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The elastic differential scattering cross section of 190-Mev deuterons by protons has been measured from
15° to 170° in the center-of-mass system. The cross sections were obtained by subtracting the carbon counts
from those received with a polyethylene target. Part I presents a description of the experiments. Results
are shown in Table IV and Fig. 3. Part IT compares these results with those expected from theory by making
use of a method developed by Chew. A summary of this comparison is given in Table VII. Some nucleon-
nucleon interactions involving tensor forces give reasonable agreement between theoretical and experimental
results, whereas interactions involving purely central forces appear inadequate.

INTRODUCTION

N the preceding paper! it was stated that because of
the interference between 7-p and p-p scattering in
d-p scattering the latter might provide information on
nucleon-nucleon scattering that #-p and p-p experi-
ments alone could not reveal. In this respect elastic d-p
scattering, because of the single final deuteron state
involved, exhibits the largest amount of interference,
and, being theoretically somewhat amenable, offers, at
this time at least, one of the ways to obtain more infor-
mation about nuclear forces.

This paper is divided into two parts. Part I describes
the experiment. Since the apparatus was almost the
same as that used in the inelastic and total scattering
experiments, it will not be described in detail except
where different from that of BC. Part II attempts to
compare experimental results with theory.

I. EXPERIMENT
A. Method and Procedure

Source of particles, targets, method of detection, and
monitoring device have been described in BC.

Four methods of operation were used. In method A,
the pulses from the distributed amplifiers went directly
to a fast coincidence circuit> whose output fed into a
scaler. Methods B, C, and D made use of a pulse
shaper-discriminator designed by A. L. Bloom. In
method B (see Fig. 1 of BC), two crystals were used,
one on each arm of the scattering table, and their single
counts and coincidences were recorded. Method C was
of value whenever one arm had to be placed at small
angles to the beam, where a large background of charged
particles was to be expected. Two crystal detectors were
placed telescope fashion on this arm, and one detector

* This work was performed under the auspices of the U. S.
Atomic Energy Commission.
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Fellow at the University of California, and was submitted in
partial satisfaction of requirements for the degree of Doctor of
Philosophy.

L A. L. Bloom and Owen Chamberlain, preceding paper, Phys.
Rev. 94, 659 (1954); hereafter referred to as BC.

2 C. Wiegand, Rev. Sci. Instr. 21, 975 (1950).

was placed on the other arm of the scattering table.
Three single counting rates, as well as their triple coin-
cidence rate and the double coincidence rate from the
telescope, were recorded. Method D, finally, employed
a single detector. All methods agreed within statistical
errors in the regions in which results obtained with them
overlapped. Furthermore, methods A, B, C were used
interchangeably, and we shall not distinguish between
them in what follows, but merely group all results under
the headings ‘“‘coincidence method” (A, B, or C) or
“single-count method” (D).

The experimental procedure used to check circuits
and geometry prior to the recording of actual data was
identical to that outlined in BC.

B. Kinematics and Geometry

Let M be the rest mass of a particle incident with
kinetic energy E in the laboratory system on another
particle of rest mass s, initially at rest. The two par-
ticles collide ; that of mass M is deflected to a direction
0, that of mass , to a direction ®, with respect to the
incident beam in the laboratory system. Let 8 be the
angle of deflection of either particle in the center-of-
mass system. We have then

m E [(e+1)2—1Tt
p_dM, E_Mcz’ B e+1+p
1
1 e+1+4+1/p W
y=——— and Ad=y———,
[1-p] e+1+p

where 8 is the ratio of the velocity of the mass 7 in the
center-of-mass system to that of light.
We can then derive the following relativistic relations:

v tan(8/2) = cot®, 2)
tan®=[2tan(/2)]/[A+v+(4—7v) tan2(6/2)], (3)
E=2mc*B%y? sin%(6/2), 4)

Ey=E—E,, )

where Ey, E,, are the energies of incident and struck
particle in the laboratory system after collision. The
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energy available in the center-of-mass system is

Eo= (E/v)—(m+M)(1—1/7) (6)
and the initial momentum p; and final momentum p;
in the center-of-mass system are

Pi=pa=mcBy, pr=mcBycosd, pp=mcBysinb, (7)

where x and y are directions in the scattering plane
along and perpendicular to the beam, respectively.

In our case (Fig. 1) the deuteron is to be identified
with M, O, the proton with m, ®; other parameters
are p~%, e=0.1023, and $=0.29 so that relativistic cor-
rections are slight, although the exact relations were
used in our calculations. For purposes of discussion it is
sufficient to consider these relations in their nonrelativ-
istic limits, y=1and 4=1/p. It is then easy to see that
the center-of-mass angle 6 and the laboratory angle of
deflection of the proton @ are double-valued functions
of the deuteron laboratory angle ®. Thus when © is 0°,
6 may be 0° or 180° and ® may be 90° or 0°. ® is never
greater than 30°; when ©=30°, $=30° and 6=120°.
The energy of the struck proton reaches its maximum
of (8/9)E or about 171 Mev when §=180°.

The kinematics of elastic scattering for small and
large 6 are summarized in Table I.

Finally, for conversion from one system to the other
the relations

d cos® ¥?
= (1—pB? cos?®)? (8)
dcosf | 4cosd
and
d cos® A cosf+v ©)
= 9
dcosf | {sin®+[ A+ cosh?}?
are useful. For example we cite the relation
a(0)= —|o (®). (10)
d cos

" The targets chosen with the coincidence method were

of thickness (CH;) 0.290 g cm2, and (C) 0.338 g cm™2,
in the range of angles 25°<®< 50°. For small and large
& thinner targets, of surface density less than 100 mg
cm™?, were used to reduce multiple scattering and allow
the low-energy particles to be counted in the crystals.
It was found geometrically convenient to make the
solid angle subtended by the proton crystal at angle ®
the defining one; this meant that the deuteron crystal
at angle ® had to be large enough and close enough to
the target to count all deuterons from elastic d-p events
in which the proton was counted in the other crystal.
The values of distances b and ¢ of the ® and © crystals
from the target (see Fig. 1) were so chosen as to satisfy
this criterion, keep the angular resolution between 2°
and 5° and have the ratio of systematic to accidental
coincidences as high as practicable.
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FiG. 1. Velocity diagram of a deuteron colliding with a target
proton in the laboratory system; the distances & and ¢ of the
proton crystal and deuteron crystal from the target are shown, and
angles ®, ©, and § of the text are defined.

When ®<15° the deuterons have too short a range
to be counted reliably. However, as illustrated in
Table I, in this region of angles the proton has enough
energy to have a range greater than that of the deu-
terons from the beam and from carbon. Moreover, the
beam straggling was of the order of 1 g cm™2 of Al
Thus it was possible to single out the forward protons
by using method D: a crystal was placed at angle ®,
and variable thicknesses of Al absorber were placed
immediately in front of the crystal. The area of the
absorber slabs was made much larger than that of the
crystal face to provide a “poor” geometry. A thin Al
wedge was centered over the crystal to equalize the
energy of the particles entering it. The range of the
particles depended on the target used (CH,, C, or Bl)
since the targets had different stopping powers. (“Bl”’
indicates “blank,” meaning that no target was placed
in the beam.) The Al absorber was suitably adjusted to
compensate for this effect. The targets were now of the
order of 1 g cm™2 since the hydrogen effect had to be
separated from a large background coming directly

TaBLE I. Angles and energies of deuterons and protons resulting
from elastic scattering of 192-Mev deuterons on hydrogen. & and
©® are angles of deflection of proton and deuteron, respectively,
in the laboratory system; 8 is the angle of deflection in the center-
of-mass system.

Proton Deuteron

Range Range dcos® dcos®

P 2] [} Energy g/cm? Energy g/cm?
degrees degrees degrees Mev Al= Mev Al= d cosf d cosf
0 0 180 172 25.4 20 0.33 0.229 1.046
5 10.3 169.5 170 25.0 22 0.39 0.230 0.913
10 18.8 159.2 166  24.0 26 0.52 0.234  0.625
15 24.7 148.7 159 22.4 33 0.81 0.240 0.356
65.5 15 471 28 1.04 164 14.5 0.639  0.107
73.8 10 31.1 13 0.26 179 16.8 0.966  0.107
82.0 5 15.4 3 0.02 189 18.3 1.956 0.106
90 0 0 0 0 192 18.9 £ 0.106

a Sea reference 3.



668 O. CHAMBERLAIN
from the collimator snout. The use of targets of this
thickness was not expected to increase the straggling
of the high-energy elastic particles by more than 15
per cent. :

A plot of H, hydrogen counts per unit beam (one
volt potential change on our integrating condenser) at
$=10°, versus absorber thickness is shown in Fig. 2.
The various particles could be identified by their
ranges.® The elastic protons were clearly distinguishable
from a long range background and from shorter range
particles, and were cut out by the expected amount of
absorber (arrow b, Fig. 2, and Table I). Similarly, the
elastic deuterons of 181 Mev, corresponding to protons
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F16. 2. Hydrogen counts per unit beam charge as a function of
aluminum absorber thickness in front of the crystal (method D).
Arrows @ and b give the absorbers, 16.7 g cm™ and 24.2 g cm™2,
at which, respectively, half the elastic deuterons (corresponding
to $=73.8°) and protons (®=10°) are counted. Calculated ranges
are 16.8 g cm™ and 24.0 g cm™2, respectively.

at ®=74° (arrow «, Fig. 2) were also clearly identified.
Finally, plots of C and Bl counts versus absorber had
sharp breaks at values of absorber corresponding to the
ranges of deuterons from carbon and from the beam,
respectively. It was therefore possible, by this method,
to obtain the elastic cross section for small and large
center-of-mass angles 6 for which the coincidence tech-
nique was unsuited. The relatively large background,
which did not decrease appreciably with increasing
absorber, was ascribed to events made by neutrons
stripped? from high-energy deuterons in the aluminum.

8 Aron, Hoffman, and Williams, U. S. Atomic Energy Com-
mission Report AECU-663 (unpublished).
1 Robert Serber, Phys. Rev. 72, 1008 (1947).
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C. Sample Calculation
1. Coincidence Method

We have chosen for illustration a set of data taken
with the proton counter at the angle ®=35° and the
deuteron counter at ®=29.2°. The stilbene crystal of
the proton counter had an area of 9.88 cm? and was
located a distance & from the target of 92.5 cm. These
figures combine to give a solid angle of AQ=1.155X10"3
sterad. The deuteron crystal was of 36-cm? area and
located at a distance ¢="92.5 cm. The polyethylene and
carbon targets had surface densities of 0.290 and 0.338
g cm™?, respectively. The targets were so oriented that
the angle 6 made by the target plane with the deuteron
counter direction was 25°.

The capacity of the integrating condenser was
Cy=1.021X10"7 f. The ionization chamber used for
beam integration was filled with argon at an absolute
pressure of 78.4 cm Hg when measured at the tem-
perature 23°C. We have computed "the ionization
chamber multiplication® u to be 1801, using the beam
calibration results of Chamberlain, Segré, and Wiegand®
corrected by use of the range energy curves® to apply
to the 190-Mev deuteron beam.

The effective resolving time of the counters (see BC)
was (1.54:0.3) X 1075 sec. :

The data from one of several cycles of counting with
targets CH,, C, and Bl are summarized in Table II.
(“BI” indicates “blank,” meaning no target is placed
in the target position.) The method of analysis de-
scribed in BC leads in this case to the carbon sub-
traction factor z=1.082£0.20. Using Eq. (1) of BC, we
obtain the hydrogen effect per unit beam (integrator
volt) H=26.543.5. The target plane makes an angle
of 54.2° with the beam direction. Using this angle and
the target surface density given above we compute the
number of hydrogen atoms per unit area normal to the
beam to be V=23.09X10% atoms cm~2. The number of
deuterons per unit beam is given by n=Co/eu, where e
is the electronic charge. We obtain #=3.54X 108 deu-
terons per integrator volt. Equation (4) of BC then
yields ¢(®=35°)=2.104-0.28 mb sterad~'. When con-
verted to the center-of-mass system, this becomes
a(0=107.6°)= (0.62+0.08) X 10727 cm? sterad™!.

2. Single-Count Method

Here we have taken the case of ®=10° or ©=10°
as illustrated in Fig. 2. The crystal area was 9.55 cm?
and the crystal was 100 cm from the target. The count-
ing solid angle was thus AQ=9.55X10~* sterad. The

¢ In the ionization chamber there is no gas multiplication of the
type used in a proportional counter. However each deuteron of
the beam leaves many ion pairs in the gas of the ionization
chamber, hence the ionization chamber current is much larger than
the beam current. The ratio of ionization chamber current to beam
current is referred to here as the ionization chamber multiplica-
tion.

¢ Chamberlain, Segre, and Wiegand, Phys. Rev. 83, 923 (1951).
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target surface densities were 0.991 and 1.284 g cm™2 of
polyethylene and carbon, respectively. The targets
were oriented normal to the beam.

The beam integrating condenser was Co=0.99X 10— f.
The ionization chamber pressure was 77.4 cm Hg at
22°C. The ionization chamber multiplication was
p=1784.

Typical data are given in Table III for the most sig-
nificant values of absorber thickness. The last row of
the table shows the effect due to hydrogen in the poly-
ethylene target, calculated with the appropriate value
of the carbon subtraction factor z=0.661. A slight cor-
rection has been made for the difference in stopping
power of polyethylene and carbon targets.

The number of protons counted at 10° was deter-
mined from the difference in counts with 22.9 and 24.7
g cm~? absorber. For this case the hydrogen effect is
H,= (18304110)— (4404-50)=1390-4-120. Using the
known hydrogen surface density of the target N=8.58
X 10?2 atoms cm~2, and the number of deuterons per
unit beam #=3.43X10° deuterons/integrator volt we
obtain the differential cross section o(®=10°)=4.95
+0.43 mb sterad™. In the center-of-mass system this
is ¢(6=159.2)= (1.16+0.10) X 10727 cm? sterad.

For deuterons counted at the same angle we have
taken the difference in counts with 16.1 and 20.3 g cm™
absorber. The hydrogen effect is then Hg= (21 200
+700) — (28004200) = 18 400-750. This leads to the
laboratory system cross section ¢(@=10°)=66.542.7
mb sterad™ and to the center-of-mass cross section
o (0=31.1°)= (7.040.3) X 1027 cm? sterad .

D. Presentation of Data

It should be mentioned that the elastic cross sections

obtained with method D are subject to some correc- -

tions. The protons observed at a certain angle & are
attenuated by the nuclei in the absorber. A cross section
o=7wA%?, with 70=14X10" cm, was chosen to
correct for this effect, and an error of 20 percent was
applied to the correction. The number of deuterons
observed at a given angle ©® had to be similarly cor-
rected; another correction of 45 percent had to be
applied to compensate for stripping losses.? It is clear
that, apart from systematic errors discussed in the next
section, the elastic cross section obtained with all
methods is an upper limit, inasmuch as some inelastic
events may have been included. If one assumes a just
inelastic d-p collision with one proton going forward at
high energy and the other proton and neutron remaining
close neighbors (say in the S state), the energetic
proton would have of the order of only 3 Mev less
energy than one scattered forward elastically. This
effect may be sizable, especially for large 6, but no
attempt has been made to correct for it.

The data, duly corrected, are summarized in Table
IV. They have been averaged for a given angle over a
given day’s run, but results for the same angle obtained

190-MEV DEUTERONS BY PROTONS
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Tasrz IL. Typical set of data for elastic d-p scattering at proton
angle ®=35° (Method C). The column labeled “Integrator volts”
indicates the potential to which the beam integrating condenser
was charged during the counting interval.

L3 e
Time (Telesc. (Total Triple Integrator
Target (sec) coinc.) counts) coinc. volts
CH, 314 1989 26988 90 3.0
C 227 1098 16 856 7 2.1
Bl 210 391 7030 2 20

on a different day have been included separately.
Values marked with asterisks were obtained with
method D, all others with methods A-C. Figure 3 shows
a plot of the results listed in Table IV, center-of-mass
cross sections as ordinate, center-of-mass angle as
abscissa. By passing a smooth curve through the
weighted mean cross sections with a cutoff at 6=10°
we found a total cross section from 10° to 180° in the
center-of-mass system of 34-=3 mb. The errors quoted
in Fig. 3 are rms deviations due to counting statistics,
absorber corrections and systematic uncertainties.

E. Errors

The estimated errors discussed in some detail in this
section refer mainly to the coincidence methods A, B,
and C; however, those of the first three paragraphs
apply to all four methods.

Geometry : the alignment of the scattering table with
respect to the beam could be guaranteed correct to
within one degree. The angles of the counters with
respect to the scattering table were known to % degree.
The distance b defined in Fig. 1 was believed measured
to 5 mm in 50 to 100 cm, and so gave rise to solid angle
uncertainties of about two percent. Target orientation
was known to one degree, giving the effective target
thickness to 3 percent or one percent. Crystal areas
were all known to two percent. An error of three percent
is attributed to uncertainty in interpretation of the bias
curves of the counters. '

Beam current measurement: the Faraday cup cali-
bration of Chamberlain, Segré, and Wiegand® was
thought accurate to 2 percent. Saturation of the argon-
filled ionization chamber was guaranteed to 1 percent.

Tasre II1. Sample data for elastic d-p scattering at 10°, single-
count method, for various thicknesses of aluminum absorber in
front of the detector. All data normalized to the same integrated
beam current, viz., that required to give one volt on the integrating
condenser. Effect due to hydrogen shown in the last row.

Absorber thicknesses in g cm™2 of aluminum

Target (24.7-29.1)av 22.9 20.3 16.1
CH, 5590435 7740+ 70 117404130 81 0004500
C 6330435 73804100 11 860220 83 000700
Bl 2890440 30404100 3150100 14 6304350
H 440450 1830110 28004200 21 2004700
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TaBrE IV. Summary of elastic d-p differential scattering cross
sections in the center-of-mass system as a function of center-of-
mass angle 0. Figures of the last column include the systematic
errors of Sec. E. Cross sections obtained with the ‘“single-count
method”” are marked with an asterisk.

Rms Rms
a(9) counting error (o (6))av total error
0 10-27 10-27 10-4 10-27
degrees cm?/sterad cm?/sterad cm?/sterad cm?/sterad
15.4 31.1% 3.2 31.1 5.1
31.1 8.9* 0.5 8.9 1.3
38.4 6.6 0.4
4.9 0.6
4.8 0.3 5.3 0.5
48.1 44 0.3
4.6 0.3
3.65* 0.17 40 0.4
57.8 2.14 0.07
2.54 0.11 2.33 0.21
67.6 1.22 0.05 1.22 0.10
77.5 1.16 0.06 1.16 0.10
81.5 0.89 0.05 0.89 0.08
87.5 0.70 0.03
0.77 0.08 0.71 0.06
97.5 0.59 0.04
0.73 0.05 0.64 0.05
107.6 0.61 0.03 0.61 0.05
117.8 0.52 0.08 0.52 0.09
128.0 0.55 0.17
0.67 0.06
0.67 0.18
0.55 0.13
0.73 0.10
0.57 0.06
0.54 0.05
0.45 0.04 0.55 0.04
138.4 0.72 0.27
0.27 0.09
0.42 0.06
0.42 0.08 0.40 0.05
148.7 0.27 0.23
0.51 0.25
0.67 0.07
0.62 0.12
0.24 0.14
0.67* 0.07
0.61* 0.07 0.61 0.06
159.2 1.45 0.50
1.53* 0.13 1.52 0.20
169.5 1.75* 0.25 1.75 0.34

Target's: the hydrogen content of the polyethylene
targets was known from analysis to 1 percent.

Multiple scattering: 2 percent error is estimated
except where the angle ® exceeded 60°, in which case
5 percent was estimated. No appreciable loss is attrib-
uted to multiple scattering in the telescope of method C.

Finite counter resolving time: counting rate losses
amounted to no more than 2 percent at the highest
counting rates allowed.

Carbon subtraction: errors were not greater than 2
percent, and were due mainly to duty cycle variations
that might have escaped unnoticed.

Inelastic scattering: the possible inclusion of some
inelastic d-p scattering events among those counted
may have resulted in error of perhaps 3 percent.

We summarize by giving the systematic rms errors
for the experiment. In the coincidence methods, when 6
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was greater than 60°, we have estimated 7 percent.
When 6 was less than 60°, the coincidence methods
gave 9 percent error. Finally method D is believed
accurate to 13 percent. Errors from counting statistics
are to be combined with these values.

II. COMPARISON WITH THEORY
A. General Considerations

We shall try to use our experimental results on d-p
scattering in order to gain additional knowledge about
n-p and p-p scattering. The theory of d-p scattering has
been studied by Wu and Ashkin,” Chew,3* and Gluck-
stern and Bethe.!?

In all previous work the Born or impulse approxima-
tion was used, and in some of it an attempt was made
to identify certain terms in the d-p scattering amplitude
with the n-p and p-p scattering amplitudes. In this
connection it has usually been said that in calculating
the d-p cross sections one is interested in the #-p and
p-p cross sections obtained from experiments done with
the same relative velocities. That is, one should be con-
cerned with #-p and p-p differential scattering cross
sections at 95 Mev when calculating the scattering of
190-Mev deuterons by stationary protons. The angles
are correlated by the requirement that the magnitude
of momentum transferred should be the same in all
cases.

This is quite true at small angles of scattering, as is
shown by both impulse approximation and Born ap-
proximation. However, it seems worth while to comment
that as one examines larger angle elastic d-p scattering,
one should compare with #n-p and p-p scattering at a
higher energy.

Our argument is based on the Born approximation
and is believed to apply equally to the impulse approxi-
mation, inasmuch as one can easily construct hypo-
thetical parameters for #-p and p-p interactions such
that both Born approximation and impulse approxima-
tion are guaranteed to be valid.

We write the amplitude for elastic d-p scattering in
the form used by Chew,® employing for the #n-p inter-
action a potential which is partly ordinary force and
partly exchange force. (The p-p interaction may be
treated formally the same way.) We obtain from the
ordinary force the integral Chew has called I3, and from
the exchange force the integral I,. The factor S? can be
taken from I, immediately. (S is the “sticking factor”
of Chew.) The same factor can be taken from I, if the
suitable approximation is made, that the potentials used
are more singular than the deuteron wave function. The

"Ta-You Wu and J. Ashkin, Phys. Rev. 73, 986 (1948).

8 G. F. Chew, Phys. Rev. 74, 800 (1948).

¢ G. F. Chew, Phys. Rev. 80, 196 (1950).

0 G. F. Chew, Phys. Rev. 84, 710 (1951).

1 G, F. Chew, Phys. Rev. 84, 1057 (1951).

2 R. L. Gluckstern and H. A. Bethe, Phys. Rev. 81, 761 (1951).
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remaining integrals are

I,/Si= fdx expl — 4 (k;—Kko) - X |Vora (),
(11)
Ig/S%_%fdx CXPE‘_‘ %i(kj+k0)'xjvexch(x)y

where k; and ko are final and initial momenta in the c.m.
system (divided by #%). The corresponding expressions
for free n-p scattering are

I/= fdx exp[ —7(k/—ko') - x]Vora (%),
(12)
I/= f dx expl — i (k/+ko') - X]V oxen (3),

where k/ and ko' have the corresponding meanings in
the c.m. system for neutron and proton. In order that
I,/S*=1y and I,/S*=1, (so that n-p scattering am-
plitudes may be correctly used in the d-p expression)
the following relations must hold:

| k—ko| = [k/~ko'|, §[k+kol=|k'+ko|.

For a given energy and angle of d-p scattering these
relations determine the energy and angle of the n-p scat-
tering such that the scattering amplitudes appear
directly in the d-p expressions. We include in Table V
the values of energy (laboratory system) and angle
(c.m. system) for n-p scattering corresponding to
various angles (c.m. system) for the present case of
192-Mev deuterons scattered by protons.

(13)

B. Analysis without Tensor Forces

In this section we wish to follow the very elegant
method used by Chew,!* and to point out a few examples
which may be used as guides in further work. As will
perhaps be evident to some readers, we propose to take
the results of Chew more seriously than he does. It is
our hope that in the near future more explicit analyses
of the errors in the impulse approximation, as applied
to this problem, may be available.

We write Chew’s result in the following form:

9 c4p(0)
16 S(K)

= |7np0+7pp° l 24+ 3 rapl 7t I 2,

(14)

TaBirE V. Center-of-mass angle ' and laboratory energy E’ to
be used in the nucleon-nucleon scattering amplitudes associated
with d-p scattering at center-of-mass angle 6.

[/ 4 E’
c.m. degrees c.m. degrees lab. syst., Mev
0° 0° 96
20° 26° 98
° 52° 103
60° 74° 115
80° 95° 127
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T16. 3. Averaged differential elastic cross sections in the center-
of-mass system, with their total errors. The curve was used to find
the total cross section between 10° and 180°, 3443 mb.

where K=k,—ko, S(K) is the sticking factor defined
by Chew (with the Hulthén wave function representing
the bound state of the deuteron), »* (frequently called
the “amplitude for scattering without spin flip”) is
defined in terms of triplet and singlet scattering ampli-
tudes (7t and 7°) as follows:

3 1
=3yt 21rs,

(15)
and 7! (the “amplitude for scattering with spin flip”) is
r=31V3(rt—r?). (16)

The complex scattering amplitudes so defined have the
very convenient properties

Tnp(0)= ’rnpol 24 l"npllzy

and an identical relation holds for p-p scattering.

If, then, the breakup of the n-p and p-p scattering
into scattering with and without spin flip were known,
the elastic d-p cross section could be reliably predicted,
at least as fairly small angles where the approximations
used are good. It is interesting that the spin-flip term
enters in Eq. (14) with such a large coefficient as 2,
which corresponds to the fact that spin-flip phenomena
most frequently leave the deuteron in a triplet state,
owing to the large statistical weight.

We take the #-p and p-p cross sections as known, 81316
even though we have to interpolate somewhat between
observations to cover the energy region 95 to 130 Mev.
However, the analysis into scattering amplitudes with

3 Hadley, Kelly, Leith, Segré, Wiegand, and York, Phys. Rev.
75, 351 (1949).

14 Birge, Kruse, and Ramsey, Phys. Rev. 83, 274 (1951).

15 Cassels, Stafford, and Pickavance, Nature 168, 468 (1951).

( 16 C). L. Oxley and R. D. Schamberger, Phys. Rev. 85, 416
1952).

)
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FiG. 4. Plot of {9/[16 S(K)]} times the elastic d-p cross section
in mb as a function of center-of-mass angle 6 under various
assumptions, central forces only. A, #-p and p-p all nonspin flip.
B, Serber potential. (see reference 17.) C, #-p nonspin flip, p-p all
spin flip. D, Experimental values. .

and without spin flip is not known, and we wish to test
several assumptions.

The simplest assumption is that both #n-p and p-p
scattering are completely without spin flip and there is
no great phase difference between the scattering am-
plitudes. This leads to the largest possible elastic d-p
scattering, and the result is plotted in Fig. 4, Curve A.
This cross section is much larger than that observed,
Curve D, which is shown in the same figure.

The next, and more reasonable, assumption would
be that #-p and p-p forces are identical (can be derived
from the same potential) and that only even states are
present in the scattering (Serber potential).” With
these assumptions the Pauli principle dictates that the
p-p scattering be all singlet scattering, and the p-p scat-
tering may be used to deduce the separation of #-p
scattering into singlet and triplet states. With the
further assumption that the phase differences between
singlet and triplet amplitudes are not large, the resulting
d-p scattering is indicated also in Fig. 4, Curve B.
Again the calculated result is somewhat too large.

One gets results closer to those observed by assuming
that #-p scattering involves no spin flip, and that p-p
scattering is all with spin flip. However, this proposal
is not a reasonable one from the viewpoint of other work.
It does not agree at all with any of the potentials calcu-
lated for n-p and p-p scattering, and it does not allow
for charge independence of nuclear forces. Curve C
shows this result quite close to that observed.

17 R. S. Christian and E. W. Hart, Phys. Rev. 77, 441 (1950).
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We have found it helpful to visualize #° and ! as the
two components of a vector in a two-dimensional space
(i.e., one vector for n-p, and another for p-p scattering),
and to say that this analysis is summarized by the
statement that the amplitude vectors for #-p and p-p
scattering must be approximately perpendicular to each
other to allow agreement between theory and experi-
ment.

C. Analysis with Tensor Forces

We must now write Chew’s result in the more general
form:
9 O'dp(o)
== [ 710 | 2 3 Tt T
16 S(K)

(18)

where r,, and r,, have been written as vectors to
indicate that there are three component amplitudes 7!
to 73 involved. Thus four amplitudes for #-p and p-p
are now needed to deduce the cross section. We shall
show below how these are found. Again we have

Tnp(0)=2 I"nz)ipy (19)
=0

and a similar relation for the p-p cross section.

Once a potential has been assumed, the breakup of
n-p and p-p scattering into % 7, #> and #* can be found. .
The d-p cross section can then be written and compared
with experimental values. A suitable program would
therefore be to take a great variety of potentials that
lead to correct nucleon-nucleon scattering cross sections,
calculate d-p scattering from them by using the nucleon-
nucleon phase shifts, and compare with experiment.
One would thereby hope to be able to eliminate a great
number of potentials as unsuitable.

Unfortunately, the number of potentials that have so
far succeeded in describing nucleon-nucleon scattering
experiments adequately is small—we shall consider
four—and the task of computing and using partial
phase shifts is beyond our scope. We have therefore,
with one exception, limited ourselves to the Born
approximation in calculating the two sets of four scat-
tering amplitudes. Instead of comparing the d-p cross
section calculated from these directly with experiment,
we compare it with the #-p and p-p cross sections
derived from the same scattering amplitudes.

We then make the plausible postulate that the rela-
tion found to hold between experimental 7z-p, p-p and
d-p differential scattering cross sections should exist, to
good approximation, between the same cross sections as
calculated from scattering amplitudes derived in Born
approximation, if the potential assumed is to have
validity ; it is felt that this relation should be maintained
to good approximation even though the Born approxi-
mation does not render the cross sections very faithfully
at the energies involved here. The relation found to
hold between measured cross sections was that (apart
from the sticking factor) the #-p and p-p waves did not
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strongly interfere in d-p scattering; i.e., the amplitude
vectors for n-p and p-p scattering were roughly ortho-
gonal. We postulate that this orthogonality must still
hold when the components of the vectors (now four-
vectors due to inclusion of tensor forces) are calculated
in Born approximation. Accordingly we are interested
in comparing the ratios oqp/ (0ap+0,p) for experiment
and for various calculated potentials. We shall limit
ourselves to scattering angles less than 90° in the center
of mass, as the expression (18) breaks down at large
angles.
We now write, in the usual way,

Yx—€xp (2R02) X inc+ 7" €XP (767)SX ine, (20)
where ¢ denotes the asymptotic form of the total wave
function, x its spin part, and ko is the propagation
number in the center-of-mass system. .S will be called
the scattering matrix. When evaluated in Born approxi-
mation, it will be denoted by .Sp. Our procedure will
be to find the 4X4 matrix S for nucleon-nucleon scat-
tering derived from a given potential and expressed in
a suitably simple reference frame, to identify 7° to 7%
and therefrom to find the nucleon-nucleon and d-p cross
sections. In this process the 6X6 scattering matrix for
d-p scattering can be derived and Chew’s expression
checked. Finally the ratios oap/(onpto,p) will be
compared with those obtained from experimental values.

We shall derive the nucleon-nucleon cross section for
identical particles labeled 1 and 2. Extension to non-
identical particles is obvious. We are given a potential
U (r,0)h*/ 2m and have, for the scattering amplitude in
Born approximation,

f=f'=f0,0,x12)— f(m—0, 7+, x21)

=SBXin012—SB/Xinc2l; (21)
where

Sp= () f U(r,o) explitko—ky)-rldr,  (22)

Sp'= (4m)! f U (r,0) exp[—i(kot+-ky)-r]dr. (23)

The cross section is obtained by squaring f—f’ and
averaging over all initial spin states. We now specify

2m
Ut(r,o)= ;L;[J (N)+J:(1NS?] (29
for the triplet interaction, with
o1 1) (02 1)
S12— 3_(_.1.__(__2“_ a1 0y, (25)
7'?
and
2m
Us(r,0)= —h—; T (r) (26)
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for the singlet interaction. Substitution yields
10 00 [0 00 0
0100 , 00 00
Ss=F@ 1o o 1 o/ TF®(y ¢ o o
0 0 0 0 [O 0 01
+COl6, (27)
and
(1 0 0 0] 0 0 0O
, 0100 0 00
SE=F@=01y o 1 o~ F@=D)y ¢ o 3
(0 0 00 0 0 01
+C(r—0)||r(x—0, 7 +9¢)||, (28)
where
2m sinKr
Fo)=—- f T2y, (29)
h2 0 Kr
2m > sinKr
F'#)=— J (r)———r%4r, (30)
K J, o
and
m
COlroa=" [ 7" explith—ky)-eJir, (31)
LT
where
mo > 6sinKr 6 cosKr 2sinKr
CO)=— [ J,(r)l - — vdr.
o, K33 K22 Kr
(32)

The value of the 4X4 matrix ||7|| depends on the polar
axis chosen for the representation. As pointed out by
Ashkin and Wu,!® we can choose the polar axis along
K=ko—k;, and this procedure yields

(33)

where the o are the Pauli spin matrices. In particular,
we can make K coincide with the axis of spin quan-
tization. This will make ||7(d,¢)] diagonal, but not
|7(xr—6, 7+¢)]||. It is easy to see that since

| 7(8,¢)||=01- 02— 301x02x,

HT/” = ”T(ﬂ'—a, 7r+¢)H =01 03— 301502k,

and K'=— (ko+k) is perpendicular to K, ||| and
||| commute, and can be diagonalized simultaneously.
It will be convenient to do so. The result is

-2 0 00 -2 000

_ 04 00 " 0 —-200
”T”— 00 —2 ol ”T “‘— 0 040/ (34)

00 00 0 000

where the rows and columns are labelled by basis
vectors

1 1
1‘31:\72(‘11112‘-13132); 52‘—‘;/‘2_(04152‘{‘51&2),
(35)
1 1
$3=\7“§(a1a2+31[32), £4=\72(a132—61a2) ;

18 . Ashkin and Ta-You Wu, Phys. Rev. 73, 973 (1948).
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that is, in choosing a z axis different from the K axis we have mixed the basis vectors for spin components 1
and —1 along the K axis, leaving the components O in triplet and singlet unaltered.

We can now write down the result:

F0)—F(r—6) 0 0 0
—2[C6)—C(m—6)]
0 F(0)—F(r—06) 0 0
S 1= Xino" +4C(6)+2C(r—0) (36)
0 0 F)—F(x—0) 0
—2C(0)—4C(r—0)
0 0 0 F (0)+F' (r—0)

and the p-p cross section is at once obtained by squaring
and averaging over initial spins, which yields one-fourth
the sum of the squares of the matrix elements. In order
to derive the d-p cross section, we would like now to
find 7° to #2. In this we are guided by our definitions for
7° and 7! with central forces only. Call ¢;- - - ¢4 the four
diagonal elements of the preceding matrix. We are led
to write

= (p1F+datds+¢4)/4,
= (p1+potbs—3ps)/4V3. (37

Note that since ||7]| and ||| have zero trace, tensor
forces do not enter #° and 7. 72, and * must now be
defined in such a way that condition (19) is satisfied,
ie., '

(38)

3
‘Tpp=2[7'm:il2=%
i=0

> |4l*.

7=1

This leaves two possibilities, of which we choose the one
that yields the greater symmetry in C(6) and C(r—6):
rt= (2¢1—pa—3)/24/6,

Note that neither 72 nor #® contain central force terms.
Having found the amplitude for #-p and p-p scat-

(39)

tering in various two-particle spin states, we need
merely expand the six possible total spin functions of
the d-p system (four quartet and two doublet states,
the latter symmetric in spins of the particles in the
deuteron) x;...¢ in terms of the two-particle functions
£1...4 (35), multiply by each of the x;... in turn and
remember that the amplitude for scattering from a
state £; to a state §; is ¢.0;;. We thus obtain the 6X6
Born scattering matrix for deuteron-proton scattering.
One-sixth the sum of squares of its elements gives the
d-p cross section [apart from a factor (16/9)S(K)] in
terms of the ¢,. This expression can then be expanded
in terms of the #°. Chew’s expression is the result, and
since we know the 7% for a given potential, o4,(f) can be
found in Born approximation.

It may be instructive to try to evaluate g4,(0) to a
somewhat higher approximation. In one of the cases
(hard core, fourth potential, see below) the singlet and
triplet phase shifts for definite energies were actually
available. The scattering matrices for nucleon-nucleon
scattering were therefore computed ‘“‘exactly” in a con-
venient reference frame,® and were afterwards trans-
formed to the reference frame in which Sp and S5" had
been found to be diagonal. In this frame it was found
that all matrix elements of the exact scattering matrix

TaBLE VI. Potentials used in the present calculations. CH = Christian and Hart; CN = Christian and Noyes; CNS= Christian, Noyes,
and Swanson; JS= Jastrow and Swanson. IND = Charge-independent, B=Born approximation, §=phase shift calculation. Potentials
in Mev. P is the space permutation operator, and S is the tensor operator defined in Eq. (25). Parameters, in 107 cm, are: 7o=1.35,

r1=2.615, ro=1.6, 73=0.60, 74=0.40, 7;=0.48, r,=0.24.

Nucleon Potential Spin Method of
pair variety state Potential calculation
np CH singlet —35.3(G+1P)(ro/r)e im0 B
triplet —25.3(341P)(ro/r)e 70— 48.3(0.3740.63P)(ro/7)e /M52 B
P CN singlet —13.273(3+3P), r<r1; 0, r>n B
triplet +4-15.25(3—1P)(ry/r)2e7Ir2512 B
IND CNS singlet —13.273(3+3P), r<r1; 0, r>n B
triplet —25.3(34-3P)(ro/r)e 10— 48.3(3+3P)(ro/r)e70S2415.25 (3 — 3P) (ro/7 2 7Ir2S12 B
IND JS singlet 0, 7<rz; —3715(G+3P)e rdins >y 8
triplet —25.3(41P)(ro/r)e!70—48.3(3+1P) (ro/r)e /TS 15.25(3 — 3 P) (ro/r e 7ImaS12 B
np JCH singlet 0, r<ry; —375(3+3P)erirs y>p; 8
triplet —25.3(3+31P)(ro/7)erIr0—48.3(3+1P) (ro/r)e TS )
bp JCN singlet w0, r<ry; —3715(G+34P)e i >y 5
triplet o, r<rg; 15.25(3—3P)(ro/rs)2e /2812 re <y <rs; 15.25(3—4P)(ro/r)2e 1S, r > 8

19 The energy dependence of the nucleon-nucleon amplitudes entering the d-p amplitude (see Table V) was here ignored: the

energies available were 90 Mev for n-p, 129 Mev for p-p.
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were zero except the four diagonal ones and the (23)
and (32) elements, with the latter the negative of the
former. Thus five parameters were now necessary to
describe the nucleon-nucleon cross sections and hence
the d-p cross section. The latter would have to be
calculated in the same manner as before, with Chew’s
result no longer valid. The d-p cross section could at
best be calculated in impulse approximation from exact
nucleon-nucleon scattering amplitudes. It was therefore
felt that inasmuch as the off-diagonal elements were
rather small for the p-p case and altogether negligible
for n-p, they could be omitted and the previous machin-
ery used for calculating the d-p scattering cross section.
That this method of calculating nucleon-nucleon cross
sections is far superior to the Born approximation is
shown by the comparisons made in Table VII.

The four different potentials used in the calculations
are presented in Table VI.

The potentials proposed by Christian and Hart! and
by Christian and Noyes® are denoted by CH—CN.
They are charge dependent, and are characterized by
Serber forces (even states only) in #-p and by a singular
tensor force in odd p-p triplet states.

The potential represented by CNS was adapted by
Don Swanson from the CN potential. It is charge-
independent, and leads only to even states except for a
singular tensor force in both #n-p and p-p odd triplet
states.

The JS potential was proposed by Jastrow?' and
adapted by Swanson. It is charge-independent, and its
main feature is a hard repulsive core in singlet states.

The JCH—JCN potentials are charge-dependent and
resemble the CH—CN potentials except that a hard
core has been introduced in both singlet and triplet.
They are modifications of a potential proposed by
Jastrow.2

The Born scattering (real) amplitudes for the various
potentials and the triplet (complex) exact amplitudes
for the JCH—JCN potentials were provided by Don
Swanson, the singlet phase shifts for the hard core
potentials by R. Jastrow. Both attractive and repulsive
singular tensor forces were tried in the first two poten-
tials, only repulsive ones in the last two.

The results of the calculations are given in Table VII.
It must be remembered that the #-p cross sections given
are energy- and angle-dependent (see Table V), with
the exception indicated.® A compromise value®*15 of
5 mb was taken for the p-p cross section for all angles
and energies.

It is clear that our conclusions derived from Table
VII depend on our confidence in the impulse approxi-
mation. Deviations of the order of 10 or 20 percent
from experiment certainly are not great enough to
disqualify a potential.

We can say that both charge-dependent potentials,
CH—CN and JCH—JCN, are admissible. The charge-

0 R. S. Christian and H. P. Noyes, Phys. Rev. 79, 85 (1950).
21 Robert Jastrow, Phys. Rev. 81, 165 (1951).
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TaBLE VII. Summary of the calculations. Rows 1-4 give the
experimental p-p and n-p cross sections, the d-p cross sections
multiplied by {9/[16S(K)]}, and the ratio A= {9/[16S(K)]}o4p/
(onp+05p), where S(K) is the “sticking factor.” The remaining
rows list the same quantities as calculated from the indicated
potentials, described in Table VI. The letters in parenthesis give
the approximations to which the nucleon-nucleon amplitudes were
calculated in singlet and triplet states, respectively. B=Born
approximation, §=phase shift calculation. The approximation
involved in the JCH—JCN calculation consisted in omitting the
off-diagonal elements in the scattering matrices. All cross sections
are in 107%" cm? sterad ™.

d-p center-of-mass scattering

angle 6
20° 40° 60° 80°

Experimental

Top 5.0 5.0 5.0 5.0

Onp 9.5 4.8 3.4 3.1

{9/[16 S(K)1}oan 15 7.2 54 3.9

A 1.03 0.73 0.64 048
CH—-CN(BB)

pp , 8.4 5.7 5.0 5.0

Tnp 49 3.0 2.7 3.0

With repulsive tensor forces:

{9/[16 S(K)1}oap 16 7.5 6.4 7.6

A 1.16 0.86 0.83 0.95

With attractive tensor forces:

{9/[16 S(K)1}oan 14 7.8 4.9 34

A 1.06 0.90 064 043
CNS(BB)

Opp 8.4 5.7 5.0 5.0

With repulsive tensor forces:

Onp 5.4 3.1 3.0 3.9

{9/[16 S(K)1}oap 18 8.9 7.7 9.7

A 1.31 1.01 096 1.09

With attractive tensor forces:

Tnp 5.6 5.8 4.6 34

{9/[16 S(K)1}oa» 19 14 11 8.7

A 1.32 1.23 1.14  1.04
JS(6B)

app 3.9 43 4.9 5.0

Cnp 3.7 3.1 2.7 2.3

{9/[16 S(K)J}oun 7.0 4.1 44 52

A 0.92 0.55 0.58 0.71
JCH—JCN(3s)

Exact

Opp 4.7 5.3 5.5 5.6

Onp 12 8.1 5.1 44

Approximate

Opp 4.5 4.6 4.6 4.6

Onp 12 8.1 5.1 44

{9/[16 S(K)1}oup 18 10 7.0 7.2

A 1.09 0.79 0.72  0.80

independent potential CNS should perhaps be ruled
out, whereas JS provides good agreement. Thus it
appears that charge-independent potentials satisfying
the experimental results of #-p, p-p, and d-p scattering
can be found; and that Jastrow’s hard core is so far
compatible with experience.

D. Conclusions

These results indicate that the effect of tensor forces
must be considered if even qualitative agreement with
the elastic d-p scattering experiments is to be obtained.
The argument used is that the otherwise most reason-
able central force models of nucleon-nucleon interaction
lead to prediction of more elastic d-p scattering than is
observed. Since tensor forces have been extensively
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considered in nucleon-nucleon interaction, this result is
perhaps not unexpected.

Unfortunately, the d-p scattering seems to differen-
tiate rather poorly between the various models having
significant contributions from tensor forces. In fact all
of the models that have included tensor forces fit much
better than any reasonable central force approximation.
With some uncertainty, the CNS potential might be
ruled out.

At the time this work was started there was less
indication than there is at the present time of the charge
independence of nuclear forces. It still seems appro-
priate, however, to include the results for some models
which are not charge-independent, most of which
explain the present results quite well. Of the charge-
independent models, that of Jastrow as modified by
Swanson (JS) is favored. How strongly it is favored
depends to a large extent on how much confidence one
has in the approximations used. The reader is referred
to Table VII in which theory and experiment are com-
pared on the basis of the quantity A.

Some of these conclusions have been brought out by

AND M. O. STERN

Horie, Tamura, and Yoshida,® who have compared
their calculations with the same experimental data
presented here.

The suggestion is made that in a refined analysis of
the d-p scattering at one energy, the data must be
compared with nucleon-nucleon scattering measure-
ments made at a variety of energies. The proposed
energies and angles are indicated in Table V.

No attempt has been made in the present work to
analyze the data in the region of 180 degrees in the c.m.
system (the “pick-up” region).
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