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Dyson has shown that the evaluation of the S matrix for quantum electrodynamics can be reduced to
the problem of evaluating certain quantities, S'~, D'~, and F„.By making use of a formula relating the T
product of an operator with its corresponding E product, integro-differential equations for S'~ and D'~ are
obtained. These equations are identical in form with those given by Schwinger for his Green s functions,
and hence it is concluded that the two formalisms are equivalent. In addition it is shown that all of the
quantities introduced by Schwinger can be expressed in terms of a single quantity, 5 „the vacuum expecta-
tion value of the S matrix. The renormalization problem is not'discussed.

I. INTRODUCTION AND REVIEW
' 'N a recent work, ' Schwinger has proposed a theory
~ ~ of Green's functions which appears to be applicable
to many of the problems of quantum electrodynamics
and similar theories. However, since his theory is based
on his own formalism of quantized fields, ' it is not
immediately evident which connection exists between
his results and those of conventional field theories. ' It
is with this relationship that the present paper will

deal. Specifically we will show how the results of
Schwinger's theory can be derived from Dyson's theory'
of the S matrix. ' It is hoped that such a demonstration
will serve two purposes; first, to make Schwinger's
results readily available in terms of an already familiar
formalism, and second, to afford a set of rules whereby
one may calculate directly from S-matrix theory the
various Green's functions introduced by Schwinger.

In the work to follow, we shall make use of many of
the results of S-matrix theory, and hence, for the sake
of convenience, we will conclude this section by enumer-
ating them. In the interaction representation, the state
vector VLo) of the system, consisting of electromagnetic
and electron-positron fields in interaction, satisfies the
equation

where @(x) is the interaction Hamiltonian density,
given by'

@(x)=—A„(x){j„(x)+J„(x)}.

Here j„(x) is the field current, which for convenience
we write as

j.(x)= lee- "L~l -(x)A(x) —A(x)it-(x)),
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whereas J„(x)is some arbitrarily given external current. '
In what follows, we will be mainly interested in that

operator S, the "so-called" S matrix, which transforms
a state of the system at t= —~, into the corresponding
state at l=+ ~. Feynrnan' has shown that S can be
written in the form

r+" r
S=T exp i —dg I d' @x(x) ~ =Tt+). (1)

The T product appearing in Eq. (1) and first introduced
by Kick' is defined by

the factors V, V, . being arranged in chronological
order in the ordinary product on the right. By chrono-
logical order, we mean that if two operators in the T
product of Eq. (2) correspond to points separated by
either a time-like or a zero interval, then in the ordinary
product, that operator operates first which corresponds
to the earlier time. The sign factor 8~ is the signature
&1 of the permutation (between left-hand side and
right-hand side of Eq. (2) of the electron-positron
operators only).

II. THE ORDERING OPERATORS

Several methods' ~ have been given for actually
evaluating the matrix elements of a T product such as
appear in Eq. (2). All of these methods essentially in-
volve the transformation of the T product into an g
product, where the X product is defined by

the ordinary product on the right containing the same
factors U, V, . ~ ordered in such a manner that all
creation operators stand to the left of all destruction
operators. In this form, the matrix elements of any

6 The interaction Hamiltonian employed here differs from that
employed by Schwinger in that we dispense with the external
spinor fields v (x) and v'(x). Since these quantities were introduced
by Schwinger as a mathematical convenience and are eventually
set equal to zero, the results obtained here will be equivalent to
those obtained by Schwinger.

i R. P. Feynman, Phys. Rev. 84, 108 (1951).
s G. C. Wick, Phys. Rev. 80, 268 (1950).
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general case, let us proceed by assuming that it is true
for some T product, T[g(A„)], i.e., that

T product can be readily calculated. In this section we
will derive the fundamental expression (21), giving the
relation between an arbitrary T product of electro-
magnetic and electron-positron 6eld operators and its
corresponding E product.

We shall treat first the case of a T product which is a
functional only of the electromagnetic 6eld operator
A„(x). In order to introduce creation and destruction
operators into the theory, we decompose A„(x) into
two parts according to9

(8)T[6 (A.)] = &[8(A.')].
Then, if we can prove it for T[Aq(x)g(A. )], we can
conclude, by induction, that the above-mentioned
statement is indeed valid. This last assertion follows
from the fact that every operator functional can be
expressed as a functional power series in the A„(x).
To proceed with the proof, let us assume that the value
of xo lies somewhere between the times to which the
operators in P(A) correspond. We express this by the
equation

T[A„(x)5'(A)]=X(A)A„(x)V(A),

A„(x)=A„+(x)+A„—(x),

where A„+(x) contains only photon destruction opera-
tors, while A „(x)contains only photon creation opera-
tors. These auxiliary fields satisfy the following com-
mutation relations

or equivalently, by

T[A„(x)5'(A)] =X{A„(x)+A„+(x)}V(A), (9)
[A„+(x),A „(x')]= it'„„[D~+ (x—x') —D&+(x—x')],
[A„ (x),A, (x')]=i8„„[D& (x x') —D—z (x—x')], (3)

[A „+(x),A,+(x')]= [A „—(x),A.—(x')]=0,

where
X(A) V(A) =Q(A).

where the only property of the D functions which we
shall need is that

Da+(x) =0, for x&0,
Dg+(x) =0, for x)0,

(4)
T[A„(x)g(A)]=A„-(x)XY

In order to convert Eq. (9) into an X product we must
commute A„(x) through X and A„+(x) through F'.
This can be done by making use of the commutation
relations (3) and yields

satisfies
D~(x) —= i{De (x)+D—g+(x) }

DD&(x) = i~(*). (6)

b
"d' 'D,-( —')-

bA„(.
X V+XVA +(x)

With the help of Eqs. (3—6), we shall now prove the
following statement: the S product corresponding to a
given T product can be obtained by substituting for
every field operator A „(x) the quantity A„'(x) given by"

A„'(x) =A„(x)+ I d'x'Dp(x x') — —(7)—
bA„(x')

r+X —i i d4xDa+(x x') —P
I ~ bA„(x')

IIowever, because of the nature of Dz (x) and Da+(x)
and because all times in V precede xo which in turn
precedes all times in X, we can rewrite this equation as

T[A„(.)~(A)]=A„-(.)XV+X~A„.(*)

in the T product, considered now as an ordinary |,.-
number functional of the A„(x), and performing the
indicated differentiations. The resulting expression is
then to be considered as an S product, which, in fact,
is equivalent to the original T product. The statement
is of course trivially true when the T product to be re-
ordered is just A„(x) itself. To prove it for the more

9 For a detailed discussion of this method of decomposition, see
J. Schwinger, Phys. Rev. 75, 651 (1949)."The functional derivatives b/bA „(x) are defined through the
equation

s5(A g (x))= S(A I (x)+~A I (x))—6(A p(x))

8 4=fb ( )SA„(x)d x.

trictly speaking, this de6nition is meaningless since the quantities
appearing therein are operators which do not commute with each
other. We give meaning to the equation by assuming that the
Ri „(x)are c numbers. When so de6ned, the functional derivatives
have the property that

b b

ba „(~)' w „(~')
=0.

+ i d'x—'Dg —
(x—x')

bA „+(*')

—i, I d'x'D~+ (x—x') XV. (10)
bA„-(x')

When we substitute from Eq. (8) into Eq. (10) we
obtain

T[A „(x)tg(A)]= A„-(*)X[&(A')]++[&(A')]A„+(*)

. I+ i d4x Dg—(x x)————
bA„+(x'

i I d4x'Drt+(x x') —cV[$(A ')]. —(11)

Since now the quantities A„(x) and A„+(x) appear in
5'(A) only in the combination A„+(x)+A„(x), we
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note that

and

»[Q(A')]=»
bA „—(x)

bg(A')

bA„(x)

b bs(A')
»[8(A')]= ~

bA„+(x) bA„(x)

commutators:

{ .() (X))=—{S-"'( —
X)

—S- "(—r)),

b), -()i= —{S." ( —~) —S- ' ( —7)),

with all other possible anticommutators vanishing. The
Feynman kernel function S p~(x) is defined as

Therefore, Eq. (11) becomes

TLA. (*)5(A)]=»L{A.+(*)+A;(x))5(A')]
S.p~(x)= i{S—p~+(x)+S p" (x))

and satisfies

w~ered4x'[D.+(x—x')+D,-(x—x')]»
bA„(x')

L. 'p( x) Sp,
~ ( x) = i6.,5 ( x),

L p'(x)=( iy p&8„+b pvi) (16)

Finally, remembering the definition of D~(x), we have

TLA, (x)6 (A)]

=» 'A„(x)+ d4x'D~(x x') — — 5(A')
bA„(")

=»[A „'(x)ttf (A') ],

We can, in complete analogy with the method used to
arrive at Eq. (7), derive a similar set of expressions for
the electron-positron operators. We will not repeat the
details of the proof, but simply assert that for any
functional, Q Q,f),

where

which was to be proved.
We can reformulate this result by noting that Eq. (7) and

can be rewritten in the form

A„'(x) =e~A„(x)e ~,

P '(x)=P (x)— d'x'S p~(x —x')—,(17a)
bA(x')

Pp'(x') =fp(x')+ I d4x S p~(x —x'). (17b)
b4-(x)

where
1 I

d4xd4x'6, „D~(x x')— (12)
2~ bA„(x) bA„(x')

(T[6(A)])= (»[e'6 (A)]). (13)

In what follows, we shall refer to 6 as the photon order-
ing operator.

We can also derive an expression for an electron-
positron ordering operator. In order to do so we must
decompose the electron-positron operator according to

f(x) = ii(x)+ v(x),

II (x) = ii(x)+v(x),

where u(u= N~P) destroys (creates) electrons, and
v(8=Pvt) destroys (creates) positrons. " For our pur-
poses, we shall need the following table of anti-

as can readily be verified by direct calculation. There-
fore, if

T[g (A)]=»[i I (A')],

then it is also true that

T[g (A)]=»[e'P (A)e
—~].

In particular, if we are interested only in the matrix
elements of T[g(A)] we can disregard the factor e ~,

since there is nothing for it to operate on, and write
finally

4'p(x') =0;,4.(x') =O,
b&. (x) l bA(x)

—,Pp(x') =8 pb(x —x'),
bP. (x)

——,yp(x') =S.pS(x —x'),
b0. (x)

from which it immediately follows that

As before, we can introduce an ordering operator Z
defined by

b
' d'xd'x' —S.p~(x —x')

bP. (x) bop (x')

and write, in place of Eqs. (17a,b),

Now, however, due to the fact that the electron-positron
operators anticommute with each other, we must give
a slightly different meaning to the functional derivative
as employed in Eqs. (17a and b). A moment's considera-
tion shows that the correct definition is given by the
following:

"We represent the positrons by "negative-energy" electron
wave functions and not by the charge-conjugate functions. f '(x)=eQ (x)e ~, (19a)
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Hence,
(19b)

Upon combining the results contained in Eqs. (13),
(20), which we can do since the two 6elds commute,
we obtain the equation linking a given T product to its
corresponding Ã product, namely, "

(T[N (A,f lt)])= (E(exeaN (APPP) j). (21)

As we shall see later on, this result will greatly simplify
our work in treating the various Green's functions to be
introduced.

In passing, it is interesting to note that it is possible
to derive from Eq. (21) the more conventional rules
for the transformation of a T product into its corre-
sponding E product. ' ' For the sake of simplicity, we
will carry out the demonstration only for the electro-
magnetic field, and leave the case of the electron-
positron field to the interested reader. We shall first
state the rules whereby the transformation can be
eRected. In any T product of the A„(x) we pick out a
certain even number of factors, either none or all or
any intermediate number, and associate them together
in pairs. We replace each pair of factors A„(x), A„(y)
by 8„„D~(x y) and mult—iply the result by the remain-
ing factors of the T product arranged in a normal order,
For instance, in the T product T[A„(xt),A, (xs),Ai, (xs),
A, (x4)j, the possible results for such factor pairings are
given below'.

lY'[A „(xi)A „(xs)A g (xs)A, (x4)j,
D~(xi—xs)X[A), (xs)A, (x4)j,

b„gD~ (xi—xs)X[A „(xs)A, (x4) j,
8„„Di'(x, xs)bi„D~(xs x—4), —

b„),D~ (xi—xs)8„,D~ (xs —x4),

Kick has then shown that a given 2' product is equa
to the sum of the results of all such factor pairings, i.e.'

FIG. 1. Scattering of electron by electron in second and fourth
orders. The photon (dotted) line is a X line.

is S. Hori, Progr. Theoret. Phys. 7, 578 (1952) has obtained a
similar formula but only for the special case where Q is the S
matrix itself. We have developed Eq. (21) since we will need it to
treat more general forms of N.

and again, if we are interested only in the matrix ele-
ments of g) Q,lt) we can write

(20)

for the example given, the T product is equal to the
sum of all the expressions in the above table.

In order to show that Eq. (21) is equivalent to these
rules, we need merely to expand e~ in a power series.
The first term in the expansion is just unity and hence
we simply arrange all of the factors A„(x) appearing
in Q in a normal order: for this first term we make no
factor pairings. The next term in the expansion is just
A. Because of the nature of the functional derivatives,
the net eRect of operating with it on Q is to pick out,
in all possible ways, two factors A„(x) and A, (y) and
insert in their place h„„D~(x y). Upo—n rearranging the
remaining factors in a normal order, as the equation
tells us to do, we obtain the sum of all the results of x
single factor pairings mentioned above. In a similar
manner we see that the third term in the expansion will
give us the sum of the results obtained by making all
possible pairings involving four factors A„(x), and so
on. The factorials compensate for the fact that in the
eth term of the expansion each particular pairing occurs
e! times.

III. THE ONE-ELECTRON GREEN'S FUNCTION

In dealing with Eq. (21), it is often convenient to
employ the so-called Feynman graphs. The Feynman
graph for a particular term in the expansion of the
right-hand side of Eq. (21) can be drawn as follows:
For every factor D~(x,—x ) a dotted (photon) line is
drawn connecting the points x; and x,'; for every factor
5 s~(xj—xj) a directed (electron, positron) line is
drawn from x; to x,', for the factors P (xs), fs(xs')
directed lines are drawn leading out from x~ to the edge
of the diagram, and in from the edge of the diagram
to xs',. for every factor A„(xi) a line is drawn connecting
the edge of the diagram with x~. As sometimes happens,
graphs corresponding to two diferent terms in the
expansion of Eq. (21) differ from each other by only
one or more self-energy parts. In Fig. 1 we have an
example of such a situation. Here the single line con-
necting the points x and x' in one graph is replaced, in
the other graph, by a subgraph which is unconnected
to the rest of the diagram except by two lines running
from it to x and x'. Graphs which contain self-energy
portions are termed "reducible" graphs and always
correspond to some particular "irreducible" or "primi-
tive" graph. A particular line in a primitive graph,
which has as its counterpart in the associated reducible
graph, a self-energy subgraph, will be denoted as a
X line. Dyson has shown' that the sum of all of the
terms in Eq. (21) which correspond to a given primitive
graph, plus all of its associated reducible graphs, can
be reduced to a single term to be associated with the
primitive graph. This term is obtained in the following
manner: In the term associated with the primitive graph
we replace each factor S p~(x —x') or D~(x—x') as the
case may be, which corresponds to a X line by the new
factors G,s(x,x'), R„„(x,x'), respectively. Substitutions
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must also be made for external 1%, lines but for our pur- Direct substitution in Eq. (27) into Eq. (26) then yields
poses we need not consider them. These new factors
are given by

and
G- (**')=(T[4 ( ')4-(*)%)os-. ', (22)

R„„(x,x') = (T[A„(x)A„(x')Sf)OS...-', (23)

where the subscript 0 indicates that we are to take the
vacuum expectation value of the quantity appearing
between the brackets and where 8 is defined through
Eq. (1). S „is just the vacuum expectation value of
the 5 matrix.

In this section we shall derive a closed-form expres-
sion for G e(x,x') in terms of S, the vacuum expecta-
tion value of the S matrix and at the same time derive
the differential equation satisfied by G. As we shall see,
this equation will be identical with the one given by
Schwinger for his one-electron Green's function, and
hence we will be able to conclude that Schwinger's G
is identical to the one defined in Eq. (22). With this
fact in mind, we can also call our G the one-electron
Green's function.

In order to investigate the properties of G, let us

apply the results of Eq. (21) to Eq. (22). We have then
that

G (x,x')=(S[e e P (x')P (x)$$) S „'. (24)

blnS ..
X S»~(y' —x'). (28)

bs" (y —y')

Thus we see that the one-electron Green's function can
be expressed entirely in terms of the single quantity 5 „.

At this point a word should be said concerning 5 „.
In Eq. (27) we have treated S, as though it were a
functional of S~(x). Actually, since S~ is a specified
function of its arguments, S „,is just a number. Strictly
speaking then, the functional derivative of 5 „with
respect to S~(x) has no meaning. However, we can give
it meaning if we consider S~(x), and also D~(x), to be
arbitrary functions of their arguments. It is only after
we carry out the prescribed operations on S that
they assume their actual functional dependence.

Although we have obtained an expression for the
one-electron Green's function, in terms of 5 „, it is
sometimes convenient to know the differential equa-
tion satisfied by G p. We can derive this equation by
again making use of Eq. (24). It will prove convenient
however, to interchange the order of f (x) and fe(x')
and write

In the investigation of such quantities as appear in
the right-hand side of Eq. (24) it is convenient to know G~e(x~x )= 9 Le e It'~(x)A(x )&SOS~~0 '.
the commutation properties of Z with respect to P (x) Let us now commute es through P (x). If we refer to

Eq. (25a), we see that the result is
19a,bj we obtain directly that

and

r[e*,P.(x)j= — d'yS.. (x—y) e*, (25a)
b4. (y)

[e A(x') j= d'y'Spp (y' —x') e . (25b)
b4. (y')

d'yd Ys-'(x —y)s.e'(y' —*')

Let us now use Eq. (25b) to interchange the positions
of ex and fe(x')It (x) in Eq. (24). The net eGect of this
interchange is simply that

G e(x—x') =S e~(x—x')

X e~exPe(x')6 S„, '. (29)
b4. (y) 0

(The term which contains the factor g (x) standing to
the left of e~ vanishes since we are taking the vacuum
expectation value of the entire expression. ) Now, since
the functional derivative b/bg, (y) commutes with es,
we can perform the indicated di8erentiation in Eq.
(29) and so obtain

G e(x,x') =S e~(x—x') — d'ys, ~( xy)(1V(iee~es
J

Xv,Ae(x')0" (y)~.(y)&) &OS-. ' (30)
X & exe~P S .. '. (26)

-b4. (y') b0.(y) Let us now make use of the fact that

Because of the form of Z, we also have that

bins ..

e~exP S —'. (27')
-b4. (y') bf. (y)

(E[e~exgj)0t S „—'
bs"'(y' —y) bs,.'(y' —y)

b&/b~. (y) =i~.(y)&

to rewrite Eq. (30) in the form

G.e (x,x') =S.e~(x—x')+ e d'ys. ,~ (x—y)
b~. (y)

y (."*P,( ')y. ( )e~). ..S,.—.
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Now substitute the result of Eq. (28) into the bracketed Finally, by applying the differential operator L e to
part of Eq. (31), and obtain both sides of Eq. (34) we obtain, as the differential

equation satisfied by 6 p,

G. e( x, x') =5.,~(x—x')+ eJ(d4ys. ,'(x —y)q, .»

—Se,z(x' —y)5„,+ (, d4sd4s'Seg~(x —s)

(L e'(x) —e(A»(x))y .»}G,e(x,x')

bG.e (x,x')
+feq, » =Q.&8 (x x—') .(35)

bJ„(x)

novae

5,.~(s' —y) s,.—,
bsg, ~(s—s')

which becomes, after a slight rearrangement of terms,

G. (ex, 'x)=5 e~(x,x') —e d'yS»~(x —
y)

blnS„
X~""5e'(y x') — —e

J
d'ys-. '(x —y)

bJ, (y)

b lnS...
Xy», » ~ d4zd4z'S. ,~

(y s)——
bs, &,~(s—s')

b lns, .
XSge~(s' —x) —e d'yS»~(x y)y».»—

bJ.(y)

b'lnS „
X d4sd4s'S. ,~

(y —s)
bs, ),~'(s —s') bJ„(y)

Xsgp~(s' —x).

Vpon comparing this equation for G p with the one
given by Schwinger, we see that they are identical and
hence we are justified in equating our Green's function
with that introduced by Schwinger.

We shall conclude this section with a brief discussion
of the so-called "mass" operator introduced by
Schwinger. Schwinger has assumed that the func-
tional derivative appearing in Eq. (35) can be repre-
sented by an integral operator, i.e., that

bG.e (x,x')
-=

J
d'y~-(x, y)G.e(y,x'). (36)

bJ„(x)

The mass operator M e(x,y) is then defined by the
equation

M.e(x,y) =m5 e8(x—y)+Z e(x,y).

As was mentioned above, Eq. (36) is an assumption.
It can be justified, however, and we shall do so by de-
riving an expression for Z e(x,y) in terms of S . Let
us begin by rewriting Eq. (28) in Schwinger's matrix
notation. %e have that

This result can then be expressed in terms of G p as G=s~+S~ES~, (37)

G e(x,x') =5 e~(x —x') —e d'ys»~(x —y)

b lns. ,
XG.e(y, x')p», » —e d'ys»~(x —y)

bJ.b')

bG.e(y, x')
Xy,. (32)

bJ.(y)

In order to remain as close to Schwinger's notation as
possible, we shall introduce at this point a quantity
(A„(x)) defined by

bins „
(A„(x))=

bJ„(x)

where E is an abbreviation for the functional deriva-
tive of lnS„. with respect to S~. Equation (37) can be
solved for 5~, giving

S~= (1+S~E) 'G.

Substitution of this result back into the second term
in the right-hand side of Eq. (37) then yields

G= 5~+5"E(1+S~E) 'G.

Now let us compare this equation with Eq. (34),
written in matrix form and in terms of Z, vis. ,

G =5~ i eS"q"G(A„)+—fs~r G

We see immediately that 2 is equivalent to

Z= ey»(A»)+E(1+S~E)'. '

(39)
In terms of (A„), Eq. (32) then becomes

G e(x,x') =5 e~(x x') ieJ —d4ys—,~(x y)G, (y, —e)x

From this we can conclude that a Z does exist and in-
deed can be expressed in terms of 5 „.Actually, the
derivation leading to Eq. (39) rests upon the assump-
tion that (1+SATE)' exists and is nonsingula'r. How-

bG.e (y,x') ever, even if these conditions are not fulfilled we can
»(A (y) ) e

J
t d4$5 E (x y)y» (34) still use Eq. (39), at least formally, to express Z as a

bJ.(y) series expansion in 5" and E.
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IV. PROPERTIES OF (A„(x))

In Schwinger's original work on Green's functions,
the idea was put forth that one might eliminate some
of the di%culties inherent in the 5-matrix formalism

by treating Eq. (35) as a basic equation for G e. In
other words, one need not consider its antecedents, but
attempt to solve it directly for G p. In order to carry
out this program consistently, one then needs an equa-
tion to determine (A„(x)}. In this section we shall
derive such an equation, and, although we do not
adhere to Schwinger's program in this paper, we shall
find it useful for other purposes. From Eq. (33) we see
that

(A„(x))= (1VLeaezA „(x)S])oS., '.

Upon commuting ea through A„(x) we obtain

(A„(x))

/V enemy ~d'yD~(x y) —. 6 S .. '. (40)
bA„(y) o

the limit of J„(x) going to zero. Consider now what
happens to G(x,x') in the limit. In general G(x,x') is
not an invariant function of its arguments under a
translation of the coordinate axis since it depends upon
J„(x). However, in the limit G(x,x') must be an in-
variant function of its arguments and hence becomes a
function G' of the coordinate diR'erence x—x'. We can
therefore conclude from Eq. (44) that

(j.(*)).=.= y G (o)—=o,

since each component of (j„(x))is now a number quite
independent of the coordinate system. The only vector
having these properties which is invariant under
Lorentz transformations is the null vector.

Upon referring to Eq. (41) we see then that

(A.(*)&.= =0.

In this case then, Eq. (38) becomes simply

Go Ss'+ sSiv+OGO

which is just the equation given by Dyson for his
By carrying out the indicatedfunctional differentiation, Green's function 5'~ [Eq. (63), Phys. Rev. ?5, 1736
Eq. (40) runs to (1949)J.

where

(A.(x))=s d'yD'(x —y) fJ.(y)+(j.(y) }) (41)

U, (y))=(&Lj.(y)&j)oS- ' (42)

V. THE ONE-PHOTON GREEN'8 FUNCTION

In this section we shall treat some of the properties
of the one-photon Green's function as given by Eq.
(23). Actually, we shall follow Schwinger and define
the one-photon Green's function as

Fquation (41) can be put into the form of a differential N (x x') = (TLA„(x)A„(x')pj)oS „—&

equation by operating on it with —i to give —(A.(*))(A.(')). (46)

q(A, (*))=-J.(*)—U. ( ))

Furthermore, because of the definition of G p,

(j„(x))=ey , G, (x,x),

(43) From the results of the preceding section it is evident
that in the limit J„—&0, N„„(x,x') is equivalent to
Q'„„(x,x'). If we keep in mind now the form of N, we
see that Eq. (46) is equivalent to

Eq. (43) can be put in the form

or

g„„(x,x') =— b Svse —1

bJ„(x)bJ„(x')

b lnS „blnS, „,

bJ„(x) bJ„(x')

(A„(x))= —J„(x)—ey, &G, (x,x).

Hence we can use Eq. (45) together with Eq. (35) to
determine both (A„(x)) and G e(x,x')."

Before concluding this section, it will be of some
interest to consider the particular case where J„(x)=0.
Since originally J„(x)was introduced into the theory as
a mathematical artifice to enable us to derive Eq. (35),
we see that this is the case with which we shall have to
deal in all Anal applications of the theory. In cases
where differentiation with respect to J„(x) is indicated

b'lnS „
8„.(x,x') =

bJ„(x)bJ„(x')
=$„„(x',x). (47)

If we make use of Eq. (33), we can then put Eq. (4'/)
into the form

.b(A. (*))
Q„„(x,x') = s-

bJ„(x')

Let us now take the derivative of both sides of Kq.
(41). By making use of the identity (48) we so obtain

we must perform the difterentiation before we approach
U. (y)}

u For a discussion of boundary conditions to bc used in con- @pv(x,x ) =&»D~{x—*')+ d'yD~(x y) . (49)—
nection with solving these equations, see reference 1. . bJ,(x')
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Finally, by operating on Eq. (49) with CI, we obtain
the fundamental equation satisfied by I„„:

.b(J.(x))
N„, (x,x') =ib„„b(x—x')+i

bJ,(x')
(50)

b(J„(x)) bG,.(x,x')

bJ,(x') bJ„(x')
(51)

Now Eq. (43) tells us that J„(x)is equal to a term linear
in (A„(x))plus an additional term. Hence, by the chain
rule of differentiation, we can rewrite Eq. (51) as

b(j„(x)) r bGp (x,x') b(A. (y))
i =icy, j' d4y ——

bJ,(x') ~ b(A. (y)) bJ„(x')

If then we delne a new quantity P„„(x,x') by the
equation

bG, „(x,x')
P„„(x,x') = icy„p&

b(a, (x'))

we can put our fundamental Eq. (50) into a more
symmetrical form, namely,

QQ„„(x,x') = ib„.b (x—x')

+i d'yP„, (x,y)8,.(y,x'). (53)

In the particular case where J„=O, Eq. (49) becomes,
in matrix notation:

N„„s=5„„Di: i D~P,'g—
From this expression, we see that S„„scorresponds to
Dyson's D'~, and iP' corresponds to the proper photon-
self energy II*.

VI. DISCUSSION

In this paper we have demonstrated the equivalence
between the Green's functions and associated struc-
tures such as the mass operator introduced by Schwinger
and the modified propagation functions occuring in the
S-matrix theory. In the course of the demonstration a
curious result appeared, namely, that all of the various
quantities introduced by Schwinger could be expressed
in terms of a single quantity S „.This fact suggests a
possible alternate approach to investigating the prop-
erties of the Green's functions. Instead of examining
each one separately, as is now done, one might begin

by examining the properties of S, considered as a
functional of S~, D~, and J„. Such a study would
entail, in the 6rst place, a knowledge of how S„
depends upon its arguments. By making use of the re-
sults of this paper it is possible to derive certain closed-
form expressions for S „.Unfortunately, these expres-

Let us examine the last term in the right-hand side of
Eq. (50). From Eq. (44) we have that

sions all involve the Green's functions themselves,
and hence are of little help at present in analyzing S „.
Even if we did know the exact functional dependence of
S „we would still be very far from our goal. We would
need in addition a mathematical formalism somewhat
akin to analysis as applied to ordinary functions since,
as we have seen, the Green's functions all involve func-
tional derivatives of S „with respect to its arguments.
In this respect we can but hope that the mathematicians
will become interested in the problem and develop for
us a theory of functional analysis.

There also exists a second possibility which appears
to be somewhat more manageable. As we have seen,
the Green's functions attempt to take into account, in
one fell swoop as it were, all of the virtual processes
associated with a given real process. The one-electron
Green's function, for example, takes into account all
of the virtual processes which accompany a free elec-
tron in its Qight through space. One can take the posi-
tion, as Schwinger has done, that since these virtual
processes are in principle not observable they ought
not to appear in the theory. In other words, one should
work solely with the Green's functions which are given
in terms of some integro-differential equation, and not
worry about their antecedents. The chief drawback to
such a scheme is that some of the quantities appearing
in the integro-differential equations for the Green's
functions, such as the mass operator, are themselves
extremely complicated objects which up to now have
been expressible only as power series in the various
propagation functions. An approach of this type has
been attempted by Edwards with some degree of
success. '4

There does exist a third approach, however, lying
intermediate between the two approaches outlined
above, which we would like to outline brieQy. Consider
for a moment the situation in which an electron is
scattered by some external field. Given its initial energy
and momentum, we wish to know what will be its final

energy and momentum. In attempting to answer this
problem from a theoretical standpoint, one of the 6rst
questions which arises is how to describe the initial
and 6nal states of the electron. In the present form of
the theory, the electron is described initially and 6nally
by eigenstates of the free-6eld Hamiltonian, IID. How-
ever, even before it interacts with the external field,
the electron is in interaction with its own virtual
photon 6eld. Hence one should, in describing the initial
and final states of the electron, include the effects of
these virtual photons. As we have seen, our Green's
functions include in their description of the electron
just these virtual 6elds. It appears reasonable, there-

fore, to employ as eigenstates describing the electron,
eigenstates of the operator appearing in the equation
for the one-electron Green's function. Once one has
done this, there exists the possibility that the matrix

"S. F. Edwards, Phys. Rev. 90, 284 (t953).
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elements of the S matrix could then be expressed in
some simple manner in terms of these eigenstates. The
main problem facing the theory would then be shifted
to that of calculating these eigenstates, where one would
have a much better chance of separating out the in-
finities which arise in the present theory.
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Low-Energy Limits and Renoriaalization in Meson Theory
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A technique is developed for deriving rigorous expressions for zero-energy mesonic processes. Making use
of the ambiguity of mesonic charge renormalization, the coupling constant is defined by zero-energy pion-
nucleon scattering. The threshold photomeson production amplitude is also calculated. The experimental
value of the coupling constant de6ned by scattering is at least an order of magnitude less than that of the
coupling constant deduced from the photoproduction data. It is shown that pair suppression effects are
absent in both cases. The possibility that the results obtained imply disagreement of pseudoscalar theory
with experiment is discussed.

I. INTRODUCTION

' 'T is almost universally accepted at present that +
~ ~ mesons are pseudoscalar, and that to a very good
approximation isotopic spin is a good quantum number
in mesonic-nucleon processes. Unfortunately, it is not
at all clear to what extent the conventional pseudo-
scalar symmetrical meson theory correctly describes
such processes. Because of the difhculty of carrying out
accurate calculations, it has been hard to distinguish
between the predictions of the theory and. the eGects
of the particular approximation schemes hitherto em-

ployed. In order to avoid extraneous difficulties, it
seems advisable to concentrate on understanding low-

energy phenomena, where both nucleons and mesons
are nonrelativistic. Two such processes, which will be
discussed in the present paper, are threshold photo-
meson production and meson-nucleon scattering at
zero energy.

By the use of special techniques it has been possible
to evaluate the matrix elements for these two processes
rigorously in the limit of vanishing meson mass. These
are, of course, purely formal results; however, as is
discussed at length below, one of them, say the meson

scattering, may be used to assign a precise numerical

value to the coupling constant and the other then in

principle serves as a check on the agreement between

theory and experiment. Unfortunately we are not able

*Parker Fellow, Harvard University.
f On leave of absence from Physikalisches Institut, Universitat

Bern, Bern, Switzerland.
f. On leave of absence from the University of Chicago, Chicago,

Illinois.

to evaluate the photo-meson matrix element explicitly,
and thus unambiguously settle this crucial question;
nor is the present experimental data su%.ciently ac-
curate to give a reliable number for the coupling con-
stant. We can, however, say the following: If in the
computation of meson-nucleon scattering one may
without serious error set the mass of the real mesons
equal to zero in the portion of the scattering amplitude
which is independent of isotopic spin, one deduces from
the existing data the value g'/4n. ~-', . If one may assume
that with such a small value of the coupling constant
perturbation theory is valid (at least in an asymptotic
sense), then one may conclude that the present theory
does not correctly describe the behavior of x mesons.
Of course, should the value of g'/4n turn out to be much
larger or should the neglect of the meson mass men-

tioned above prove unwarranted, we can make no
definite statement.

Before the theory can be compared with experiment,
it must, of course, be renormalized. Pseudoscalar theory
(with pseudoscalar coupling) is .a "renormalizable"
theory in the conventional sense of the term; however,
in contrast to quantum electrodynamics, the renor-
malization program may here be carried out in a variety
of nonequivalent ways. This fact is of great importance
in any attempts to ascertain the physical content of me-

sonic calculations. Charge renormalization is uniquely
defined in electrodynamics this is closely related to
the existence of a charge conservation law and finds its

' G. Killhu (to be published).


