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Experimental studies of spin-lattice relaxation in aqueous
solutions of the free radical peroxylamine disulfonate ion,
ON(SO3)2, have been made in fields near 30 oersteds. The
continuous wave saturation technique was used to study the
transition F= ,', mr-=,'~F=$, mr= —$, for which the fre-
quency was 60 Mc sec '. Because the hyperfine interaction of the
unpaired electron with the N'4 nucleus leads to six unequally
spaced energy levels, a unique relaxation time cannot be defined.
A general treatment of the saturation method leads to definition
of the relaxutzon probability, which reduces for a system with two
energy levels to the reciprocal of twice the relaxation time. The
experimentally measured relaxation probability is found to be
concentration independent below 0.005 molar in ON(SO3)~
approaching an asymptotic value of 2&10' sec '. Experiment and
theory both rule out as the source for this relaxation probability
the interaction of the electron moment with the nuclear moments

of the H20 solvent molecules, and theory also rules out the effect
of the ¹4electric quadrupole coupling to solvent motions; the
latter can, in principle, e6ect electron relaxation because of the
hyperfine coupling between the N" nuclear spin and the electron
spin. Estimates are made of the role played by spin-orbit coupling,
and it appears probable that the observed relaxation involves
this interaction. An interesting by-product of the analysis of the
relaxation probability is the result that second order statistical
processes, by which an electron spin is first carried with energy
conservation to an excited Stark level before reaching the ground
Stark level of opposite spin, may account for the observed relaxa-
tion. This process is somewhat similar to the Raman processes
invoked by Van Vleck to explain relaxation in the alums, except
that in Van Vleck's theory the intermediate excited Stark level
is 'only virtually occupied, without energy conservation.

1. INTRODUCTION

HK paramagnetic resonance of the peroxylamine
disulfonate ion, ON(SOs)s, even in crystals of

the potassium salt, is not characterized by the pro-
nounced exchange narrowing frequently observed for
free radical molecules. It is perhaps attributable to this
weakness of the exchange interaction that one can
observe a well-resolved hyper6ne splitting from the N'
nucleus in liquid solutions containing this ion in con-
centrations even larger than 0.1 molar. ' There is, there-
fore, a range of concentrations over which-magnetic
dipole transitions of the coupled system, electronic
moment plus nuclear moment, can be observed in fields
near 10 gauss with adequate signal-to-noise. Measure-
ments by Townsend' have shown that, in 6elds up to
50 gauss and at frequencies between 9 and 120 Mcjsec,
the Breit-Rabi energy levels for a system with I=1,
J=& apply to the peroxylamine disulfonate ion in
solution.

The present work concerns itself with the mechanism
which maintains the population differential between a
particular pair of levels participating in resonance
absorption. This mechanism will also be shown in the
system at hand to dominate in producing the observed
line width. The mechanisms of interest in determining
measured widths of paramagnetic resonances are, in
general, the spin-spin and spin-lattice interactions,
which may occasionally be markedly obscured by
instrumental eGects. The advantages of working in low
fields ( 30 gauss) are twofold. First, the individual
hyperfine components become only a fraction of a gauss
wide at concentrations below about 10 ' molar. In the

magnetic 6elds of several thousand gauss which corre-
spond to microwave frequencies, care must be exercised
to assure that field inhomogeneities over the sample do
not mask the true line width. However, if Helmholtz
coils or a solenoid are used in producing the 30-gauss
field, no eGort at all is required to keep inhomogeneities
below 10 ' gauss over a sample of several cubic centi-
meters volume. A second advantage is more compelling.
To separate non-negligible spin-spin processes, if any,
from the spin-lattice interactions limiting the lifetime
of a spin state, one needs to know the spin-lattice
relaxation time. While this can be measured with
diKculty at microwave frequencies, ' 4 microwave gener-
ators with adequate power are not presently available
in this laboratory, and the techniques, in any event,
are not as easily applied as those using lumped param
eter circuits.

The Hamiltonian function describing the interaction
leading to the hyper6ne structure is'

K= gstsoH&Je+GI J—grtsoPOIe (1)

where g~ is the spectroscopic splitting factor for the
free radical; for a free electron gg=g, =2.0023. The
magnitude of the Bohr magneton is p,o, and the anti-
parallellity of J and the magnetic moment of the
electron is explicitly taken into account by the positive
sign preceding the first term of (1). Ps is the applied
external 6eld, and a is the hyperfine coupling constant.
Since we take gl as the nuclear g factor referred to the
(positive) Bohr magneton tso, it is the conventional
nuclear g divided by 3f/el= 1836.

The Breit-Rabi energy levels' given by the Hamil-
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2, - The energy levels of Fig. j. are given by

W v=i~; —— sha—v-+gzp pH pm

~ shhvt 1+(4/3)mx+x'j-:. (4)

The experiments to be discussed in Sec. 8 involve
excitation of transitions between levels 3 and 4 of Fig. 1
at a frequency,

v4s= Ave —s(1—x)+is(1—sx+x')')+gztzpHp/h, (S)

of 60 Mc/sec, which corresponds to an external mag-
netic Geld of about 31.4 oersteds. Values of the coe%-
cients of Eqs. (3) for this field are listed below:

9 0 950' 9 0 050' c 0 903) d 0 097'
x= gztzpHp/hd v= 1.610.

For the ON(SOs)s ion, gz/go=10 ' and we shall
usually neglect gr in comparison with g&.

2. PARAMAGNETIC RELAXATION AND SPIN
SATURATION

Paramagnetic relaxation is the process of energy
exchange between an assembly of paramagnetic spins
and its surroundings which permits the spin-state
populations to adjust themselves to the equilibrium
distribution corresponding to a given magnetic held
and temperature. It is customary to regard the entire
paramagnetic sample (solid, liquid, or gas) as a super
system composed of two weakly interacting sub-
systems; the system of interest or spin system, having
spin coordinates among its degrees of freedom, and the
surroundings or lattice system having only orbital
degrees of freedom.

It is the weak interaction, K,~, between spins and the
lattice which is the object of relaxation studies. In
practical cases, the question is one of trying to discover
which of a number of possibly important spin-lattice
interactions sects the experimentally observed relaxa-
tion. In certain examples relaxation has been studied
experimentally through direct observation of the char-
acteristic time required for the establishment of spin
equilibrium (the relaxatiort time). In other examples,
particularly if the relaxation time is short, one measures
essentially the thermal conductivity between the spins
and the lattice by observing the rate at which energy,
absorbed by the spins from a laboratory source, is
passed on to the lattice via the relaxation mechanisms;
this is the saturation method.

It is of course quite feasible to cloak such measure-
ments in thermodynamic terms, as was done by Casimir
and Du Pre. ' We shall usually con6ne our approach to
that of quantum statistics and speak in terms of the
transition probabilities per unit time induced by 3C,&.

Either a direct relaxation time measurement or a
saturation experiment will be treated in terms of the

Fin. 1.Breit-Rahi levels for the ON(SOp)s iona. The transition
marked is that for which rf saturation measurements were made
as a function of concentration in aqueous solution.

tonian (1) for I= 1, J=—', are displayed in Fig. 1. The
particular transition studied in the present work is
that between the levels I'=-,', m~= ——,

' and I'=-,',
m&= —~. This transition has a frequency which in-
creases monotonically from zero. However, the ratio of
frequency to field is not eGectively constant until large
enough fields are attained to decouple J from I. In
order to treat the spin interaction processes later on,
we reproduce here the wave functions and energies
which apply to the levels involved in the transition
marked in Fig. 1.Designating the levels by the numbers
shown on the right of Fig. I, we have

f(F,m)= Q (Fm~mzmz)y(mz)X(mz),
mg, ml

A—=4'(s 5)=4(s)x(i)
e —=e(-:, —,') = ~(-,')x(0)+&~(--:)x(1),
A—=lt (s, —s) = c4 (s)x(—1)++(—s)x(0), (2)

O =—~(!,-!)=~(—:)x(-1),
A—=4 (s, —s) = c4 (—s)x(0) —~4 (s)x(—1),

A=0(2, s) =ad (—s)x(1)—~4 (s)x(0).

(3)
1 /1 21** 1 (i 2l-:

9rs)
'

2 &4 9ps)
P H. B. G. Casimir and F. K. Du Pre, Physica 5, 507 (1938);

H. B. G. Casimir, Physica 6, 159 (1939).

The coefficients, as functions of x= (gz gz)ppHp//hdv, —
will be exPressed in terms of r= (1+sax+x')& and
p= (1—ssx+x') &:

1 f'1 2 q* 1 t'1 2
a'= +f f

c'= +]
2 (4 9r') 2 E4 9p')
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way in which the populations of the various energy
states are inRuenced by these probabilities.

Such an analysis of the relaxation time for an
assembly of spin 2 particles is straightforward a
unique relaxation time is easily dined for the establish-
ment of the equilibrium population diGerence between
the two spin states accessible to each particle. However,
a more complicated energy level scheme may not permit
the association of a single relaxation time with each
pair of levels between which a population difference
will exist at equilibrium. An example is the coupled
system consisting of the odd electron and the N"
nucleus of the free-radical ion ON(SOs)s . Not only
are there six unevenly spaced levels, but the selection
rules permit magnetic dipole transitions between all
but five of the fifteen diGerent pairs of levels. In general,
one 6nds that the approach, from an initially disturbed
state to the equilibrium level population, is described
by an expression of the form

Np (t) =Q i bi, i exp (—i~it). (6)

If, after appreciable lapse of time, several comparable
terms in the sum (6) are dominant, it will be impossible
to express any population difference involving level k

with only one exponential term, and there will be no
single relaxation time.

The saturation procedure does not suppose any
specific mathematical form for the approach to equi-
librium of the population difference between a pair of
levels. Transitions are excited between the levels in
question by means of a laboratory radiation field.
(We presume throughout this discussion the existence
of a constant external magnetic field which removes the
orientation degeneracy of individual spins. ) As we
shall later verify (Sec. 4), the transition probabilities
induced by the laboratory field are, for practical
purposes, microscopically reversible, which means that
the net energy absorption —and therefore also the
detected rf absorption signal —is proportional to the
population difference. In the presence of a given labo-
ratory radiation 6eld, then, a stationary spin population
distribution will ultimately obtain in which this rf
absorption is just balanced by the energy carried to the
lattice through all relaxation processes. (As taken up
in Sec. 5, the transition probabilities describing the
relaxation processes cueeot possess microscopic reversi-
bility if there is to be a nonvanishing population
diGerential at equilibrium. ) It follows that a study of
relative absorption intensity as a function of the rf
power level must give direct information about the
interaction K,~ which permits energy exchange between
the spins and the lattice.

Explicit emphasis should perhaps be given to the fact
that a given level of saturation is characterized by
stutioearity of spin population, but not, of course, by
thermal equilibrium. Indeed, the stationarity exists

7 Bloembergen, Purcell, and Pound, Phys. Rev. 73, 679 (1948),
ften referred to hereafter as BPP.

only if the thermal capacity of the lattice, which is in
turn normally in excellent thermal contact with its
laboratory surroundings, is large. Except at very low
temperatures, this condition is usually fulfilled. For
this reason, although there is a steady Qow of energy
into the lattice, we shall speak of a lattice temperature,
assumed not to change during a given measurement,
which is essentially a temperature 6xed by the sample's
immediate laboratory surroundings. '
3. DEFINITION OF THE SATURATION FACTOR AND

THE RELAXATION PROBABILITY

The foregoing description of the saturation procedure
suggests that a useful quantity in relaxation studies is
the ratio,

S i(Hi) = (Ni, ' N')/(N—s N) — (7)
which we shall call the saturation factor. Here X~ is
the stationary population of spin state k with zero or
negligible rf field present (thus the thermal equilibrium
value) and N&' is the stationary population in the
presence of an rf field Hi. Evidently S;&(0)=1 and
S;s(oo)=0. For a given input of rf power at spin
resonance, one expects 5;I, to depend upon lattice tem-
perature and the external 6eld in which resonance occurs.

We now wish to obtain a relationship which expresses
the saturation factor in terms of the laboratory-induced
transition probability per unit time V;I„and the
transition probability per unit time U, I, which is induced
by the spin-lattice interaction X,&. We shall let 8',&

= U;s+ V, i, denote the probability per unit time, due to
both relaxation mechanisms and the laboratory appa-
ratus, that a system now in spin state j will be found
at a later time in state k. If there are a total number S
of spin systems to be distributed over the e states
accessible to an individual spin, then the following
diGerential equations describe the shifting of the popu-
lation fractions, Q;=N;/N, by expressing essentially
the conservation of systems:

dQ; = Z (Q & —QP'') Li=1 j (8)
k=1
kgj

Under conditions of population stationarity, Eqs. (8)
become e homogeneous linear equations in the Q's
which are readily seen to be consistent, since any row
of their coefficient determinant is obtainable by adding
the other e—1 rows. The Q's are of course not all
independent, for if e—I of them are known, the eth is
determined. Thus the system of equations may be
solved by replacing any one of the m homogeneous
equations,

Z (Qs&» Q~lf'ts) =o Li =—1 +j (~)
k=f
kWj

' In the early unsuccessful attempt of Gorter to observe nuclear
paramagnetic resonance, the small change of lattice temperature
during application of a strong rf 6eld at the Larmor frequency
was to be the means of detecting the nuclear spin resonance
LC. J. Gorter, Physica 3, 995 (1936)).
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by

Z Qk=1. (10)
k 1

To determine the saturation factor S,„, we require
the difference 6„,=Q„—Q, under the conditions,

W'gk= U;k $qpWj kW pqj
(11)

VVsn= U2.+V

which express the reversibility of Vyq Vqy V and
the fact that the laboratory source induces transitions
between states p and q only.

For simplicity, let us arbitrarily number the states p
and q, between which the radiation 6eld produces
transitions with the probability V, by the numbers T

and 2. Then, substituting Q2=621+Qt, one obtains

the following equations:

el%21+ V (V+K U1k) j+A21(U21+ V) +Q2U31+ ' '+QnUal

e,rU, .+V-(V+z U„)& A„(-V+z U„)+e.U„+ +Q.U.,=0,

e (U..+U..) +A21U2 +Q, U,.+" +Q„U„„=O,
(12)

Q1(U1 + U2 ) +F21U2 +Q2U2 —Q Z U.k=0.
k

Noting that V, by virtue of its practical microscopic
reversibility, appears only in two positions in the second
column, one can eliminate one V term by replacing,
for example, the second equation by Eq. (10). If one
then solves for 4» by expanding determinants in terms
of the cofactors of the second column, he obtains

+21 C22/(2 UskC2k+ V C21+C22) )
k&2

(13)

where C2~ is the cofactor of the second column element
in the kth row. For a spin system in ther mal equilibrium
at room temperature, 621 (E2—Er)/kf=br/kT. For
magnetic dipole transitions which would occur at radio-
frequencies between 1 Mc/sec and 30000 Mc/sec, 621
ranges between 10 ' and 5X10-'. Then Eq. (13) indi-

cates that p»2 U»C» must exceed C22 by a factor
at least 200 (and, for the experiments of Sec. 7, by 10').
Hence C22 can be dropped from the denominator of
Eq (13), an. d one finds S12=621(V)/627, (0) to be

1+

U21+ Csl Q U2kC2k

This may be compared with BPP's Eqs. (13), (4), and

(33) to show that our result reduces to theirs when
there are just two levels. Although a system of many
levels without special selection rules does not generally
admit to de6nition of a single relaxation time for a pair
of levels, the coefficient of V in Eq. (14), which for a
two level system is twice the relaxation time T&, is
nevertheless the significant quantity indicating the
potency of relaxation mechanisms which give rise to
the V;p transition probabilities. %e shall define the
reciprocal of the coefficient of V to be the relaxatiorI

Probabilsty, Wn.
T e

W12= U21+ Q UskC2k.
Cqq a=3

(15)

VVe can thus speak of measuring relaxation probabilities
in situations where there is no single uniquely dered
relaxation time. '

S= I 1+V/Wzh-', (16)

once we know how V depends upon the rf field.
The probability V;I, is often calculated from the

semiclassical perturbation treatment of radiation, ' in
which event one assumes the existence of zero-order
spin functions I„,which satisfy the eigenvalue equation

and a perturbing interaction,

3C'=ALe'"'+e '"'j=2A coso1f

In our case of particular interest in magnetic dipole

2 To the extent tliat Bloch's phenomenological equations LPhys.
Rev. 70, 460 (1946)g adequately represent the motion of the
magnetization vector associated with a particular spin system,
the time TI describing the exponential decay of that magnetization
will, of course, be a perfectly useful parameter. However, one
cannot assert generally that the Bloch T& bears any simple
relationship to the X's of Eq. (6). Special cases in which the
Bloch parameters are rigorously related to microscopic quantities
are discussed by R. K. Wangsness and F. Bloch )Phys. Rev. 89,
728 (1953)g.I See, for example, L. L Schiff, Qau12hsm 3Eechunzcs (McGraw-
Hill Book Company, Inc., New York, j.949), Secs. 29 and 35.

4. THE LABORATORY-INDUCED TRANSITION
PROBABILITY

Experimental measurement of 5'g can be made by
measuring S for a known rf field and using the result of
Eqs. (14) and (15),
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4 sinsl -,'(cop; —oo)t]

Gdy GO

=t 6(vs; —v), (20)

and the probability per unit time is

V, =)'t 'l(klAI j)I'B(v; v)— (21)

If we take R'= —tt (2H&) cos(cot) and suppose that the
spin resonance frequencies of the individual spins of
the sample are distributed over a finite frequency range
according to a normalized line shape function g(v), then

I"=t't '&r'I(& It .I j) I'g(v& (22)

The V;I, so obtained is of necessity microscopically
reversible, because p, is Hermitian.

If, however, the quantum nature of the radiation
Geld is taken into account, the probability of absorptive
transition is proportional to the mean number of
photons rt(v) per degree of freedom of the field coordi-
nates belonging to waves of frequency v. If p(v)dv is
the energy density of the Geld per unit volume in the
frequency range dv, then"

~(v)= t (v)
Sxhv'

(23)

The quantum treatment of emission shows it to be
proportional to rt(v)+1, thus including in the theory
the spontaneous emission probability (when rt(v) =0)
arrived at by Einstein from statistical considerations
of thermal equilibrium. To test the effective reversibility
of emission and absorption probabilities, we evaluate

I rt(v)+1]/N(v) for the signal generator, assuming it to
produce an rf field of about O.I gauss in a frequency
interval of at most 100 cycles/sec at 6&&10' cycles/sec.
One finds from Eq. (23) that N(v) is at least 10".
Then clearly, to the extent that rt(v)+1—rt(v), we may
consider that V;g,= V~; even when the quantum nature
of our laboratory radiation field is taken into account.
We shall use for either V;~ or V~; the semiclassical
result (22) which, since it is proportional to Ht and
includes no possibility of spontaneous emission, must
correspond to the actual absorptiort probability.

"E. U. Condon and G. Shortley, Theory of Atomic Spectra
(Cambridge University Press, Cambridge, 1955), p. 80.

transitions, A may arise from an interaction —is H
where H is the field of the oscillator used in the labo-
ratory to cause spin resonance. Then the usual time-
dependent perturbation calculation yields the following
first-order expression for the probability that the
system, initially in a state j, will be found in state k:

4 sin'[-', (cog, —to)]
Iap(t) I'=h 'I (kIA Ig) I' . (19)

(a)g,„—co)s

For times not too short,

No= K,+mt, (24)

where 3C, and BC& are, respectively, the spin and lattice
Hamiltonians. In practice, however, even the assembly
of spins, which may often be considered as noninter-
acting among themselves, offers a highly degenerate
system for which the orthonormal zero-order linear
combinations are not known, nor are the normal modes
for the lattice. The classic example of a serious eGort
to take into account the normal modes for a particular
lattice is Van Vleck's calculation of the relaxation
times for titanium and chrome alums. "

Our experiments deal with liquids, for which there is
available almost no information on "lattice" eigenstates.
Bloembergen, Purcell, and Pound7 have, however,
obtained excellent results for nuclear paramagnetic
relaxation in liquids by approaching the problem from
the point of view of the correlation spectrum. The
procedure is effectively one of using the semiclassical
perturbation treatment for the effect of an oscillatory
magnetic field component which might arise through
translational or rotational motions of the charges
associated with molecules of the liquid; these frequency
components are then taken to be distributed according
to the correlation spectrum. We can illustrate this
procedure by taking A of our Eq. (18) as a product
(or as a sum of products), one factor containing
(lattice) space coordinates and the other dependent
upon particle angular momentum operators,

A =f(r)F.„(I,J). (25)

Then Eq. (19) becomes

Ut-s=It 'I f(r) I'l(&l~"I j) I'~(»t—v) (26)

The correlation theory for liquids leads to the conclu-
sion that

I f(r) Is is distributed spectrally according to
the intensity, ~

2r.
~(v) =(If(r) I')A

1+4s'v'r, s
(27)

where 7., is the correlation time and the average is over
all time or, equivalently, over all space if f(r) is a
function of coordinates which vary randomly with
time. Combining Eqs. (26) and (27), one obtains

U '= & '(I(&
I f(r)~.v(I,J) I j) I'&"j(»t), (28)

where j(v) is the normalized spectrum

j(v) =
1+4s'v'r, '

~ J.H. Van Vied, Phys. Rev. 57, 426 (1940).

(29)

5. THE TRANSITION PROBABILITIES
EFFECTING RELAXATION

The application of perturbation theory to the calcu-
lation of transitions induced by 3'.,& is, in principle,
straightforward. One treats 3C, ~ as a perturbing inter-
action for the zero-order Hamiltonian,
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ni=
exp (koi;/k T)—1

(30)

so that emission and absorption probabilities are in the
ratio

Uemission '+i+ 1
=exp (hoi, /kT).

Uabsorption '+i
(31)

As with the semiclassical treatment of the radiation
field, Sec. 4, the semiclassical result (28) is micro-

scopically reversible and is proportional to the intensity
of the effective phonon 6eld. We again identify the
semiclassical result with the absorption probability of
a full quantum treatment, and the emission probability
is to be calculated from Eq. (31).Thus, if spin state k

has greater energy than state j,

We now ask to what extent a proper quantum approach,
analogous to Van Vleck's for the alums, would yield
significant features not present in this semiclassical
result.

Following the procedure of Sommerfeld and Bethe, "
for example, we would prefer to have quantized the
normal modes of the lattice. The lattice states would

then be described by a set of quantum numbers e, for
the ith mode of elastic waves. The energy of the
quantized mode is given by (23,+-2, )koi, , and energy
exchange between such modes and the spins may be
described as either emission or absorption of a "phonon"
of energy her; by the spin system. The formalism is

quite parallel to that for the radiation field, including
the fundamental asymmetry between emission and
absorption. The probability of emission (creation) of a
phonon of frequency ~; by the spin system is propor-
tional to 22,+1, whereas that of absorpti'on (annihila-

tion) is simply proportional to 23,

If the lattice temperature is T, the mean value of n,
Is

0. DETAILED BALANCE AND SPIN SATURATION

If spin state k has higher energy than state j, then
at thermal equilibrium the principle of detailed balance,

(33)

combines with Eq. (31) to assure a Boltzmann distri-
bution among the spin states.

It is interesting to raise the question whether the
principle of detailed balance applies to the spin system
in a partially saturated state. Treatises on statistical
mechanics often arrive at detailed balance by a classical
argument, and none which has come to the authors'
attention is clear in a quantum statistical way on
whether detailed balance is applicable outside of
thermal equilibrium. For our particular problem, the
assumption of detailed balance outside thermal equi-
librium appears to lead to a contradiction, as is perhaps
most easily illustrated for three levels between any pair
of which the selection rules for the interaction eGecting
relaxation permit transitions.

If E1, E'2, and E3 are the level populations, then the
steady state solution of Eqs. (9) and (10) under condi-
tions of detailed balance leads to an expression for
E1—E2 which can be cast into the form

~ 23~ 31 ~ 13~ 32

E1—E2= N (34)
W13W32+ W13W23+ W31W23

Now suppose a monochromatic radiation field inducing
transitions between 1 and 2 is introduced. Then
W» ——U12+V and W21——U21+V will be altered, and
the other Ws remain simply the corresponding V's.
We know experimentally that increasing V»= V»= V
enables us to diminish S1—E2 as much as we please.
Yet, by assuming detailed balance, we expressed E1—E'2

independently of 8"» and therefore of V.
Another way of making this point is to observe that

detailed balance requires the condition

U; .=k-'(I(kl j'(r)~..(1,J) I j) I ).,j(";)
U . U, ~h vrc)/k F

li:-+g y-+Is

~12~23~31 ~21~ 32~13)

which becomes, for no rf 6eld,

(35)

Note that Eq. (32) disagrees with BPP's Eq. (30)
(which is for the special case of spin 2). Although the
BPP equation gives the proper ratio of. emission and
absorption probabilities, each depends upon the zero
of the energy scale used in measuring E„and E, of
BPP Eq. (29).

The distinction between solids and liquids, so far as
application of Eq. (32) is concerned, lies in the selection
of j(v). lt may be, for a solid, the normalized Debye
spectrum of the familiar classical theory of the specific
heat, or, for a liquid, it may be the correlation spectrum
(29). The essential parameter in the first case is the
Debye temperature, whereas in the second it is the
correlation time.

'3 A. Sommerfeld and H. Bethe, Hondbisch der Physik (Springer,
Berlin, 1933), second edition, Vol. 24/2, p. 500 ff.

(U12+ V) U23U31 (U21+ V) U32U13r (37)

which cannot hold for all V if U21/ U12.
Of course, the arguments of this section do not.

include explicit account of direct interaction between
the rf 6eld and the lattice. Although this is usually
extremely weak, and is considered not to affect the
lattice energy states nor their populations, the U's are
in principle altered by this perturbation and a con-
vincing demonstration would have to verify that the
U.'s are not so altered as to keep Eq. (37) always valid.
Our argument is essentially that V can be and is made

U12U23U31 U21U32U13. (36)

If V12= V21= V is impressed with an external radiation
field, then (35) becomes
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comparable to or greater than Ui~, whereas the radi-
ation field-lattice interaction should acct the U's only
by a very small (negligible, we think) fraction.

In the analysis of Sec. 3, therefore, the simple
conservation of systems, as described by Eqs. (9) and
(10), and the assumption that the presence of V does
not alter the U's are used to obtain the saturation
factor. There is no question of applying detailed
balance, since it is violated by these assumptions.

7. APPARATUS AND EXPERIMENTAL PROCEDURE

Figure 2 is a block diagram of the apparatus used to
produce the transitions, detect the resonance, and
measure the saturation factor S. The 60-Mc/sec rf field
is produced in the tank coil of a Colpitts-type oscillator
which forms part of a magnetic resonance spectrometer
similar in design to that of Schuster. '4 Audio amplifiers
with a total gain of about a million followed the reso-
nance detector and fed a phase-sensitive detector. "

A 30-cycle signal generator produced a square wave
reference signal for the phase-sensitive detector and a
synchronized sinusoid which, after power amplification,
modulated the Helmholtz coil Geld of about 30 oersteds.
This generator also supplied the 30-cycle signal to the
grid of the calibrator, "a device which essentially places
the plate resistance of a triode, type 955 in this case,
across the oscillator tank coil to provide dissipation
which simulates a nonsaturable signal serving as a
comparison standard for the paramagnetic sample.

In order to know the transition probability (22)
produced by the oscillator for a given sample, one
requires the half-amplitude H~ of the rf Geld at the
sample. For this purpose a vacuum tube voltmeter was
built into the apparatus to measure the rms voltage v

across the sample coil. The inductance of the coil,
which was wound of small Qat copper strap to minimize

Hi =0.022'. (38)

A typical measurement of the saturation factor might
proceed as follows. The plate voltage of the oscillator
is adjusted to provide a low level of oscillation, and the
calibrator is set to give a signal equal to that obtained
from the paramagnetic sample. The level of oscillation
is then increased and a new comparison of calibrator
and sample signals is made. In general, the power level
and changes in the properties of the oscillator circuit
at the new oscillation level will alter the absolute signal
intensity, but these changes will acct equally the
signal from a given dissipative load across the coil,
whether of paramagnetic or calibrator origin, and the
relative intensity is meaningful. If the calibrator and
the sample still produce the same relative signal, then
S is still unity and saturation has not set in. The
oscillation level is then further increased until a curve

LORE NT2 SHAPE '
adair

SOlid line: dx RXinas (H-HJ/SH
dH $H [) ~(H "H.)&]s

0.4- sH

f o.s
„$H +d

2X" dH
0.2

O. I

0
0 1.0

o
SH

2.0

the capacitance between turns, was determined, and
the ratio of magnetic field to current in the coil was
obtained by performing an auxiliary resonance experi-
ment for which a direct current through the coil
produced the external magnetic Geld for a still„'smaller
coil containing a free radical. The result so obtained
is that
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FIG. 3. Comparison of experimental absorption derivative
points with the 6rst derivative of a Lorentz shape function. To
obtain the entire absorption derivative, the curve shown should
be reflected in the origin.
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of S eersls e, the rms coil voltage, is plotted; by means
of Eq. (38) such a curve can be converted to 8 verses Hi.

The shape function g(v) required to calculate V,&

from (22) is determined from the measured resonance
curves at low power (where 5= 1). Since the modulation
technique is used, the line profile actually measured is
proportional to the derivative dg/dv. Of course, the
calibrator triode is supplied with a 30-cycle grid signal
to provide a standard signal coherent with the phase-
sensitive detector reference voltage.

FlG. 2. Block diagram of the experimental arrangement.

"N. A. Schuster, thesis, Washington University, 1951 (un-
published).

"N. A. Schuster, Rev. Sci. Instr. 22, 254 (1951).
's G. D. Watirins and R. V. Pound, Phys. Rev. 82, 343 (1951).

The authors are indebted to Dr. Watkins for communicating to
them further information on his work.

8. EXPERIMENTAL RESULTS

Aqueous solutions of KsON(SOs)& are unstable and
often become diamagnetic in a matter of several min-

utes, the decay products catalyzing the spin-pairing
reaction. It was found that making the solution about



586 J. P. LLOYD AND G. E. PAKE

2.0-

~O
Ci
lal
I
sO

Ul0

l.o ~

0.2
0.00l

I ~ ~ ~ ~

0.002 0.005 O.O 0.02 0.05
MOLAR CONCENTRATIONS ~

Fxo. 4. Experimental line width verses concentration of
ON(SO&)r ion in aqueous solution. The quantity BP is de6ned
in Fig. 3.

Note that S' is not a derivative of S. The value of V
to be used in this expression is its maximum at the
resonance center, thus corresponding to the maximum
value of g(v). For a Lorentz line, g(v),„ is 1/w times
the reciprocal of the half-width bv at half-maximum

intensity on the unsaturated g(v) curve. If one measures

experimentally the width, in magnetic Geld units,

"We are indebted to Professor Weissman of the Washington
University department of chemistry for this discovery.

's G. E. Pake and E. M. Purcell, Phys. Rev. 74, 1184 (1948)."Reference 7, Sec. IV, Eq. (17).'The BPP saturation parameter
s is our V/Wa.

0.1 normal in Na2CO3 stabilizes the free radical solution
in a pH range proper to prevent appreciable deterio-
ration for several days. " In this way, measurements
were easily made on samples containing various
concentrations of ON (SOs) s ion.

All measurements reported here were made at 60
Mc/sec for the transition (F=-s, , esv= ——,')~(F=s,
mv ———s), which is transition 4+-Q on Fig. 1. This
transition was selected because its frequency eersls Geld

characteristic does not depart sufBciently from linearity
to complicate width measurements, as may happen for
those transitions having small dv/dH, and because it is
reasonably intense. This transition gives, at a 6xed
microwave frequency, the hyperGne triplet which occurs
in the highest external Geld.

Figure 3 graphs experimental points for half of the
derivative curve of the resonance absorption of a 0.02M
aqueous solution of ON(SOs)s at 60 Mc/sec. Also

placed on the graph Geld is a curve corresponding to
the derivative of a so-called Lorentz' or damped-
oscillator line shape function. It is seen that the
Lorentz curve approximates very well to the experi-
mental points.

In our analysis of the experimental saturation data,
we follow BPP, whose equations" can be adapted to
show that for our situation (BPP case I:the modulation

frequency is much less than Wg) the decline in the
derivative extremum under saturation is given by a
saturation factor,

between points of extreme slope, the conversion between
the measured quantity AB and g(v),„ is, for the
Lorentz shape function shown on Fig. 3,

g(v), = (4/V3) (7AH)
—', (40)

where y=dco/dH is obtained from the (angular) fre-
quency eersls Geld characteristic for the transition in
question. The'parameter 8H of Fig. 3 is, in terms of the
width between inflection points, (VS/2)DH.

Figures 4 and 5 plot, respectively, the experimental
values of 8H and of the relaxation probability 8'z
wersls the molar concentration of ON(SO, ), ion. At
concentrations above O.ORV, the hyperGne structure
begins to give way to a single broad line. The lower
limit of the concentration range is determined by the
decline in signal sensitivity as fewer and fewer free
radicals are present in the sample.

A striking feature of Figs. 4 and 5 is that both the
line width and relaxation probability appear to approach

I0-

g" 2C
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Fn. 5. Experimental relaxation probability 8'g versls concen-
tration of ON(SO3)2 ion in aqueous solution.

asymptotically a concentration independent value. The
relaxation probability, through its limitation of the
lifetime of a spin state, should contribute an amount
the order of Wg/y to the total line width. The low-
concentration value of Wg/y gives about 0.7 oersted.
This is quite comparable to the asymptotic low-
concentration line width of 0.3 oersted, and it indicates
that the relaxation processes may well determine the
entire line width. If such is the case, we will understand
the low-concentration portion of both Figs. 4 and 5 if
we can explain the concentration independent relaxation
probability. "

In order to test the possibility that the nuclear
moments of the water solvent might provide the inter-
action which relaxes the free radical spins, the low-

m) Depending upon the relationship which one assumes should
exist between 8'g and its contribution to BH, the fact that S'g/y
exceeds BH may cause some concern for the internal consistency
of our measurements; the line cannot be sharper than the uncer-
tainty principle would allow. However our procedure of calibrating
the rf coil (Sec. 7) when it carries direct current is not beyond
reproach, inasmuch as the current distribution throughout the
cross section of the copper strap at 60 Mc/sec is certainly some-
what different from the dc distribution. Therefore a factor of
perhaps 2 must be allowed in our absolute values of 8'g, relative
values should be good within i0 percent or better.
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concentration measurements of Figs. 4 and 5 were
made for solutions of ON(SO3)2 in D20. Although
the deuteron magnetic moment is about 0.3 that of the
proton, the curves for the D20 solution were indis-
tinguishable from those of Figs. 4 and 5. We thus have
experimental indication that the nuclear momenis of
the solvent do not provide the relaxation mechanism.

9. THE SATURATION FACTOR FOR THE
TRANSITION STUDIED

In order to compare postulated relaxation mecha-
nisms with the measured value of 8"&, we require the
expression for Wii in terms of the U's for ON(SO3) 2

There are six homogeneous equations of the form (9)
for a system with the energy levels of Fig. 1. For
magnetic dipole transitions in the radio-frequency range,
the Boltzmann factors associated with emission t Eq.
(31)f usually depart from unity by less than 10 '.
Furthermore, BPP 6nds for' water at room temperature
that v, =4)&10 ' sec. In 31.4 oersteds, all transitions
permitted between the levels of Fig. 1 occur at fre-
quencies of 10' or 10' sec '. By Eq. (29), the resulting
correlation spectrum j(3) is essentially "white" with
intensity 2r, per unit frequency range.

Comparison of relative values of the coeKcients in the
six homogeneous equations may therefore be made from

in which the operator function F,„ofEq. (28) is

y = gz24p J+g—rl4p~= gZI43J, — (42)

and its matrix elements are to be calculated using the
spin functions (2) which apply for 31.4 oersteds. Such
nonvanishing values of

( (k (
J

~ j) ~

for the pr transitions
and

~
(k~ J,

~ j) ~2 for o transitions are tabulated in
decreasing order in Table I.

Magnetic dipole transitions between level pairs 1
and 3, 1 and 4, 1 and 5, 2 and 4, and 4 and 6 are for-
bidden. In addition we shall neglect the three weakest
permitted transitions (3 to 6, 5 to 6, and 1 to 2) in
solving for S43. After so doing, one Ands for S43 an
equation of the type of Eq. (15) with Wri (43) given by

Wri (43)= U43+ U45

U23U35+ U23U25+ U25U35
X (43)

U23U35+ U23U45+ U23U25+ U25U45+ U25U35

Here we have dropped "thermal di6erences, " i.e.,
U;I,—U»-, in comparison with U;&,' this may be done
as soon as the equations are placed in a form corre-
sponding to Eq. (12) and it greatly simplifies solution. "

"It is useful to note that the form of the equations and the
fact that S'z must depend upon quantities of zero order in
"thermal differences" allows one to set up an analogy with a
passive network of conductances. Branch points in the analog
network correspond to the energy states of the system, and the
conductance between j and k corresponds to V;&. This is perhaps
the simplest method for calculating 8'g in a particular case.

TAsLE I.Nonvanishing matrix elements of J and J,connecting
the energy states of Fig. 1 are tabulated for a value of x corre-
sponding to 31.4 oersteds. For a "white" correlation spectrum,
the respective transition probabilities (41) are proportional to
the tabulated numbers.

0.237
0.226
0.224

0.024
0.023
0.012
0.011
0.001

(& l~. li)'

0.350

0.190

The error in dropping the three weak transitions is
evidently not serious, since the correction to U43 in
Eq. (43) is, for an isotropic white radiation bath, easily
shown from the table to be about 10 percent of U43.
Errors of 10 percent or so can easily creep into satu-
ration measurements of 8'~.

11. INTERACTION WITH THE NUCLEAR MOMENTS
OF THE SOLVENT

Although both D20 and H~O had the same eGect as
solvents, we shall estimate the contribution to 8'g to,

10. THE RELAXATION MECHANISM AT THE HIGHER
CONCENTRATIONS

At the high-concentration end of the curves of Figs.
4 and 5, one expects ion-ion collisions to eGect relaxation
and 8'g should be proportional to concentration.
Experimentally the log-log plot of Fig. 4 approaches a
slope measurably greater than unity, which eGect, if
real, is unexplained. Measurements are in general diK-
cult to make in this region of concentration, since the
hyperfine splitting is about to blur into a single broad
line, and the tails of the three high-frequency transitions
overlap appreciably. The true width of an individual
component line is not easily arrived at under such
circumstances.

However, as a check on the mechanism, one should
obtain an approximately correct order of magnitude for
Wri from the BPP Eq. (50), intended to be used to
calculate the contribution to Wg for hydrogen nuclei
through their interaction with neighboring water mole-
cules:

Wri (9/2) 2rsg'14 p4I'3 sr—rN p/5 I3T. (44)

Here p is the viscosity, which we take for our solution
to be that of water at room temperature, about 10 ' cgs
units. For 0.05 molar, X is 3&&10' cm ' and Eq. (44)
gives 8'g= 1.5X10' sec—'.

The measured value is 8'g=1.3)&10~ sec '. This is
probably adequate agreement considering that we have
made the approximation of free electrons by neglecting
the nuclear moment coupling and that we have approxi-
mated the viscosity of the ON(SO3)2 ion.
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to~ gr j2o~i tpj g jap Jj (46)

be expected for this mechanism and check the theory
by noting whether the result is negligible in comparison
with our measured 5'~.

The dipole interaction between the ith hydrogen
nucleus of the solvent and the jth ionic spin is

'df-''~=t' t jr'i ' 3(—t' r'j)(t j r'1) r'1', (45)
where

Performing the indicated sums and integrations and
taking the averages of the angle functions, one obtains

F42 = prrgr gg j2p k e Np/Dro.

The diffusion constant is presumably not quite the same
as for self-diffusion of pure water. However, we postu-
late a kind of equivalent viscosity, p, related to rpD
through Stokes law:

Following BPP, we may write

Bcj,= grgzj2—o2PA+B+C+D+E+Ii] (47)
Then

1/Drp ——6krj/kT.

& ' '=~'gr'g~'j '& '&oqe'/kT.

(52)

(53)
where

A= J„I„(1 3cos'8;,)—r,, ',

B= p[J+,I—,+J;I+;](1 3cos'8, ,—)r,, ',

C= 2[J„I+;—+Jp,I„]stn8&j c so8&je "&'jr'

D= ,'[J„I ~—+—J;I„]sin8, , cos8;,e'&r jrj ',

E= —4J+,I+, sin'0;, e '&»r;, , ',

4J—g'I—z sin ~'ye+ ~»red

(48)

where

(W' —Wp
~(l (3 ~''I&I4 ~~) I')"jl I (49)

)

~"=~3—grpoIIm and 8"=8'4 —grppIIm;.

We denote by Gm; the fraction of protons in state m;,
and by 8'3 and 8"4 the energies corresponding to the
levels so numbered in Fig. 1.The nuclear contributions
to 8" and 8" are necessary to conserve energy for the
transitions, but may be neglected in practice. Therefore

j[(W'—W)/k]= 2r„
as indicated in Sec. 9.

Apart from terms of order grjIpII/kT (about 10-' in
30 oersteds), Gm;= ~ for both spin states of the protons
within a thin shell at distance r. In order to consider
all protons of the solvent, whatever the value of r, we
follow BPP by assuming that r,=r'/12D, D being the
diffusion constant, and integrating from the distance of
closest approach, rp, throughout the solvent. If there
are Ep solvent protons per unit volume, the contribution
ofEis

fI42"'=g"g~j o'& '2 2 l(3 ~''I 'I+1I+'I4; ~~)I'—-
X(l sin'8, ;e "P'1I2)«A'p I r-P(2r2/12D)42rrpdr. (50)

rp

Symbols I+, and J, denote the respective raising and
lowering operators: I+;=I,+2I„,and I,=I„iJ„;—

'

As an example, consider the contribution of term E
from a proton at distance r:

Up '(r)=gr'gg'jap k ' P Gm

For pure water, g=10 ' cgs units near room tempera-
ture; lacking any other value, we use this for our
solution. From Sec. 1, we find c'=0.903. Finally the
relaxation probability obtained from Eq. (53) is

8" (:~)—3)&10' sec ' (54)

for a dilute aqueous solution of ON(SOp)2 ion. This
result is indeed consistent with the conclusion from
comparison of H20 and 020 as solvents: the interaction
with solvent nuclear dipole moments is negligible in
relation to the measured 8'g of 2)&10' sec '.

(82') 2

wjr k '(eQ)
I I 2r„
(8s2)

(55)

in which Q is the N" quadrupole moment and P is the
electric scalar potential at the nucleus.

Accurate theoretical evaluations of a representative
component of the electric field gradient have not been
made, even for a rigid lattice, and equally little is known
about the average square of such a component for a
liquid. However, Bloembergen" found that the deuteron
e6'ected nuclear relaxation in liquid D20, and that the
electric field gradient has a magnitude essentially that

N. Bloembergen, thesis, University of Lieden (Martinus
Nijh06, The Hague, 1948).

12. RELAXATION THROUGH THE ¹4QUADRUPOLE
MOMENT

The odd electron cannot, since it has spin —,', possess
a quadrupole moment. However, the electron is mag-
netically coupled to the N" nucleus, and quadrupolar
interactions between the N" nucleus and fluctuating
electric 6eld gradients within the liquid can in principle
relax the electron spins via the magnetic electron-
nuclear coupling.

We deliberately overestimate this contribution to
W& by supposing for argument's sake that the entire
electric quadrupole interaction of the N" nucleus with

fluctuating electric field gradients is effective in relaxing
the electron spin. Actually such relaxation can occur
only in low magnetic fields where the coeKcients b and
d entering into the linear combinations (2) of spin
functions are appreciable. An order of magnitude upper
limit to 8'g from this interaction is therefore, following
Eqs. (28) and (29),
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at 1A or 2A from an electronic charge. For an estimate,
we take er ', with r= 1A, as the magnitude of r)'rtr/Bs'

The value of Q for N" is about 10 " cm' Taking
r —10 " sec, one finds that Wg~10+' sec ', which is
again much smaller than the observed value, 2)(j.0'
sec '.

13. THE ROLE OF SPIN-ORBIT COUPLING

In 1936, Kronig" proposed that unaccountably short
relaxation times in certain alums could be explained
by considering the important role played by spin-orbit
coupling. The modulation of the spin-spin interaction
by the lattice vibrations, considered in Wailer s pio-
neering theory'4 of spin-lattice relaxation, proved en-
tirely inadequate to explain observed relaxation times.
Another possibility, the modulation of the crystalline
Stark splitting by the lattice vibrations, appears at 6rst
sight to hold no promise for relaxation in those sub-
stances which possess only Kramers degeneracy in the
ground state. However, through the spin-orbit coupling,
the modulation of the Stark splitting is felt by the spins.

Van Vleck" extended and refined Kronig's ideas in
his calculation of relaxation times for titanium and
chrome alums. Two processes are distinguished. One,
the so-called direct process, gives a highly field-de-
pendent relaxation time which ought to apply at a few
degrees Kelvin, but was found to be still too large. The
second, or Raman, process is effective in zero as well as
in nonvanishing external magnetic 6elds. It depends
upon the inelastic scattering of high-energy vibrational
quanta by the spin systems, with the spin system
absorbing or emitting a vibrational quantum of very
low energy relative to the original vibration quantum.
Although this is a second-order process compared to
the direct process, it is important because the entire
elastic spectrum, rather than a narrow portion at its
weak end, is called into play. In fact, the Raman
process probably dominates at all but the lowes't

temperatures.
It is a simple matter" to illustrate the inQuence of a

spin-orbit term )tL S on Stark orbitals which possess
only spin degeneracy. The spin-orbit interaction renders
incomplete the quenching of orbital angular momentum
by the crystalline electric 6eld, and, as a result, the
spectroscopic splitting factor" departs from the free
electron value, g,=2.0023, by an amount the order of
)t/d, where 6 is the Stark interaction.

It is less simple to demonstrate the existence, via the
Raman process, of relaxation caused by modulation of
the Stark splitting in the presence of the spin-orbit
term )tL S. In fact, Kronig's model, as pointed out by
Van Vleck, " yields vanishing transition probabilities
even when pursued to second order in the orbit-lattice
modulating interaction. The vanishing in first order is
to be expected, but that in second order appears to be

"R.deL. Kronig, Physica 6, 33 (1936)."I.Wailer, Z. Physik 79, 370 (1932)."C.Kittel, Phys. Rev. 76, 743 (1949).

due to a cancellation which would not occur if the
inherent quantum asymmetry between emission and
absorption probabilities (see Secs. 4 and 5) were con-
tained in the calculation. Van Vleck includes this by
use of quantized normal modes for the cluster of H20
molecules about the Ti~ ion, and he finds a non-
vanishing result in second order (third order in refer-
ence 10, inasmuch as the zero-order functions used do
not yet include the effect of the )tL S coupling).

In the present problem, we have no knowledge of the
normal modes of the liquid "lattice. " In fact, the free
radical ion presents several complications. The ion
itself is not spherically symmetric. When such is the
case, as pointed out by Mizushima and Koide' and
suggested independently by H. PrimakoG, the spin-
orbit interaction is not simply proportional to L.S. The
Dirac equation, after elimination of the small compo-
nent wave functions, yields two interaction terms"
which may be included'8 in the spin-orbit interaction:

5cspbr-orbit= (gladV) ' grad
4m'c2

+ s L(gradV). Xpj; (56)
4m'c'

the potential energy function for the electron is V, s is
the electron spin, and p is its linear momentum operator.
A proper accounting of spin-orbit effects would thus
require use of (56) instead of )tL S.

A second complication is that, for the ON(SOs)s
ion in aqueous solution, we may justifiably think of two
sources for the orbit-lattice interaction which modulates
the Stark splitting for the odd electron. One source
involves the internal vibrations of the ion itself which
produce fluctuating local electric fields over the orbit
of the electron, and the other is the solvent as its
randomly moving water dipoles also produce Auctuating
local fmlds over the electron orbit.

Whereas a theoretical investigation of the interaction
(56) presents grave difhculties for a free radical ion
about which we know so little concerning the odd
electron wave function, experiment may be able to
distinguish which source of the orbit-lattice interaction
is dominant, provided, of course, that spin-orbit coupling
is involved in determining the Wg value measured
experimentally. In order to shed some light on this
important question, we brush aside our ignorance of
the quantum nature of the motions and suppose that,
for some fortuitous reason, the spectrum of their vibra-
tions influences the Raman processes for ON(SOs)s
approximately as it does for Ti++ in titanium alum.
For the latter Van Vleck obtains about 10' sec ' as the
reciprocal relaxation time (which is essentially our 8'ir)

s' M. Mizushima and S. Koide, J. Chem. Phys. 20, 765 (195 2)"L.I. Schiff, Quautum 3fecharsscs (McGraw-Hill Book Com-
pany, Inc., New York, 1949).' Reference 9, p. 130.
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1 ~

FIG. 6. The two lowest orbital levels.

due to Raman processes at normal temperatures and
low fields. The matrix element in the transition proba-
bility is proportional to X/63, where Van Vleck takes 6,
the Stark splitting, to be about 1000 cm ' and li/6 to
be about 1.5&(10 '. For free radicals, 6 may well be
about the same as for titanium alum, but X/6 is
much smaller; the spectroscopic splitting factor for
ON(SO3)3 is 2.0055, measured in high fields, "indi-
cating that X/6=10-3. Since Wn is proportional to the
square of the matrix element, our utterly crude adjust-
ment of the titanium result simply scales it down by
the square of the ratio of the respective X's, giving
8 g~10' sec '. In view of the high power of 6 involved
and our wild approximations, this can hardly be called
disagreement with the measured 8'g, 2&(10' sec '.

It is thus entirely possible that spin-orbit effects do
lead to the observed 8"z, and experiments are underway
in this laboratory to examine whether it may be the
solvent or the internal vibration of the ion which
provides the orbit-lattice interaction.

14. RELAXATION THROUGH STATISTICAL
PROCESSES OF SECOND ORDER

An interesting possibility for relaxation is brought
out by our detailed expression (15) for the relaxation
probability. In Van Vleck s calculation, discussed in the
previous section, the quantity estimated corresponds
only to U2~, and nothing has yet been said about the
remaining function of U's in Eq. (15). Although this
function may, as in Sec. 9, normally be small compared
to U», such may not be the case if one must go to
second or higher orders to obtain a nonvanishing V2~.

Physically, this means that a relaxation mechanism
which does not produce direct transitions between the
levels under consideration may still effect relaxation by
6rst carrying systems to a third level and then to the
second. Such a process is second order in a statistical
rather than a perturbation theory sense, i.e., energy is
conserved for both transitions, whereas the second-
order quantum perturbation transition probability does

33 J. Townsend (unpublished).

not require energy conservation for the intermediate
state.

The simple model of Kronig'4 is adequate for appli-
cation of this idea to a free radical ion with spin-
orbit coupling. We suppose that the odd electron of
ON(SO3)3 is subject to a molecular Stark Geld which
splits the orbital states into widely separated levels.
For simplicity in illustrating the point, we follow Kronig
by supposing that the two lowest orbital levels (see
Fig. 6) are separated by energy 6, whereas other orbital
states have much higher energies and need not be
considered further. Let these two orbital states, which
retain their spin degeneracy, be f and p. Then, if n
and P refer to spin states + ', and. —--'„respectively,
the effect of a spin-orbit interaction XL S is, to first
order in X/6, to produce the following mixtures of the
unperturbed functions Pn, fP, gn, and pP:

+i=4 be ——~P,

A

+3=4P+ &*4~+—b4P—
(57)

Here,

+4=4P+ &*4~+ —bPP—

In Eq. (58), g is not denoted complex conjugate since,
under the conditions of quenched orbital angular
momentum, J'&I4dr= ffLfdr=0, it is possible to
express p and P as real numbers. '3

If one sets up Eqs. (9) and (10) and solves for the
saturation factor and for 8"g associated with transitions
between +~ and +2, he finds the following result:

(59)

In obtaining Eq. (59), one uses U» ——0= U34, as ob-
tained from Eqs. (57).Also, in terms of absorption prob-
abilities, the wave functions yield Uis/Ui4= U33/U34
= P,/6)3. The relation (32) between absorption and
emission holds, e.g.,

0 p '&6/IT (60)

Here, contrary to cases previously cited, the expo-
nential factor is far from unity if 6 corresponds to
about 1000 cm ' (6/kT 5 at room temperature) and
the result for 8'g has been simplified by dropping
absorption probabilities relative to emission proba-
bilities.

u=-,'' P(L,+iLy)/dr, b=-', ' @L,/dr= b*. (58)—
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((4lf(r) I 1) I'-)"

2

f(r)yd p—f(r)
Av

= —u P (61)

where b' is a measure of the mean square of the electric
interaction f(r) which modulates the Stark effect,
then, by Eq. (32),

(62)

Since
~

a
~

'= 1 and j (6/h) = 1 /(2m 6'r, /h') for 6/It) 1/7 „
we have

(X p't b y'1
~a=-'Ux4=

]
—

f /

—
f
—.

(bi LZ) r,
(63)

Taking Wn=2)&10' sec ' lI,/6= 10 ', and r.= 10 "for
water solutions at room temperature, one Gnds that, if
this mechanism is to be adequate, 5/6 would have to
be the order of unity. It is not unreasonable that the
Ructuating Stark interaction arising from motions of
the strong water dipoles or the internal vibrations of
the ion might be comparable to the static Stark inter-
action, although the perturbation procedure would be
somewhat strained in that event.

Again, the crudeness of our estimate does not lead us
to very positive conclusions, but relaxation via th6
statistical second-order processes is not ruled out.

Whether quantum-mechanical or statistical second-
order processes are involved in determining g g, the
experiments now in progress, which are aimed at
distinguishing between the source of the modulating
Stark Geld (internal vibrations in the ion or Brownian
motions of the solvent), will serve a useful purpose.

We can evaluate U&4 from Eq. (32) in which it must
be recalled that we now require j(v;&) at v,7,

—6—/ft
=3)&10"sec '. If we take F,„(I,J)= 1 in Eq. (32) and
denote

i5. SUMMARY

In water solutions of the free radical ion ON(SOS) 2

width of the paramagnetic resonance seems to be
determined by spin-lattice relaxation processes, at least
for solutions suKciently dilute to exhibit well-resolved.
hyperfine structure. The achievement of statistical
equilibrium among the various hyperfine levels in low
magnetic fields is more complex than in a simple two-
level system. Where saturation methods are used, the
relaxation probability is suggested as a more precisely
defined quantity than the relaxation time.

At very low concentrations, the relaxation proba-
bility for the particular transition studied reaches a
concentration-independent value of 2&(10' sec '. Inter-
action between the free radical and nuclear dipoles of
the solvent is demonstrated to be an inadequate mecha-
nism both experimentally and theoretically. The inter-
action of the N" quadrupole moment of ON(SO3)2
with the fluctuating electric Geld gradient due to the
solvent is shown on the basis of an upper limit estimate
to be an inadequate mechanism.

On the basis of very crude estimates, it is likely that
spin-orbit coupling enables the spins to feel the eGects
of modulation of the Stark splitting which quenches
electronic orbital angular momentum. However, it is
not certain whether internal vibrations of the free
radical ion or motions of the solvent molecules, or both,
e6ect the modulation.

If the spin-orbit coupling is involved, an interesting
possibility is that, for saturation experiments at least,
statistics second-order processes in contrast to the
quantum mechanical second-order processes of Van
Vleck may be responsible for the observed relaxation.
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