
P 8 VSI CAI REVIEW VOI UME 94, NUMBF. R 3 MAY i, )954

Resistance Anomalies in Some Rare-Earth Metals*
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(Received January 27, 1954)

It is shown that the anomalies observed in the resistance of the lighter rare-earth metals can be explained
in form and order of magnitude by a simple model of the interaction between the conduction electrons and
the f electrons which are tightly bound to each atom. The f electrons interact with the crystal Geld set up by
the surrounding atoms, so that there is a Stark splitting of their energy levels. The extra resistance arises
because ion cores with f electrons in different states present diiferent cross sections to the conduction
electrons, and also because the conduction electrons can knock ions from one state to another. All exchange
effects are neglected.

I. INTRODUCTION on these electrons but differ widely in the properties
which depend on the inner 4f electrons as n varies from
0 to 14 along the series. Thus ignoring the closed shells
of electrons on each atom the problem is essentially
that of finding the eigensolutions for the conduction
electrons and the f electrons taking all the interactions
into account. The four most important considerations
are as follows.

(1) The energy band structure for the conduction
electrons is required for an understanding of the resis-
tivity and to find a reasonable approximation for the
eigenfunctions of these electrons in order to discuss the
effects of their interaction with the 4f electrons.
Measurements' show an extremely high resistivity of a
magnitude ( 10 ' ohm-cm) similar to that shown by
other metals with three conduction electrons (e.g. , Sc),
due possibly to overlapping bands.

(2) The interaction between the f electrons on the
various atoms is important because it is the most
probable cause of the ferromagnetism exhibited by
gadolinium and those elements following it in the
second half of the series.

(3) The f electrons will interact with the crystalline
electric field set up by the lattice, and there will be a
Stark splitting of the energy levels of each individual
trivalent ion, similar to that observed in crystalline
salts of the rare earths. '

(4) The interaction between the f electrons and the
conduction electrons will acct the conductivity, and
also possibly the ferromagnetism in the way proposed
by Zener. '

The importance of these various interactions is indi-
cated by other measurements on the lighter rare earths
which we are considering. They are found to have a
magnetic susceptibility which obeys Curie's law down
to quite low temperatures, and do not appear to be
ferromagnetic or antiferromagnetic. Measurements of
specific heat by Parkinson et u/. ' have shown that in
the main the quantity is very similar in all four metals
(La, Ce, Pr, and Nd). This is not surprising since the
lattices and conduction electrons are the same in all

ITH the advance made in the techniques of

~ ~

~

separation of the rare earths, ' considerable
quantities of the pure metals of these elements have
become available and a beginning has been made in
the investigation of their remarkable properties. These
are so complicated, however, that the problem of finding
a general theory which explains all the properties
appears very dificult. It therefore seemed worth while
to consider a very specific problem and to see whether
an explanation of the resistance anomalies occurring
in the measurements of James, Levgold, and Spedding'
on cerium, praseodymium, and neodymium could be
explained on a simple model.

Some features of a reasonable model are readily sug-
gested by the known properties of all the rare-earth
metals. Measurements of their magnetic susceptibility' '
over a temperature range show that, with two notable
exceptions (europium and ytterbium), the metals have
a paramagnetism similar to that of the corresponding
trivalent rare-earth ions in ionic crystals. This, together
with the great similarity displayed by all the metals in

general metallic properties and crystal structure, ' has
lead to the belief that a good basic approximation for
these substances is to consider that all the atomic
electrons are tightly bound around the nuclei at the
lattice points except three per atom which form the
conduction electrons. The configuration of a free rare-
earth atom is often 4f"5s'Sp'Sd6s' outside inner closed
shells, where the Sd6s' electrons are loosely bound and
readily lost, to form the trivalent ion in chemical com-

pounds, and become the metallic conduction electrons.
This model accounts for the fact that the metals are
similar to each other in all properties depending largely
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four. However, the last three have an extra specilc
heat, not present in La, which displays a number of
maxima (a sharp one in cerium at 12'K, two in neo-
dymium at 7.5 and 19 K, and a broad maximum at
65'K in praseodymium). The explanation proposed by
Parkinson et a/. is that this extra speci6c heat is from
Schottky anomalies due to the Stark splitting of the

f electrons mentioned in (3). They 6nd that (except in
Pr) the agreement is not particularly good and that
some of the specific heat maxima are sharp and appear
to come from some cooperative phenomenon. This
would probably arise from (2) and just possibly (4).
It is not clear, however, that these specific heat anom-
alies are associated with the onset of ferro- or antiferro-
magnetism. In particular it may be noticed that the
anomalies in the resistance which occur at about the
same temperatures appear to be diferent in form from
those which occur near the known Curie temperatures
of ferromagnets like gadolinium. '

We therefore propose to consider the eBect on the
resistance of a metal in which the core electrons localized
on each lattice point have a number of low-lying energy
levels Larising from Stark splitting (3)$ but to neglect
the interaction between these f electrons. It is found
that an extra resistance is introduced of a form which
will explain the observed anomalies. Unfortunately any
calculation including the cooperative effects of (2) and
(4) to try and account for the form of the specific heat
anomalies seems very dificult and will not be attempted
here.

2. MECHANISM FOR EXTRA RESISTANCE

The extra resistance is found. to arise from two causes,
each of which gives an eGect of the same order and with
the same temperature dependence.

(a) The conduction electrons can be inelastically
scattered off an ion which is knocked from one energy
state to another by giving or taking energy from the
motion of the conduction electron.

(b) At finite temperatures there will be ions in these
various energy states arranged at random on the lattice
points and these numbers will vary, of course, with
temperature according to the Boltzmann distribution.
Since ions in these states will present slightly diferent
cross sections for the elastic scattering of the conduction
electrons, this scattering and thus the resistance will

vary with the population and with temperature.
We start with the simplest case. Let us suppose that

the metal lattice, volume U, is composed of S ions
which have two energy levels separated by an energy A.
Then in equilibrium the Boltzmann distribution gives
the number of atoms in the lowest state,

1'' t=lV/(1+d), where d= e ~ts

and the number in the upper state,

N„=Md/(1+d). (1)
9 Levgold, Spedding, Barson, and Elliott, Revs. Modern Phys.

25, 129 (1953).

We use the wave vector k to describe the states of the
conduction electrons, and de6ne a distribution function
f(k) such that the number of electrons whose wave
vectors lie in the interval dk about k is

L2U/(2e)'$ f(k)dk. (2)

Following the usual discussion of resistivity" in terms
of the Boltzmann equation, we require the rate of
change. in f(k) with time due to interactions with the
lattice denoted by LBf/ittj„ii. Now here Lr)f/city„ii is
the total change in f due to the excess of the number of
electrons entering k over those leaving due to scattering
of the ions making up the lattice, and if W(k, k ) is the
probability per unit time that an electron in state (k)
is scattered into state ~k'),

$8f/r)t'J, .ii= (W(k', k)f(k')L1 —f(k))
—W(k, k')f(k)L1 —f(k')3dk', (3)

where p(k') is the density of energy levels at k' and the
8 function ensures energy conservation.

There are two kinds of terms which contribute to the
sum in (4). The first are those terms which have
S„=S„',i.e., those which represent elastic scattering
mentioned as (b) above. Of course, if X„=O, the matrix
element is zero for there can be no scattering by a
perfectly periodic lattice. If X„QO, however, the poten-
tial seen by the electron is no longer exactly periodic.
The situation is exactly equivalent to that of resistivity
in disordered alloys previously discussed by Nordheim"
and Mott."Since the diGerence between atoms as seen

by the conduction electrons is entirely in the angular
dependence of the charge in the f shell it will be small

and can be considered by Nordheim's approximation.
In this case the interaction Hamiltonian K, ~ is written
as the sum of two terms, one representing the inter-
action between the conduction electrons and the f
electrons, and the other between them and the rest of
the charge complex of the ions. This latter term gives
zero because it is periodic with the lattice. The former

' See, for example, A. H. Wilson, The Theory of Metals (Cam-
bridge University Press, Cambridge, 1936)."L.Nordheim, Ann. Physik 9, 607 (1931).

~ N. F. Mott, Proc. Cambridge Phil. Soc. 32, 281 (1936).

where the extra factors weight the process to ensure
that there was an electron in the initial state and a
vacancy in the 6nal state. Now if K.& is the Hamiltonian
of interaction between the lattice and an electron, and

~E„,k) denotes a state of the system in which cV„ iona
are in the upper state and the electron has wave
vector k,

2'
W(k, k') = P —[(1V„k[3C.t[X ',k') ~'p(k')

X.,X~s fZ

&&3/Z(X„,k) —Z(Ã„',k') j, (4)
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term can be written as a screened Coulomb potential,

exp( —Ir„—RI/q)=P h„,
Ir„—RI n

To proceed we must assume something about the
conduction electron distribution function and energy.
Making the simple assumption of isotropic eGective
mass tN* the usual treatment leads to a resistivity"

me 1VP'd (2tle) sls eifs

P=
I
A I'(1—cos8)d(cos8),

ee'r (ks) (1+d)'Nesh44x ~ s

by using the simplification of one f electron per ion,
and letting the one on the ion at the nth lattice point
a„be at r„ from that point, while the conduction
electron is at R.

Then

(10)

where n is the number of conduction electrons per unit
volume and ko is the length of the wave vector of elec-
trons having the Fermi energy e. p depends on tem-
perature like se chs(h /2 kT)

Since we are assuming that there is no interaction
between the f electrons on different lattice sites, the
only other terms of importance in (4) are those where
S' —E„'=&j., and the problem is simply that of
inelastic scattering of the conduction electrons oG a

mes

(lV„,k I sc,( I 1V„,k') =PQ „,k I h. I il.,k'),

where f„ is the wave function of the f electron near
the nth lattice point, which can be the eigenfunction
associated with the lower or the upper state, |l (1) or
il (I). Remembering that the expression (6) was zero
if all the lattice points were alike, we can write it

set of atoms with two energy levels and (4) beco

n

W(k k')= —{IQ„(l), kIh„If„(N), k')I'X b[E(k)
where the summation is over those lattice points n
where the electron is in the upper state. Then the square
of the matrix element becomes

—E(k') —6]+ I(p„(N),k I h„IQ„(l), k') I'

&(lV b[E(k) —E(k')+ 6]}p (k'). (11)
IZ- exp[i(k —k') r.]I'IQ-(l), klh. lf. (l), k')

In our approximation the matrix elements are the same
8'~(N)~ kl hall'~(N)~ k')I'~ (8) [equal B(k,k'), say], and substituting (11) into (3) we

6nd
and since the points in the sum are randomly distributed &2vIaIsthe first factor can be written 1V„(1—cV„/1V) a d so, [8f/@] „{[g,f( ~)(1
calling the diBerence of the matrix elements A and h(2.)
using Eq. (1), (8) becomes

24—

JV IWIs/(1+d)s (9)
—X„f(k) (1—f(k') )]b(E(k) —E(k')+ 6)

+[X f(k')(1—f(k))—X(f(k)(1—f(k'))]

&&b(E(k')-E(k)ya)}dk'. (12)

2O-O

If we take A«e, this expression yields ~ exactly as the
above and we get an additional resistance of the form:

o I6—
I

O
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FIG. 1. Typical curves of resistivity ss temperature (after James
et al.'). A. lanthanum, B.praseodymium, C. neodymium.

Ãd V(2m*) "'e'"
P= I

8
I
'(1—cos8)d (cos8), (13)

(1+d) see'h4s.

which has exactly the same form as Eq. (10) except
that IA I has been replaced by 2IBI. Thus the whole
of the extra resistance depends on temperature like
sechs(6/2k T).

These formulas can easily be generalized to include
the case where there are an arbitrary number of energy
levels for the f electrons; the energy of the ith being 6;
and there being n; atoms in this state at an arbitrary
temperature T. If we further denote a matrix element
like in Eq. (7) for elastic scattering o8 an ion in the ith
and jth levels as in Eq. (20) by 8;;(k,k'), the resistance
arising from the Grst process is by analogy with Nord-
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heim "
V(2nse)slsel/2 pir"

2 n'IA, (k,k') (s
ee"-k44x ~ 0

1——
i Pn;A;(k, k')

i

s (1—cos8)d(cos8), (14)
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and the second process gives

V(2ns*)'"e'~s
t n,~;

i
a,, (k,k') is

nesh4s. & s '»' n;+ n;

&& (1—cos8)d (cos8). (15)

0.2

0.1

3. APPLICATION TO THE RARE EARTHS

In Fig. j. a curve of resistivity es temperature is
plotted to display the temperature dependence of this
extra resistivity p=ps sech'(6/2kT). With it is also
plotted a typical curve for the resistivity arising from
electron scattering by the lattice waves,

(16)

where 3 is a constant, G the Griineisen function, "and
8 the Debye temperature. The total resistivity of a
hypothetical rare-earth metal where each ion has two
energy levels separated by 6 would, on our model, be
the sum of two such eGects. A particular curve repre-
senting this sum when ke=106, and A=Spa, is also
plotted.

In Fig. 2 typical experimental curves are shown for
La, Pr, and Nd, taken from Spedding's data. ' (Actually
the results always varied slightly from sample to
sample, and with treatment of sample, but for these
three the curves are all similar. In the case of Ce the
results varied much more, probably due to phase
transitions. ) It will be seen that, except for the super-
conducting transition in La (curve A) and a residual
resistance in Pr (curve 8), both resistivities are very
similar in form to the typical curve for lattice scattering
(11),we is giventheDebye value 130'K'andA 40
)&10 ' ohm-cm. This agrees with our model since La
has no f electrons, and in Pr the specidc heat anomaly
indicates that 6/k 150'K and so resistivity like I
would not be appreciable below 30'K. On the other
hand, the specidc heat anomalies indicate that in Nd
there is a 6/k 15'K (i.e., 8/10) and we expect a
curve like III in Fig. 1 (if we neglect the effect of higher
levels), as is in fact observed (curve C). ps would have
to be chosen 10 ' ohm-cm to agree with experiment.
The general form of the observed curves in Ce is the
same as in Nd and here it appears 6/k 25'K so they
can be explained in the same way. We have not con-
sidered them in detail because of the complication of
the phase transition.

"E.Griineisen, Ann. Physik 16, 330 (1933).
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FIG. 2. Theoretical curves. I. The extra resistvity, p = gA
&(sech'(B/20kT). II. Resistivity from lattice waves, p=ATB '
X G(T/B). III. Sum of I and II.

expLi(k —k') Rjg*(j)P(i)VJ J
e' exp( —

) r —R)/2)
X- drgrg, (18)

fr —Rf

where P(i) is the wave function of the f electrons in the
ith state and is a function of the positions r of these
electrons. We assume for simplicity that each ion has
one f electron and

P(i) = rs exp( —r/ )tog a ~P's~(8 y)]. (19)
(84')' 0%~3

The electron wave function has, of course, the same
radial dependence (here written as hydrogenic) but
each state has a diferent angular dependence given by
an appropriate linear combination of zonal harmonics
of order 3. The actual values of the a; are determined
by the crystalline electric field, and the linear combina-
tions for each i are normalized and orthogonal.

The integral in Eq. (18) can be separated by the
transformation (r—R)—+R, r~r and becomes, writing

It is therefore of interest to calculate the expected
value of po from our model. This reduces to evaluating
the matrix elements A and 8 in Eqs. (10) and (13).By
using the interaction Hamiltonian of Eq. (5), and
assuming that the conduction electron wave functions
can be written as normalized plane waves,

(1/gV) exp(ik. R),

any A; or 8,; can be written in terms of the integrals
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k—k'= K,

e'
I

1—exp(iK R R—/q)dr+ P*(j)P(i)
V4 E.

X exp(iK R)dr, . (20)

ing that in our processes I
k

I
=

(
k' ), E=2k sin (8/2), we

have

48 t' ~'a.4q4k4e4s'ds
8'(1—cose) d (cos8) =— (24)

4p 5 &0 V'(2k'q's+1)'

The erst integral is

4~q'/(E'q'+1). (21)
where 2 sin2(8/2) =s. If we make a further assumption
that kq«1, we have

Considering the second integral we expand exp (iK r)
in a series of spherical harmonics:

+i (~—[m])!
exp(iK r)=Pi'(2l+1) j&(Er) P

I -=~ (~y (~()!
X Yr(~,y) I'r "(f!x,e.&), (22)

4mp'e'
~ ~ (3/5)'V~'(exA x).

(E'q'+ 1)V 4
(23)

Averaging over all directions of K for a multiple
crystal removes the angular dependence and remember-

where Hrc, pre are the angles of K in spherical polars.
Because of the angular dependence on 8 of Fq. (19), it
is easy to show that only the 1=0, 2, 4, 6 terms con-
tribute to the integrals. Further one can show that the
integral arising from the 1=0 term is zero unless i= j
and independent of i if i= j. Therefore the matrix
element A which is the diGerence of two such integrals,
and 8 where i gj, arise from terms I= 2, 4, 6 only and
are of the same order of magnitude. Even with these
simplifications the integrals unsolved are very laborious,
and it is not worth while to pursue them for an order
of magnitude calculation such as this.

We therefore proceed with a rough numerical es-
timate. We assume Eo.«1, which is fairly reasonable if
the f electrons are deeply seated on the ion cores, and
k, k' are wave vectors at the top of a Fermi distribution
of essentially free electrons. Further, in choosing as an
example two states whose wave functions are like Eq.
(19) with an angular dependence V3' and F32, respec-
tively, we find for the l=2 term

po
——192''(2m) '"e"'o'q'k'e'/5k' electrostatic units, (25)

which for 0=q~1A, 1/k= (SmV/3')'* 7A, is 10 '
ohm-cm. Of course the above approximations make
this estimate very rough for it seems unlikely that plane
waves are a good approximation for the conduction
electrons. However it does demonstrate that the order
of magnitude of the effects discussed here is the same
as that of the observed anomalies.

It is interesting to note that the matrix element (23)
has an angular dependence with respect to the crystal
axes. This will remain true when the correct expression
is calculated for A or 8 and arises because of the angular
dependence of the f-electron wave functions. In a single
crystal this ought to give rise to an anisotropy in the
extra resistance, though this will of course always
retain the same temperature dependence.

4. CONCLUSION

We have discussed a model of a metal where, besides
the conduction electrons, there are other electrons not
in closed shells tightly bound to each atom at a lattice
point and shown the form of the extra term this intro-
duces into the resistivity. It has also been shown that if
such a term is added to the usual resistivity it will
account for the curious temperature dependence of the
resistivity of some rare-earth metals. A very rough
calculation of the expected order of magnitude agrees
with the observations. Therefore the model seems a
good starting point for a general consideration of these
metals, although for a complete discussion the coopera-
tive interactions between the electrons will have to be
taken into account.


