A.8)
8

I'~(p P+q)=1'~(PP) —q. %II'~(p,p)l»l =o
BA„

S.(P+q)= (—iy p+M)F iy qF—
F(2p q p')—

+(2P q ~')( 'v. pG'+MF') —'~ q(2P q p')G-'—
+,'(2p q p')'( -iy .pG—"+M—F").

F's G's
y—(2p q p') 2G'+M'l F—" G"y—
)

X f (2p q
—p,') ( iy pG'+MF—'.) Fig q) . (A—.4)

Bs-—H4-—0,

Hg ——M'D',

B3——B.
(A.9)

where + and 0 indices on F5 refer to the creation of
negative, positive, and neutral mesons, respectively,
and the labeling of the matrix elements refers to the
charge state of the nucleon (~s= +1 for p and is, re-
spectively). No such"relation holds for I'ss, but rather
one involving I'50 of equal arguments only. By use of
Eq. (A.8) we can deduce by comparison with Eq. (A.6)
that

The general structure of the oB-diagonal elements of
F5 may be inferred from invariance considerations and
certain inter-relations among the coeScients may be
deduced from the behavior of F5 under charge conjuga-

The evaluation of T;;&" can now be carried out in a
stra, ightforward fashion. One obtains finally [making
frequent use of the identity F+2M'(F' G') =17 for—

~The technique outlined above was developed by M. Gell-
Mann and M. L. Goldberger in another connection (unpublished).
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Tj;&" the value:

gp fBn ) 0.(p)4. (p) F~ '
M (Bn)

L,')P v+— ((1+4M' '(D' -F')——4H] . (A. 10)
4 M'

The first term in brackets is, of course, our old result.
We turn now to the somewhat more difficult task of
evaluating to first order in q those diagrams for which
there is never a free nucleon line.

In the notation of Deser and Martin these are the
terms described by lII');/()P. Careful consideration of the
various diagrams which contribute to the class under
consideration enables one to conclude that, to first
order in q, the entire contribution of all these terms is

/Bn )2
T,, (2) —y, (—)4„(+)g 2~

~
Z P (P)

&an) .=,

X 28,;(MF+MF MG)—

One finds

I' (P+I, P, ') =I' (P,P, ')+lLI' (P+6 P+9, ')

~'7'I P'1—r„(p,p, ')]+ .,~,H, (p, ")+—L.;, '']
3P

P'0»'P .
XH)( P-', n'-') + [i7, , n' r] H()( P', n")

3P M

$p'g
+ ((ir—, ,

n' r]H (p' n") (A.13)
M

If we evaluate (3.16) we obtain

(Bn )
2 . . (2) —4, .(—)y, (+)g 2~

~
z, p (p)

E QA rr—0

X 28,; (MF+M F MG)—

1
P' '(P+V, P,n') —I' '(P,P,n')7

z BcYj

1
-Lr„(p—

V, p, ') —I'„(p,p, ')] 4, (p). (A. 11)
I t9cYi

We have gone directly to the renormalized quantities;
the first term is just our previous one and the last two
are the essentially new ones which are correct to first
order in q. The identities (A.S) are unfortunately of no
use in evaluating these terms, since their only non-
vanishing contributions, being proportional to [r;,r,]
involve F50. We are, therefore, reduced to finding the
off-diagonal elements of I'~, for n/0, by the procedure
outlined above, except that the charge conjugation
relation now takes the form

C 'I'5'(P(, P2,n')~= p~" ( P~ —P(, n—') (—A 1 —)

2p'(l———L', ,](Hs—Hs+») 0.(p); (A.14)
M'

adding the contribution from Eq. (A.10) to (A.14), we
get for the total p/M correction,

g t'()n l '
P (I'»„=~,( '~."'

l

—
I

—&,a.(P)L „j
M & Bn ~ 4M'

X (1+4M'(D' h') 4H+ 2—(Hs —H,+H7) ) . —(A.15)

This result is a purely formal one at present, since
the unknown functions involved cannot be calculated
exactly. It is, therefore, not very useful to compare
it with experiment, as could be done via Eqs. (5.2).
It may be possible, however, to relate some of these
functions to other low energy processes, in which case
such a comparison would be of interest.


