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Theory of the Hyperflne Structure of NO Molecule*
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The theory of the hfs of the NO molecule due to the magnetic moment and the electric quadrupole
moment of the N nucleus is worked out. Assuming that the electron which is rotating around the molecular
axis is in a pure p state, some relations between coupling constants are derived and were found to agree
with experimental relations. Hund s case (a) was taken as a starting point, but the actual deviation from
case (a) was found to be not negligible and was also explained satisfactorily. The formula for the nuclear
electric quadrupole effect was derived for Hund's case (a) and also for a general coupling case. This electric
quadrupole eRect was found to be diRerent for A.-type doublet states. The diRerence appears for every
coupling case including Hund's case (a). The agreement between theory and experimental results is quite
satisfactory.

1. INTRODUCTION

HE electronic ground state of the NO molecule
is II~. In this state there are nonvanishing elec-

tronic orbital and spin angular momenta. Since the spin
orbit coupling is strong compared to the end-over-end
rotational energy, the spin is strongly coupled to the
molecular axis [Hund's case (a); see Fig. 1j. In this
case the molecular magnetic moment is parallel to the
molecular axis and has the magnitude PA+2PZ, where
A and Z are the components of the electronic orbital
and spin angular momentum, respectively, along the
molecular axis and p is the Bohr magneton. In our case,
it so happens that since A=1 and Z= —~, these con-
tributions almost cancel each other, and no net mag-
netic moment is expected, while in the next excited
state II„where A= 1, Z= +-', , a large magnetic moment
exists. This fact was well confirmed by the suscepti-
bility measurements. '

Recently Gordy and Burrus' and also Gallagher,
Bedard, and Johnson' have observed the hfs of this
molecule in the II; state and found that the magnetic
interaction is very large, while the nuclear quadrupole
term is negligible. This result seems puzzling, since
there is no net magnetic moment in this state except
that due to the molecular rotation which is of the order
of the nuclear magneton.

Recently Frosch and Foley' published a theory of the
hfs of this kind of molecule. They derived formulas
starting from Dirac's equation and discussed the
various possibilities. The work done here naturally
overlaps their work appreciably, but in this paper more
care was taken with the physical meaning of the coup-
ling constant, and the formulas for the electric quad-
rupole hfs were newly derived.

~ This research was supported by the United States Air Force
under a contract monitored by the Ofhce of Scientific Research,
Air Research and Development Command.

' J. H. Van Vleck, The Theory of E/ectric and Magnetic SNsceP-
tibilities (The Clarendon Press, Oxford, 1932), p. 269.

s W. Gordy and C. A. Burrus, Phys. Rev. 93, 419 (1954);
Gallagher, Bedard, and Johnson, Phys. Rev. 93, 729 (1954).' R. A. Frosch and H. M. Foley, Phys. Rev. 88, 1337 (1952). It
is called FF in this paper,

2. HAMILTONIAN AND VfAVE FUNCTION

The magnetic interaction between nucleus and elec-
trons is given by

g.p-p (ss rs) (I rs)
H, =P (le —ss) I+3

k3

where P„ is the nuclear magneton, P is the Bohr mag-
neton, g„ is the gyromagnetic ratio of the nucleus whose
spin is I, rI, is the distance between this nucleus and the
4th electron, and le, se are the orbital and spin angular
momenta of the kth electron, respectively. Although FF
took a diferent expression for this interaction term, it
can be seen that their expression is equivalent to that
in Eq. (1) when there is no external field and the s-state
contribution is negligible, which is our case. It is con-
venient to express the terms as

4
Is

=~ll(S I)—3(S L)(I L)), (2b)

FIG. 1. Hund's case (a),
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where L, S are now the total electronic orbital and spin
angular momenta, $ is an average value of rs~, and sl

is $/2 in the classical case. If we assume that only one
outer-shell electron is effective in the formula (1), and
it is in a p state, then' tf is 2$/5 and f =2. Inserting the
formulas (2) into (1), we obtain

H, =g„P„P{(LI+rtf'(S. I)—3rt(S L) (I.L)}. (3)

Taking s axis along the molecular axis,

Ht= g„P P{)L,I,+gS,I, 3rtS,L—,sI,
—3rt(S~L 'I++S L+'I )/4 —$(LpI +L I+)/2
+tlat'(SpI +SM+)/2 —3rt(S~L IM+
+S L I+L +I LM Lp+I L+S L )/8}, (4)

where

L+=L,+iL„, L =L. iL„, etc—

The total wave function is obtained by coupling J
and I into F by the usual procedure, where the absolute
value of the component of J parallel to the molecular
axis is A+X and its perpendicular component is tV, the
angular momentum of the end-over-end rotation which
is not well quantized in our case. There are two kinds
of wave functions, in one of which J,=A+Z=xs and in
the other J,= —(h.+Z) = —s. Owing to the perturba-
tion —28(J P,+J„P„), where 8 is the rotational
constant and P is the total electronic angular mo-
mentum, this degeneracy is removed and gives a A-type
doublet. ' ' U the wave function with J,=+-,' is denoted
by (J+ l

and J,= ——,
' by (J l, the proper wave functions

for the nondegenerate states are 2 &{(J+l+(J l} and
2 &{(J+l—(J l}. The perturbation energies due to
the above operator are —28f(J,—,')(J+lP, l

J ) and
+28f(J,st)(J+lP, l

J ), respectively, " so that if we
take the sign of the wave function so as to make
(J+ l P l J ) positive, the, ',"',.wave function 2 {(J+ l

+ (J l }corresponds to the lower state. It is customary
to denote the lower state by c and the upper state by d.'

3. MAGNETIC HYPERFINE STRUCTURE

The magnetic interaction energy is given by the
diagonal matrix element of our Hamiltonian (4), that is,
for the c state:

In Hund's case (a), we have the approximation

(J+IF l H, l J+IF)=gag($A+rt{Z. 3P—A')

X (J+IF I z I I J+IF) (6)

where x is a unit vector parallel to the molecular axis.
The matrix element of z I is shown in FF and elsewhere
to be

(J+IF l Ht l J+IF)=g&&(&A+a{& 3%A—') (~+&)
X{2J(J+1)} '{F(F+L)—J(J+1)—I(I+1)}. (7)

In our case where A= 1, Z= ——,', it is

(J+IFlHtl J+IF)=gag(2( g+3rt)—{8J(J+1)}'

X{F(F+1)—J(J+1)—I(I+1)}. (8)

As was pointed out in FF H~ has a finite matrix
element between the J+ and J states. In our formula
(4) this is the S+L 'I+ or SM~'I term. In calculating
the matrix element (J+IF l

SM+sI
l
J IF), integrating

over electronic coordinates 6rst, S can be replaced by
1 and L+ by {L(L+1)}&,if the electronic angular
momentum I.is a good quantum number. Since because
of the coupling to the molecular axis, I. may not be a
good quantum number, we will replace 3pSM+' by a
constant, y, which is 6rl if a p-wave function is a good
approximation for the electron under consideration.
Thus,

(J+IF(H, l
J IF)
= —g„P+y(J+IF((x+iy) Il J IF)/4, (9)

where x and y are unit vectors perpendicular to the
molecular axis. Just as in FF, we obtain

(J+IF (H, l J IF)= —g„pg~(2Jy1) {16J(J+1)}t-
X{F(F+1)—J(J+1)—I(I+1)}. (10)

Thus, from the formulas (Sa), (Sb), (8), and (10) we
obtain

W, = {a—b(2J+1)}{J(J+1)}'
X{F(F+1)—J(J+1)—I(I+1)}, (11a)

8'g={a+b(2J+1)}{J(J+1)}'
X{F(F+1)—J(J+1)—I(I+1)}, (11b)

where

W, =2- {(J+IFlH,(J+IF)+(J IF lH, l J IF)
+(J+IFlH, l JWF)+(J IFlH, (J+IF)}

=(J+IFlH, l J+IF)+(J+IFIH, I
J IF) (Sa)

a= g-PA(2$ nf+3n)/8, —b= g-P-4/16 (12)

If we take the p-electron approximation, they are

a=g„P„P(3$/10), b=a/2. (13)

and for the d state:

(J+IFIHtl J+»)—(J+»lHtl J ») (-
4 See, for example, A. Abragam and M. H. L. Pryce, Proc. Roy.

Soc. (London) A205, 135 (1951).
e J. H. Van Vleck, Revs. Modern Phys. 23, 213 (1951).
'G. Herzberg, Molecular Spectra and Molecular Structure, I.

Diatomic Mnlecules (Prentice-Hall, Inc. , New York, 1939).
rf is the function deined in reference 5 as

f(J,s)= (J(~+1) ')'—-

The formulas (11a) and (11b) are already given in
FF, but the sign before b was not clearly indicated
there. According to our procedure there remains no
ambiguity on this point. Also the relation (13) was not
given in FF.

4. ELECTRIC HYPERFINE STRUCTURE

Many authors have assumed that the conventional
formula can be applied in Hund's case (a) even if there
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exists a finite electronic spin, but it will be shown here
that this is not the case.

The interaction between electrons and the nuclear
electric quadrupole moment can be expressed in tensor
form as

and E=J—-'„S=-,'. Using Racah's formula, ' we have

(E-',Jml VZ, j
K'-', m)

= (-»-"- —:(2J+1)(Ejj«jjE')
XW(EJE'J; si2) V(JJ2; —mmU), (17)

II,=Q VE. (14) where

In Racah's formalism, ' W(EJEJ -'2)= (—1) x ~ l

X {A(2+1)—(4/3) J(J+1)I(I+1)}
X{(2J+3) (2J+2) (2J'+1) (2J) (2J—1)

X (2K+3) (2K+2) (2K+ 1)(2E) (2E—1)}
A = ss —E(K+1)—J(J+1), (18)

XW(JIJI;F2), (15)
where

(Jjj~~jjJ)= (—1) ' (Jml 7&s
I Jm)/

and
V(JJ2; —mm0), (15a)

W(EJE+1J; —,'2)= (—1) x ~ *'

X {(K+1)'—1+(J+s)(J—s)}{3(K+J+5/2)
X (K J+;) (—K+I-+;) ( K+-J+—,')}I-
X{2E(E+1)(K+2) (2K+1)(2K+3)J(J+1)

X (2J—1) (2J'+1) (2J+3)} &. (19)

(IjjQjjI)= —'eQ{(2I+1)(I+1)(2I+3)
I(2I—1)}', (15b)

W(JIJI;F2) = (—1)~ ~ I6{C(C+1)
—(4/3) J(J+1)I(J+1)}{(2J+3)(2J+2)
X (2J+1)2J (2J—1)(2I+3)(2I+2) (2I+1)

X2I(2I 1)}, (15 )
It is sh n by It i l.' th t

) ( ) (I )
(E+llV'EjjE+) =-', (3A' —E(E+1)}(2E+1)

X{E(E+1)(2K+1)(2E—1)} &(B'V—/Bs') (2O)
In the above formulas, V is the function dined by
Racah's paperss and Q is the nuclear electric quadrupole
moment.

In calculating the matrix element (Jm j VEs j Jm), one
should be careful to eliminate the electronic spin part
of J. In the appendix of this paper it is shown that the
wave function of the II; state in Hund's case (a) is, if

1

(Jmj = (4J+2) *'{(2J—1)'*(ESJmj
+ (2J+3)'(E+1SJmj }, (A6)

where E=J——,
' is the sum of the angular momenta o&

the end-over-end rotation and the electronic orbital
motion. In our case there are two possible wave func-
tions, in one of which E,= 1 and in the other E,= —i.
If we denote them by K+ and E, respectively, the
h.-type doublet can be represented by replacing (ESJm

j

by f (E+SJm j & (EMJm j }/2 l in the formula (A6), the
+ sign corresponds to the e state according to our
dehnition. Thus,

and using the same procedure, that is, using the formula

IPP —t (B2U/B+2) —i {@2(B2U/Bss)+@ 2(B2U/Bys)

+C '(B'V/Bs')+2C, C„(BsV/BxBy)

+2C„C,(B'U/ByBs)+2C, C (B'U/BsBx) }, (21)

where s is the molecular axis and C, C„, and C, are the
direction cosines between the Z axis and the x, y, and
s axes, respectively, and a table of the matrix elements
of C,"we obtain

(E,jlVZjj K+ 1,) = ——;A{(E+1)s—As}-:

X f K(K+ )(K+ )} '(B'V/Bs') (22)

When A= 1, V'E has a finite matrix element between
the E+ and E ' state also. Using the formula of Ito et
alt. ,' we obtain

(E+jj~&jjE-)= —l fK(K+1)(2K+1)}*'

X {(2K+3)(2E—1)} '(e+l B'V/Bx' —B'V/By'j e ),
(23)

where e+ and e are electronic states. The last factor
can be expressed by using $ which is defined in the
formula (2a) as

(Jmj VEsj Jm)= (4J+2) '

XL(2J—1) (KSJml V'Es
f KSJm)
'ojE+1sjm)

+f(2J —1)(2J+3)}&{(ESJmjV'EjKs+1Sjm)
( l l ) g

( l
B'V/B*' B'V/By'l —)= ', ( p+—B'—V'/B '), (24)

where

(ESJm
l
'res j

E'SJm)
= (( K+SjjmVE j sKSJm)

+ (E+SJm
j
V'Es

j
K'M Jm) '}/2&,

' G. Racah, Phys. Rev. 62, 438 (1942).

where —e is the electronic charge and U' is the potential
due only to the p electron which is -rotating around the
molecular axis, so that B'V'/Bs' inay be difFerent from

' Ito, Tanabe, and Mizushima, Phys. Rev. (to be published).' See for example, Cross, Hainer, and King, J. Chem. Phys. 12,
210 (1944).
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the O'V/Bs' which appeared in the formula (22). Thus,

(E,~~VZ~~E )= —,'{E(E+1)(2Ey1)}-:

X{(2E+3)(2E—1)} '(2eg+8'V'/Bz') (25)

It is not difBcult to show that

«+II |7@IE+1-)= —(E+1+II~&IIE-) (26)

From the formulas (17), (20), and (25) we find

(E,'Jm—~VFo~E2jm) = (—1)" ' V(JJ2; —mmQ)

X [(O'U/Bz')12 'f 3A' —E(E+1)}X(E)(2J+1)'

X{J(J+1)(2J—1)(2J+3)} '+ (2eg+O'U'/Bz')96 '

X{(2J+1)(2J+1)(2J+3)/J(J+1)}lj, (27)
and

(J—-', jm~ UFO~ J+ ', -', Jm) = (—-1) '~+'

X V(JJ2; —mmQ) (O'V/Bz') 3A.{(j+-',)'—A'}l

X fJ(j+1)(2J—1)(2J+1)(2J+3)} '*, (28)
where

X(E)= 2J—1, when E=J+-,',

X(E)=2J+3, when E=J——,',
and the double sign in the formula (24) means + for
the c state and —for the d state.

Inserting the formulas (27), (28), and (16) into (15a)
we obtain

(J~~
V'E~

~
J)= (O'U/az') {2 (2J+1)} '

X{j(j+1)(2J+1)}'
X[6 'f (2J+3)(2J—1)}*{3A'—(J+-')'}
—6A{(J+-')'—A'}'1&96 '(2eg+O'V'/Bs')

X f(2J—1)(2J+1)(2J+3)}'fJ(J+1)} '. (29)

Thus from the formula (15) we finally obtain the
formula of the nuclear electric quadrupole moment in
Hund's case (a) as

W, '= eQY(F) {A(J) (O'U/Bz')

+8(j)(2eg+8' V'/Bz') } (30a)

Wd'= eQV(F) {A(J) (cPV/Bz')

B(j)(2eg+ O—'V'/Bs') } (30b)
where

F(F)= f ~C(C+1)—J(J+1)I(I+1)}
X{2(2J—1)(2J+3)I(2I—1)} ' (30c)

A(JF)= (2J+3)(2J—1){6J(J+1)}'
X[{3A'(2J+1) '——'}—36A{—' —A'(2J+1) '}l

X(2J+1) '{(2J+3)(2J—1)} 'j, (30d)
and

B(j)=48 '(2J—1) (22+3)/J(j+1). (30e)

the ground state may be appreciable. The effect comes
in two ways: (1) because of the end-over-end rotation,
Hund's case (a) is not exactly realized and the actual
wave function will be a mixture of the II; and II; wave
functions. This will change the coupling constant of the
formulas (11) slightly. (2) Nondiagonal matrix elements
of the magnetic interaction between the ground state
and this excited state will give the so-called pseudo-
quadrupole term' which might change slightly the
value of A (J) in the formulas (30).

Due to the rotational distortion, the real wave func-
tion (JIF~ will be

(31)

where p and v may be functions of J. If Hund's case (a)
is a good approximation, ( p ~)) (

i
~

in the ground state
of the NO molecule. (II;j'IF~ and (II,JIF~ are the
wave functions of the pure II; and II; states, respec-
tively. It is easily seen that

(II;~II,)II;)=g„P„P(II;(g5' I+/2 3rj5 L L I—/4~ 11.).
(32)

Integrating over the electronic coordinate, S will be 1,
while S L L+ will be 2; thus we obtain

,'g.p.p~(f.—3)(jj.=—',»I I+iI-I*=2IF) (33)
Since

(jj.=-,'mix-zyl jj*=lm)
m{(J—-', )(J+-,')}l{j(j+1)}', (34)

we obtain

(Jj.= ',IF~I,
~
Jj.= ;II-)-

= f(2J—1)(2J+3)}'{4J(j+1)}'
X{F(F+1)—I(I+1)—I(I+1)} (35)

Thus, when
(

v
~
&& ) p ~, the correction due to this mixing

of states will be

AW, , g ——ig„P„PgO' —3){(2J—1) (2J+3)}*
X{4J(j+1)} 'f F(F+1)—J(J+1)—I(I+1)}, (36)

1

which is common to the A-doublet states.
The second-order perturbation due to the excited II.;

state is

—(II:III.I
~;)'/»= —(g.P.P)'

X(11,, (
——,'PL,I tll;) /»

(g-P-P)V(I'+I, ')/»—, (37)

where hE is the energy difference of the II~ state and
the II; state. From the Van Vleck formula' we can
easily see that it gives rise to the so-called pseudo-
quadrupole term,

AW, ,
g'= (g„P„P()'(») '{3(A+X)'/J(j+1)—1}

X 3C C+1 —4J J+1 I I+1
(38)

5. EFFECT OF IIgg STATE
( ) ( )( )}

The II,*state, in which A = 1, 2= +—'„ is the first elec- X{(2j—1) (2j+3)}
ronic excited state of this molecule. Since the excitation
energy is only 121 cm ', the effect from this state on which is also common to the A-doublet states.
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W,'+Wg'= 2eQ (r)'V/Bs') V (F)A (J) (41)

6. COMPARISON KITH EXPERIMENTAL RESULTS

Gordy and Burrus' observed the absorption of the
J=-', -,' transition. In the J=—', state all quadrupole-
type effects vanish, since 3C(C+1) 4J—(J+1)I(I+1)
is zero for all F. Also there is no effect from the II~
state since this state cannot have J= -', . Thus the energy
levels will be simply given by S', and S'& of the for-
mulas (11).In the J=—,'state, on the other hand, all of
these eGects appear and the energy level will be given
by W.+DW.+H~.'+AW. ' or Wg+AWg+Wg'+AWE'
from the formulas (11), (36), (30), and (38).The energy
can be expressed as

W= Pf,F(F+1) J(J+1)—J(I+1)—l
+8{-4sC(C+1)—J(J'+1)I(I+1)), (39)

where I' and R are constants. From the experimental
data one can find a set of values for these constants as
shown in Table I. The calculated frequencies by using
these values are compared with the experimental
results in Table II. The agreement is quite satisfactory.

Using the values of I' from the J=-', states, one ob-
tains, from the formulas (11),

a= 23.14 Mc/sec and b = 14.065 Mc/sec. (40)

These values are both positive, as was expected, and
give the ratio b/u=0. 608 which is not far from the
value 0.5 predicted in the formula (13); this indicates
that the p-electron approximation is reasonably good.

The formulas (11),with the values of u and b shown
above, give the values of I' for the J=-,' states to be
—8.82 Mc/sec and 21.17 Mc/sec for the c and d states,
respective'. y. Both of these are 0.23 Mc/sec smaller than
the observed values shown in Table I. Since the correc-
tion hW given by the formula (36) is common to the
doublet states, this +0.23 Mc/sec may be attributed
to AS". In the appendix of this paper v is shown
to be —0.0247 at J=-', . If we adopt the p-electron
approximation, rl (1 —3) would be —2$/5. Since
a= g„P P(3$/10) under the same approximation, the co-
efficient vg„P„Prl(i —3) may be not far in value from
—4am/3. If we use the value of a given in (40), the
corresponding correction to the value of I' will amount
to +0.18 Mc/sec. This is a little too small but not far
from the value +0.23 Mc/sec required above. The
deviation may be attributed to the incorrectness of the
p-electron approximation.

Using the value of a shown in (40) and DF.= 121 cm ',
we can estimate the contribution of the pseudoquad-
rupole effect by the formula (38). Under the p-electron
approximation, this contribution to the constant R at
J=$ states is —(a'/DE)(20/27), which is —1.1X10 '
Mc/sec. Since this value is very small compared to the
observed values shown in Table I, we may neglect this
contribution and assume that the observed values of E
are entirely due to the nuclear quadrupole effect.

From the formulas (30), we obtain

TABLE I. Values of coupling constants P and R (Mc/sec).

J=1/2
d

J =3/2
d

—6.66
0

68.3,7
0

—8.59
0.077

21.40
0.035

Comparing this formula with the observed value of
E,+Rq, we obtain

eQ(c)'V/ )zc') = —2.12 Mc/sec. (42)

In the same way, from the difference R,—Ed we obtain

eQ(2eg+ 8'V'/Bs') = 7.6 Mc/sec. (34)

If we estimate P from a by the p-electron approximation,
and assume Q=0.02X10 " cm' according to Townes
and Dailey, "2e'Q( will be 38 Mc/sec, while the second
term eQ(r)'V'/c)s') must be ——', of the pure p-electron
value of the coupling constant which is given by Townes
and Dailey" as +24 Mc/sec or +10 Mc/sec. Thus the
theoretical value of the coupling constant which is to
be compared with the value given in (43) is 26 Mc/sec
or 33 Mc/sec. Since they a,re too large, a smaller value
for Q may be preferred. "Actually if Q =0.01X 10 "cm'
the theoretical value for the coupling constant (34) is
7 Mc/sec or 14 Mc/sec.

On the whole we see that the assumption that the
electron which is rotating around the molecular axis
is in a pure p state works very well.

TAsLz II. Comparison between theoretical and
experimental frequencies.

FJ =1/2 3/2
Frequencies (Mc/sec)

Observed Calculated&

c band

d band

3/2~5/2
1/2~3/2
3!2~3/2
1'/2

3/2 1/2

3/2~1/2
3/2~3/2
3/2~5/2
1/2 1/2
1/2~3/2

150 176.54
150 198.85
150 218.89
150 225.75
150 245.69

150 375.48
150 439.22
150 546.50
150 580.70
150 644.37

150 176.52
150 198.91
150 218.89
150 225.70
150 245.68

150 375.52
150 439.26
150 546.51
150 580.63
150 644.36

& The frequency without hfs was taken to be 150 195.51 Mc/sec and
150 550.63 Mc/sec for the c and d bands, respectively.

"C. H. Townes and B.P. Bailey, J. Chem. Phys. 17, 782 (1949)."I.Sheridan and W. Gordy, Phys. Rev. 79, 513 (1950).

7. PREDICTION OF THE HFS OF THE NO MOLECULE
IN THE II3/2 STATE

Since the magnetic interaction H1 can connect states
with d J,=0 or 1 only, the b term in the magnetic hfs
formulas (11) vanishes in the II; state. The other
coupling constant a will be g„PQ(2$+r)i —3r)) ss, which,
under the p-electron approximation, is g„p„p(21$/40)
or about 40 Mc/sec.
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Fro. 2. Hund's case (b).

Referring to the electric hfs, we see that the
B(J)l 2eg —( c')V'/c)z)] term will not change, so that
the same difference between the h.-doublet states will

appear. Another term should be calculated using the
wave equation formula (A7) of the appendix, instead
of (A6). The calculation can be done as before, and the
result is

W,'(II;)=eQF(F) fA'(J)( 'c)V/ cjz)s

+B(J)(2e$+ r)sV'/8 z)s}, (44a)

W, '(lI;) = eQV(F) fA'(J) (r)sV/Bzs)

B(J)(2eg+ r7'V—'/Bz') } (44b)
where

A'(J)= [{3A'(4J'+4J+5)/(2 J+1)'
—(2J—1)(2J+3)/4}+36A f -,' —As/(2 J+1)s}l

&& ((2J+3)(2J—1)}'/(2J+1)]/(6J(J+1)},
and the coupling constants must be about the same as
in the II; state.

APPENDIX

The Hamiltonian of the rotating molecule with elec-
tronic spin and orbital angular momentum is

II= DS A+B(K—A)'.(A1)

where D and B are constants and S and A. are the elec-
tronic spin and orbital angular momenta (A. is parallel
to the molecular axis), while K=A.+N, where Ã is
the end-over-end rotational angular momentum. Since
N. A=0,

(ESJ l (K—A)'j E'SJ)= (E(E+1)—h.s}b~,x, (A2)

and the matrix element of S A. can be obtained by the
usual procedure. ' Thus if we have a wave function

the formula for the general coupling case. If the wave
function is

(J l =a(ESJl+b(E+1SJl, (45)

where E=J—
2 and S=~, the corresponding formulas

are

W, (general case) = eQP'(F) {A"(J) (8 sV/8 zs)

+B(J)(2eg+c)sV'/Bz')}, (46a)

Wd(general case) = eQF(F) fA" (J) (OsV/Bzs)

B(J—)(2eg+'OsV'/Bz') }, (46b)
where

2"(J)= l {3A'—(J+ -,) (J+ -') }(2J—1)(2J+1)b'

+(3As —(J—-', )(J+-,')}(2J+3)(2J+1)a'
—72k.f —,

' —A'/(2J+1)'}ab]/f 6J(J+1)},
and B(J) and V(F) are given by the formulas (30e)
and (30c), respectively. It must be remembered that
the B(J) term disappears when A/1.

The author wishes to thank Professor W. Gordy for
his suggestions and encouragement.

8. ELECTRIC HFS FORMULA FOR GENERAL
COUPLING CASE (Jl =a(ESJI+b(E+»Jl, (A3)

Our formulas (30) and (44) are aPPlied for Hund's where E=J sr and S=-,', t—he corresPonding secular
case (a). It is quite easy to extend our method to obtain equation is

D/(2J+1)+B((2J—1)(2J+1)—4A'}/4 —E D{(2J+3) (2J—1)}*/—(4J+2)
D((2J+3) (2J—1)}*'/—(4J+2) D/(2J+1)+B((2J—+1)(2J+3) 4As}/4 E— —

If we neglect 8, the solutions are

E=D/2 and D/2, —(AS)

where E=D/2 gives the II; state, while E= —D/2 gives
the II~ state, and they give the wave functions in
Hund's case (a),

(II:Jl =(2(2J+I)} '{(2J—1)'(EsJI
+ (2J'+3)&(E+1SJ

l }, (A6)

(II,,Jl = {2(2J+1)}&((2J+3)'(ESJl
—(2J—1)&(EgISJl}. (A7)

If we neglect D, on the other hand, we obtain Hund's

case (b) [see Fig. 2]. In that case (ESLl itself is the
wave function.

In the case of the XO molecule, it is known" that
a=123.8 cm ' and 8=1.720 cm '. If we use these
values and solve the secular equation (A4) for the
J=-,' state, we obtain the wave function for the lower
energy state:

0»»(1 s sl —0»34(2 s -'I
=0.9998(II, s l

—0.0247(II~ s l; (A8)

Margenau and Henry" gave the corresponding energy.
's H. Margenan and A. Henry, Phys. Rev. 78, 587 (1950).


