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of the value of the time constant T2 by relating it to
critical parameters of the resonance curves. Four such
parameters are: (a) the absorption at resonance, (b)
the width of the absorption curve at half-maximum,
(c) the peak to -pe-ak value of the frequency shift,
(d) the separations in the peak-to-peak values. When
this is done an over-all spread of about a factor 2 is
obtained in the various determinations of T2. Some of
this spread is probably due to errors in the determi-
nation of some of the critical points, e.g., the positions
of maximum positive and negative frequency shift.
The spread may possibly be reduced by a better choice
of Qs. However, much of it appears to be inherent and
to be related more sensitively to the frequency shift
curve than to the absorption curve. At the present

time we are able to conclude only that the experimental
methods used provide a rather stringent test of the
phenomenological theory which may not be completely
adequate for a precise quantitative description.

Other features of the resonance curves which r main
unexplained are in the low Geld region. For example, in
Figs. 2 and 4 we observe a second minimum in the
frequency shift curve occurring at about 5700 gauss
for nickel and 5500 gauss for supermalloy. Since these
are perpendicular 6eld cases, we are here in the region
of unsaturated magnetization. The theory is conse-
quently unable to explain the phenomena in question
and it is for this reason that the data of Fig. 4 were
replotted iri Figs. 5 and 6 only for values of Ho greater
than 4x3EO.
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An extension of the phenomenological London equations to take into account a space variation of the
concentration of superconducting electrons is presented. The theory diBers from that of Ginsburg and
Landau in that it makes use of the Gorter-Casimir two-Quid model rather than an order parameter to derive
an expression for the free energy. An effective wave function is used for the superconducting electrons. The
theory is applied to calculate the boundary energy between normal and superconducting phases and the
relative change AX/X of penetration depth with magnetic Geld. Calculated values of boundary energies are
somewhat larger, and of AX/X somewhat smaller, than observed. It is suggested that additional nonlinear
terms are required to account for the observed AX/X at low temperatures. The connection of the theory with
Pippard's ideas on range of order is discussed brieQy.

I. INTRODUCTION

0 estimate the energy of the boundary between
normal and superconducting phases and for

related problems, it is necessary to have a theory which
takes into account a space variation in the eGective
concentration of superconducting electrons n, . Across
such a boundary, n, changes from an equilibrium value
on the superconducting side to zero on the normal side.
%e present here a theory based on the Gorter-Casimir'
two-Quid model. It is an extension of the Ginsburg-
Landau theory' so as to apply over the entire tempera-
ture range.

The theory of Ginsburg and Landau (denoted here

* Most of the results reported here were obtained in 1951 and
j.952. The work was started while the author was employed at
the Sell Telephone Laboratories and continued at the University
of Illinois. At the latter institution, the work was supported in
part by the Once of Ordnance Research of the U. S. Army
Ordnance Corps.' C. J. Gorter and H. B. G. Casimir, Physiit Z. 35, 963 (1934);
Z. tech. Phys. 15, 539 (1934).See D. Shoenberg, Snpercondnctioity
(Cambridge University Press, Cambridge, 1952), second edition,
Chap. VI.

2 V. L. Ginsburg and L. D. Landau, J. Exptl. Theoret. Phys.
(U.S.S.R.) 20, 1064 (1950).

by G-L) applies for temperatures close to the critical
temperature T,. These authors identify n, with an
order parameter g which is small near T,. The free
energy is expanded in a power series in g. It is assumed
that rt, (and thus rt) is given by the square of an effective
wave function 4'(x), and that there is an energy term
proportional to (grad%(s. The coefEcient of (grad%js
is evaluated in terms of the critical 6eld H, and the
penetration depth, X, so that there are no undeterm, ined
parameters. In addition to the calculation of the
boundary energy, the theory was applied to the mag-
netic and thermal properties of thin films and to
estimate the change in X with magnetic fi.eld.

Using a microwave method, Pipparde has shown that
for tin the change in X with ield is no more than 3
percent for 6elds up to H=H, . From these results he
estimated that the ordered regions must extend over
distances of the order of j.0 cm. Presumably the width
of the normal-superconducting boundary is at least of
this order.

The author' has pointed out that Pippard's result is

' A. B.Pippard, Proc. Roy. Soc. (London) A203& 210 (1950).
e J. Bardeen, Phys. Rev. 81, 10'N (1951).
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consistent with a model in which the superconducting
electrons have small eGective mass, m, 10-4m. A
localized electron is described approximately by a wave
function U(x) whose square is the probability density.
We showed that the energy

is of the order of kpT, if the electron is confined to a
region & 10 4 cm.

The same model was used to make some preliminary
estimates of boundary energies. Before the results were
published, the author learned about the G-L theory'
and it was found that the two theories give very similar
results. We shall show here the close connection between
the two approaches. They both use an efFective wave
function for the superconducting electrons, but differ
in how the free-energy diGerence between normal and
superconducting phases depends on the wave function.
Our earlier results should be better at low temperatures,
T((T„and the G-L results should be better for T T,.
The theory based on the Gorter-Casimir two-Quid model
should be more satisfactory than either over the entire
temperature range.

That the superconducting wave functions or the
ordered regions should extend over large distances in
space (~10 ' cm) follows from rather general con-
siderations, as has been pointed out on a number of
occasions. Superconductivity arises from some sort of
interaction, involving the lattice vibrations, between
electrons which lie within Ak of the Fermi surface, Eg.
If it is assumed that

hk/ky kpT,/Ey~10 ',

it follows from the uncertainty relation,

Dxkk~1,

that the ordered regions must extend over distances of
the order of

hx 104/ki 10 cm. (1.2)

If the degree of order, or n„varies in space, an addi-
tional energy is involved. It is presumed by both G-L
and ourselves that the energy can be obtained from the
kinetic energy term for an eGective wave function.

The real significance of the "order-parameter" or
"efFective wave function" is uncertain, so that at this
stage the theory must be regarded as a semiempirical
one.

In view of the uncertain theoretical foundation for
the theory, it is perhaps best regarded as an extension
of the London phenomenological theory to take into
account a space variation of n, .

~ The author is indebted to Dr. Paul Marcus for bringing to his
attention a translation of the Ginsburg-Landau article made by
Dr. D. Shoenberg.

il, = —n/P. (2.2)

They identify p with the square of an effective wave
function 4' normalized in such a way that (4(p is
equal to the concentration of superconducting electrons
n8 ~

We shall use a diGerent normalization, and assume
that g= (4('= 1 at T=0'K, so that

n, =np(+ f', (2 3)

where np is the equilibrium concentration at T=O K.
The free energy diGerence is then

The values of n and p are determined from the critical
field H, and the penetration depth ).The equilibrium
free energy difference, —H,p/8pr per unit volume, is
obtained by inserting (2.2) into (2.1):

f,=n'/2P =—B,'/8s. (2.5)

The inverse relation between n, and X' follows from
the London theory and is also a consequence of the
equations derived by G-L. From (2.5) and (2.6), it
follows that

c4= —(II,'/4pr) (li'/lip'),

P= (H,'/4pr) (li4/Xp4).

(2.7)

(2.8)

In addition to (2.1), G-L introduce an energy propor-
tional to (grad@(P, corresponding to the density of
kinetic energy in quantum mechanics. In a magnetic
field defined by a vector potential A the energy density
becomes:

(np/2n4) ( 4,h grad+—+ (e/c) A+ (P, (2.9)

where m, is an eGective mass for the superconducting
electrons. The charge on the electron is —e. Taking into
account the field energy IP/8n the total (Helmholz)
free-energy diGerence is

np
p—

e EP
ph grad%'+-M +——

@ Sx

II. EXPRESSION FOR THE FREE ENERGY DENSITY

Ginsburg and Landau introduce an order parameter
p in accord with a general theory of phase transitions
of the second kind proposed by Landau and Lifshitz.
The parameter g= 0 for the normal phase, and, at least
for T near I'„where q is small, the free energy difFerence

f(T) per unit volume between superconducting and
normal phases may be expressed as a quadratic function
of g.'

f(T)=F,(T)—F„(T)=n(T)g+piP(T)vP. (2.1)

The equilibrium value of q in zero field is that which
makes F, or fa minimum:
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n. f
U f'= ~o fr f

s. (2.13)

Equations which we derived for U and A are very
similar to those derived by G-L. This is to be expected
since the initial assumptions diGer only in the expres-
sions used for f(T).

Expression (2.11) assumes that the energy associated
with a variation of U comes entirely from the super-
conducting electrons. The term analogous to (2.12) for
the normal electrons is negligible because the eGective
mass is so much larger. However, the increasing density
of normal electrons with decrease in U should make an
appreciable contribution to the free energy. This term
is to a 6rst approximation proportional to T'.

Probably the best way to obtain a semiempirical ex-

o J. Bsrdeen, Phys. Rev. 80, 567 (1950);81, 829 (1951);82, 978
(1951);Revs. Modern Phys. 25, 261 (1951).

Here II is the local value of the magnetic 6eld. %e
could equally well use the symbol 8 for this quantity.
The magnetic properties of the medium cannot be
described in terms of a permeability. Equations for 0'
and A such as to make F a minimum are derived by
G-L. These will be discussed later, together with the
boundary conditions which diGer from the usual ones.

Our approach differs from G-L mainly in the way
f(T) is assumed to depend on O'. It originated from a
theory of superconductivity based on interactions
between electrons and lattice vibrations as proposed by
the author. ' According to this picture, electrons with
energies near the Fermi surface are lowered in energy by
the interactions and have a small eGective mass. It is
the small eGective mass which presumably accounts for
the superconducting properties. In this formulation, the
wave function for the electrons is approximated by
determinants of one-electron wave functions, each of
which may depend on the coordinates of the lattice
vibrations. A transition from a superconducting to a
normal region may be obtained by multiplying each of
the wave functions of the superconducting electrons
(i.e., those with energies near the Fermi surface) by a
modulating factor U(x) which varies slowly from 1 to 0
across the boundary. The density of superconducting
electrons is then proportional to U'. It is assumed that
the density of normal electrons varies as 1—U' so as
to keep the total density of electrons approximately
constant.

In our original calculation it was assumed that the
free-energy diGerence

f(U) = —(H s/8s. ) U'. (2.11)

%e also assumed, according to the eGective mass
concept, that there is an additional energy density
associated with gradU:

(s4/2m, ) f
ih gradU+ (e/c)AU—j', (2.12)

where n, is the equilibrium concentration. This latter
expression is the same as that used by G-L since

with
f(T)=F,(T)—F (T)= —H.s/8s. ,

H, =Hp(1 ts). —
(2.16)

(2.17)

It has been pointed out to the author by P. Marcus
that one can get a parabolic H, Tcurve from—(2.1)
by taking

n(T) = —(Hp'/4or) (1—t') . P =Hop/4or. (2.18)

However, g then varies as 1—t' so that it cannot be
interpreted as giving the relative concentration of
superconducting electrons. The temperature dependence
of n and P given by (2.7) and (2.8) is more complicated.
Following a suggestion of Marcus, it thus appears to be
reasonable to identify co rather than r) with f%js.

By setting co= jO f' in (2.14),we get

f(T)=F, F„=(Hp'/4s) {t'[1——(1—
f
e

f
') &j

--:f+f') (2»)
For t small, this reduces to Eq. (2.11) which we have
used, and for t near unity and 4' small to

f(T)= (Ho/8or) f+ f (1—t )+ (Ho P/32or) f
4'fs. (2.20)

This is in agreement with G-L, for it follows from (2.7)
with H, =Ho(1 —t ) and Xp/As=1 t', that—

n = —(H os/4w) (1—t')/ (1+t'),
P = (Hps/4or) (1+t')—'. (2.21)

As t-+1, n approaches the coefficient of f4 f' and P/2
the coefficient of f4j' in (2.20). Thus the two-fluid
model approaches that of Ginsburg and Landau near
T= T'

III. EQUATIONS FOR%' AND A

The Helmholtz free energy diGerence between the
normal and superconducting phases may be written in

pression for the free energy is from the Gorter-Casimir
two-Auid model. This model was used by Pippard' in
his estimates of the size of the ordered regions from the
change in penetration depth with magnetic field. A
parameter + is introduced which varies between unity
at T=o'K and zero at T= T, and which represents the
fraction of the electrons which are superconducting.
The free-energy density F,(T) is given in terms of
F„(0) (for T=O'K) as follows'

Fs(T) =F (0)—(Ho'/Ss) [2t'(1—&o)'+co). (2.14)

Here Hp is the critical field at T=O'K and t= T/T, .
The term in t' represents the contribution of the normal
electrons and —(Hp'/8s. )~ that of the superconducting
electrons. The value of ro which makes (2.14) a minimum
ls

(2.13)

Since a X ', the observed dependence of penetration
depth on temperature, X ' (1—t') is obtained. A para-
bolic critical field curve also follows from the model:
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the general form:

P[ Rp Q2
F= ~

~

—i)sgrad%+(e/c)A% ~s+—+f(~) d,
Sx

and the effective penetration depth is given by

tm, cs

(4x estrus)
(3.7)

(3.1)

H, =dA„/dx. (3.2)

To simplify the notation, we shall omit the subscript y
in the following. With these simplijications, (3.1)
becomes

t ttpl't' (d4q' t
eA+q'-

i+I
2tr4 ~ Edx) E Ittc j

1 (dA~'
(3.3)

S «x)
Ginsburg and Landau derive equations for 0 and 3 by
requiring that F be a minimum.

Actually, it is the Gibbs free energy 6 which divers
from (3.3) by a term H,M in the inte—grand, which
should be minimized. Here B, is the applied field and
M= (H—H,)/4rr is the magnetization. The additional
term makes H an independent variable, and the
problem is to find A (x) such as to make G a minimum.
This added term does not in general acct the differen-
tial equations for A and + but it is important in deter-
mining the boundary conditions.

The equations for 4 and A derived from (3.3) are:

d'4 m, df e'A'
+

dx' epA' d%' k'c'
(34)

d c4 47M %p'P
A.

m, c'
(3 3)

The boundary condition on 0 at a free surface, as
determined from the variational problem after an
integration by parts, is tg%'/tgx=O. It is not required'
that 4 =0 at the boundary. It is required that A—+0 in
the interior of a superconducting region. As in the
London theory, the current density is

+pe'
j= — o'A,

Otic
(3.6)

where f(4) is one of (2.4), (2.11), or (2.19). It is
assumed that @ is real when the gauge in A is chosen
appropriately (divA=O, A~=O). It is this reality re-
quirement which gives the Meissner eGect and which
leads to the London equations for Geld penetration.

We shall be concerned only with examples for which
%'(x) varies only in one dimension, which we take to be
that of the x axis. The magnetic Geld is in the 2: direction
so that the only component of A is A„(x):

IV. CALCULATION OF THE ENERGY OF THE BOUND-
ARY BETWEEN NORMAL AND SUPERCONDUCTING

PHASES IN THE INTERMEDIATE STATE

The intermediate state of the superconductor consists
of alternate layers of normal and superconducting
phases. ~ The Aux is carried by the normal regions in
which the Geld is equal to the critical values H, . Ac-
cording to a theory developed by Landau, ' the layer
thickness is determined by the surface energy 0.„,
between the normal and superconducting phases. We
shall derive here a value for o. , in terms of H, and the
penetration depth X, and show that the values obtained
in this way are in good agreement with those estimated
from analysis of experimental data on the intermediate
state. Our derivation diGers somewhat from that in
G-L, but the result is the same when the same expression
is used for the free-energy difference.

We shall calculate the energy per unit area of the
actual boundary relative to an ideal boundary for which
there is an abrupt transition between normal and
superconducting regions and for which H=H, every-
where in the normal region and H=O everywhere in
the superconducting region. This is the energy which
enters into the theory of Landau and others and is
designated by~

n„,= DH, s/Src. (4.1)

The parameter 6 has the dimensions of a length.
The boundary energy is sometimes given relative

to a boundary at which the field penetrates into the
superconducting region with penetration depth ) as it
would at a free surface. This energy is larger than (4.1)
by XH,'/Ss or is equal to

where
n &"=6tH,'/Ss,

hi= 6+X.

(4 2)

(4.3)

Desirant and Shoenberg have used the symbols 6 for
h~ and 6' for h.

The boundary is taken normal to the x direction and
the magnetic Geld is in the s direction. As in Sec. III,
the only component of A is A„=A (x). Let x= xp be the
position of the boundary in the ideal case, so that H =B,

r See, for example D. Shoenberg, SNpcrcottducttptty (Cambridge
University Press, Cambridge, 1952), second edition, Chap. 1V.

s L. D. Landau, Physik. Z. Sowjetunion ll, 129 (193"I);Nature
141, 688 (1938);J. Phys. (U.S.S.R.}7, 99 (1943).

P M. Desirant and D. Shoenberg, Proc. Roy. Soc. (London}
A194, 63 (1948).

Equations (3.4) and (3.5) of G-L may be regarded as a
generalization of the London phenomenological equa-
tions to allow for a variation in concentration of super-
conducting electrons in space.
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for x&xo and P=O for x&xo. The corresponding posi-
tion of the actual boundary is determined by requiring
the Qux be the same as for the ideal boundary. If it is
assumed that the transition region extends between
x=0 and x=a, we have:

pll 0

x,H, = Hdk= I (dA/dh)dx = A (0) (4 4)
0

It is assumed that A=Oand V=0 at x=a, as the vector
potential vanishes in the interior of the superconducting
regions. The position x=0 is assumed to be in the
normal region where P=H, .

Relative to the ideal boundary, the energy difference
per unit area is

t" mph'- (d%q' (eA@y '
I+I I +f(+)

2m, &dh) &h )
(dAPq

+—
I I

dx—xp + (a—xp) . (4.5)
8~(dh ) 8 Sx

The last two terms subtract oG the energy of the ideal
boundary, +HP/8pr in the normal and HP/8m in-
the superconducting regions. Equations for A and @
determined by the variational method are those given
in Sec. III, Eqs. (3.4) and (3.5). The variations 8A and
N are required to vanish at both limits, the former by
consequence of Eq. (4.4). Because the flux is the same
for the ideal and actual boundaries, there is no difference
between using Helmholtz or Gibbs free energies.

There is an integral of Eqs. (3.4) and (3.5) which can
be used to simplify the expression for the energy:

mph, (d%'q 1 (dA) ' e'up%'A' H
I+—

I I =f(+)+ + (46)
2m, (dx) 8pr ( dxJ 2m, c' 8pr

Equations (3.4) and (3.5) are nonlinear and it is not
possible to get general integrals. We shall derive an
expression for 0,„,which applies when the width of the
transition region is large compared with the penetration
depth so that most of the energy comes from the transi-
tion region in the superconducting phase where P((H, .

The expression for n„, derived by use of the two-fluid
model for f(%) I Eq. (2.19)j agrees with a similar
limiting expression derived by Ginsburg and Landau
from (2.4) in the high-temperature limit (t= T/T, 1)
and with a result we had derived earlier from (2.11) in
the low-temperature limit (t«1). The expression for
n„, derived from (2.4) and (2.11) divers by less than 20
percent, so that it does not make a great deal of dif-
ference which form is taken for f(%).

We shall also give results obtained from a numerical
integration of the equations by use of a differential
analyzer at the Bell Telephone Laboratories and by the
digital computor at the Vniversity of Illinois. Equation
(2.11) was used for f(+) in this calculation, so that the
results apply strictly only in the low-temperature
limit. It is not believed that the two-Quid model would
give results which are very diBerent. This numerical
calculation is not restricted to the limiting case of a
wide transition region.

U= @/@„$=x/X,

V = eAX/hc, s= eH,X'/hc,
(4.12)

in which X is the usual penetration depth as given by

X'= m, c'/(4pre, @pe'), (4.13)

and 4', is the equilibrium value of 4 in the supercon-
ducting state:

Two-Fluid Model

Equations (3.4) and (3.5) may be simplified by use
of the following reduced variables:

The constant of integration HP/8 its chosen to give
I See Eq. (2.15).j

the proper values outside of the transition zone. In the
normal region With this notation, Eqs. (3.4) and (3.5) become:

@=d@/dx= f(@)=0,

dA/dx=H=H, .
In the superconducting region,

A =dA/dx= d4/dx =0,

(4.7)

(4.8)

(4 9)

4pr df=s' +V'U
H,2dU

= U2V.

(4.14)

(4.15)

f(4)= H.P//8m. —(4.10)

Equations (4.7) to (4.10) are the boundary conditions
for the di8erential equations.

Equation (4.6) may be used to eliminate the deriva-
tives in (4.5), and there results

In (2.19) we replace 4 by U%, and obtain:

(4~/HP )f(U) = (H pP//H ') t'L1 —(1—U'4P) &g —-'U'@ '.
(4.16)

It is to be recalled that for this model, H,/Hp ——1 P-
Lsee Eq. (2.17)$. From (4.16), it follows that

pa -
&2+0+ g 2

n„,=2 I f(%)+ dx+2(a —xp) . (4.11)
p 2fÃttC 8m

4pr df 1+tP (
H,'dU 1—t' (

g2

IU.
(1—U'%P) &i
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Limiting Cases

The limiting forms of (4.14) for low and high tem-
peratures are:

so that

n„,= (mph'/m, ) (d+/dx)'dx. (4.26)

d'U/d P= t V' —2s'(1 —U') jU, t—&1. (4.19)
+e

~„,= (mph/m, ) I (d+/dx)d@.Equation (4.19) is equivalent to the one used by Gins-
burg and Landau, while we have used (4.18) for the
numerical integration which will be discussed later.

The width of the transition region is determined by
the dimensionless parameter s. If s«1, the width is
large compared with A, and V is appreciable only where
U is small. For this limiting case it is possible to derive
a general expression for the boundary energy, but we
shall first consider the simpler equation (4.18) which
applies for $«1. If V' is neglected in comparison with s',
the approximate solution which vanishes at the bound-
ary x= xp ——0 and for which dU/d$ —-0 as U-+1 is

(4.27)

Equation (4.25) may now be used to express d4/dx in
terms of O'. Using (2.19) for f(%), we find

f(e)+a '/S~= (Irp'/8~) $(1—e') ~—P$P (4 aS)

Therefore, from (4.25),

d% (1ÃgHp

I t (1—+')' —&'3
dx (4~mph'J

(4.29)

d'U/dP= (V' —s') U, t 4—; (4.18)
The variable of integration can be changed from x to 4:

U= sins). (4.20)

n = (H '/Sx) 2a —2 sin'(sx/X)dx

= (H '/Sm)u= (m/2) (XZP/Sns)

=P,hc/16Xe, (t-+0).

(4.22)

The corresponding expression derived by Ginsburg and
Landau from (4.19) is

n„,= (4/3) (XBP/Sxs) =H, hc/6+Re, (t—+1), (4.23)

which is smaller by less than 20 percent.

General Expression for Small s

A general expression for n„, for the limiting case of
small s may be derived from the two-Quid model by
use of the integral (4.6) and the expression (4.11) for
the energy. We again take the boundary for x=xp=0
and neglect the contributions from the magnetic field.
Equation (4.11) then becomes

This solution joins with the solution U= 1 in the body
of the superconducting region $=pr/2s, or x= a= prA/2s.

We shall use (4.11) to calculate a„,. With (4.20),

f(U) = —(& '/Spr) U'= —(B,'/Ss. ) sin'sP. (4.21)

The term in O'A2 gives a negligible contribution in this
limiting case, so that

a,= (hcHp/Serape) (sin—'+,—t'+,),

XH.' (4. ' sin '+.—t'%,)

s(1—t')
(4.30)

where +,= (1—t')&. This expression reduces to (4.22)
and (4.23) in the two limiting cases and changes
smoothly from one limit to the other as t varies between
0 and 1. Since the over-all change in tho coefficient
multiplying ('AH, '/gars) is less than 20 percent, either
limiting form of the theory will probably give reasonably
satisfactory results for all t.

Numerical Integration for Small f

Equations (4.18) and (4.15), which apply for t«1,
have been integrated numerically to obtain n„, as a
function of s. Integration for s&0.2 was carried out
early in 1951 with the aid of the diGerential analyzer of
the Bell Telephone Laboratories. "Because of the large
variation in magnitude of the functions, this method
was not satisfactory for smaller values of s. A second
numerical integration, carried out later with the aid of
the digital computor at University of Illinois, " was
more accurate for smaller values of s. The two integra-
tions are in reasonable agreement for values of s larger
than about 0.3.

It is convenient to express n„, in the form

When this result is inserted into (4.27) and the inte-
gration is carried out, we And

a„,= 2 (f(x)+ (P,'/8') jdx,
4p

and (4.6) becomes, for x&0,

(4.24)

or
e„,=g(s) (XHP/Sss),

6= (X/s) g(s),

(4.31)

Nph' (d%)' H,'
=f(+)+

2m, de Sx
(4.25)

i The author is indebted to Dr. R. W. Hamming for aid with
the computations on the differential analyzer at the Bell Telephone
Laboratories, and to Dr. D. J. Wheeler for aid with work done
with the digital computor at the University of Illinois.
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2.0- we Gnd that s varies as

g{s)

I.S s= ss/(1+t'). (4.34)

I.O

0.5

-0.5-
0,2 0.4 0.6

1

!.0

Fro. 1. Plot of g(s) serfs s [see Eqs. (4.12) and (4.31)].

where g(s) is a numerical coefficient. Figure 1 is a plot
of g (s) as a function s. As s—+0, g (s)~/2, in accordance
with Kq. (4.22). As s increases, g(s) decreases and goes
through zero and becomes negative for values of s
larger than about 0.68. Ginsburg and Landau 6nd, using
their value for the free energy, that a„, goes through
zero at s=0.5. A Meissner eGect would not be observed
if the boundary energy is negative, as it then would be
favorable to form alternating lamina of normal and
superconducting regions. " Between s=0.1 and 1.0,
g(s) varies almost linearly with s and is approximately
equal to

g(s) (1.1—1.6s). (4.32)

It should be noted that g(s) decreases rapidly from the
limiting value s./2, corresponding to s=0, and is down

by a factor of about 2 at s=0.2.

)I,'= Ass/(1 —t'), (4.33)

TAnLE I. Values of so= eHOXos/hc for various metals.

Comparison with Experimental Values of 0.„,
These calculations were made with use of the free

energy expression (2.11) which is valid for t small.
Calculations have not been carried out using the general
form of the free energy (2.19) derived from the two-Quid
model. However, the errors involved in using (2.11)
over the entire temperature range are probably not very
large. We have seen that for s small, the various ex-
pressions for the free energy give values of n, diGering

by less than 20 percent.
If we assume a parabolic critical field curve, and

assume that

Thus s changes by a factor of two between T=O and
T—Tpo

Table I gives values of sp as calculated from P p and
Bp for Sn, In, Hg, and Pb. These are the only metals
for which values of X are known. Values of X for Sn, In,
and Pb are from Lock" and for Hg from Laurmann and
Shoenberg. "It is to be noted that the values of sp are
all rather small.

The width of the boundary region is of the order of
X/s. The small values of s indicate a wide transition
region of the order of 10 ' cm. This distance is con-
sistent with Pippard's estimate of the range of order in
superconducting tin.

Our value of the boundary energy should probably be
regarded as an upper limit attained only for an ideal
specimen. If imperfections in the crystal limit the range
of order to something less than 10 ' cm, the width of
the boundary region and the boundary energy will both
be smaller than the theoretical limit. "

There are as yet no reliable measurements of a, .
Estimates have been made by comparing the mag-
netization curves obtained in the intermediate state
with theory. Landau's branching model is the one most
often used, but it is known that the normal lamina do
not actually branch as envisaged in the theory. Further,
there is evidence that the transitions in the inter-
mediate state are not always reversible. Kuper" has
made some estimates from a nonbranching model, but
finds large differences in values of 6 estimated from
diGerent parts of the magnetization curve and there are
doubts about the validity of the theory. A review of the
problem is given in Shoenberg's book. ~

We give in Table II a comparison of observed and
calculated values of 6/X for Sn and in Table III for Hg.
Other estimates of A/X, both larger and smaller, can be
found in Shoenberg's book. The values (1.) given in
Tables II and III are estimated from the slope of the
falling part of the magnetization curve for transverse
cylinders, as observed by Desirant and Shoenberg' and
by Andrew, " and are based on Landau's branching
model. Another estimate for Sn can be obtained from
the measured thicknesses of the lamina in the inter-
mediate state in a sphere. This gives" 6 5)(10 ' cm
and A/X 7.5 for T 3'K.

The calculated values are larger than most of those
estimated from experiment. It is comforting that the

Metal
Xp

(cm )(f08)
Hp

(gauss)
+C

( K)
general trend with temperature is given correctly by
the theory. It would, of course, be very desirable to

Sn
ID
Pb
Hg

5.0
6.4
3.9
4.5

305
270
535
415

3.7
3.35
4.24

. 4.15

0.115
0.17
0.13
0.125

"SeeF. London, SuPerglsds Oohn Wiley and Sons, New York,
1950), p. 128.

have more reliable measurements of boundary energies.

n J. M. Lock, Proc. Roy. Soc. (London) AZP8, 391 (1951).
+E. Laurmann and D. Shoenberg, Proc. Roy. Soc. (London)

A198, 560 (1949).
'4A. B. Pippard, reference 3, and Proc. Roy. Soc. (London)

A216, 547 (1953)."C.G. Kuper, Phil. Mag. 42, 961 (1951)."E.R. Andrew, Proc. Roy. Soc. (London) A194, 98 (1948).
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V. CHANGE IN SUPERCONDUCTING PENETRATION
DEPTH WITH FIELD"

By use of a microwave method, Pippard' has measured
the change in penetration depth with applied magnetic
field. His measurements, shown by the dotted curve
in Fig. 2, apply to tin and give the relative change
in penetration depth between zero field and the critical
6eld as function of temperature. The critical field itself,
of course, varies with temperatures from a maximum as
T=O'K to zero at T=T,.

It is noteworthy that the change is very small, less
than 3 percent. This suggests that a linear theory should
be a good approximation. The minimum near T=3'K
is also signi6cant. It suggests that there are two factors
affecting the penetration depth, one largest at low
temperatures, becoming small near T=T, and the
other large only near T= T„and dropping rapidly as
the temperature is decreased.

Pippard himself accounted for the rise near T= T, as
coming from a decrease in e, near the surface. Such a

Tax,K II. Values of 6 for Sn, calculated and estimated from ex-
periments on the intermediate state.

2.1
3.0
3.5

0.56
0.81
0.94

(cm &(105)

0.53
0.66
1.06

0.0875
0.0695
0.061

1.06
1.14
1.17

a/x
(calc)

12
16.5
19

3.8
5.6
6.0

then proportional to A:

j= —(n,e'/m, c)A, (5 1)

j (r) = ~g (r,r') A(r') dr'. (5.2)

and one is led to the London equations.
To be consistent, one should include in a linear energy

terms of the 6rst order in A, rather than assume that 0
is unchanged. This leads in general to an integral rela-
tion between j and A:

R.o

l

I
I

I

I

I l

Ss yc

~z ~ G=Constg

Obs. ~ ~

Pippard" has recently proposed a generalization of this
sort for the London theory.

Terms linear in A give an energy varying quadrati-
cally with the applied 6eld B . If one expands the free
energy as a power series in H„ the next higher terms
will be of fourth order. These fourth-order terms come
from second-order changes in the wave functions. We
suggest that it is true nonlinear terms of this sort which
give the change in penetration depth with field. at low
temperatures.

Let us then expand the free energy Ii in a power
series in H, and keep terms to the fourth order:

FIG. 2. Observed and calculated values of relative change in
penetration depth for magnetic 6eld II=H,. Observed values
from Pippard, reference 3; calculated from Eels. (5.11)and (5.12).

decrease would allow a larger penetration of the fteld
and a consequent decrease in free energy. The fact that
the change is small suggests a rigidity or long-distance
order of the superconducting electrons, and Pippard
estimated that the order extends over distances of the
order of IO~ cm. We shall give later an estimate of
this eGect based on the modified Ginsburg-Landau
theory.

It is believed that the increase in rD/X at low tem-
peratures comes from essentially nonlinear terms
which are left out of both the London theory and the
modified theory presented here. The fact that L&/X is
small indicates that the wave functions of the electrons
are only slightly modi6ed by the field. F. London sug-
gested many years ago that superconductivity follows
from such a model. He assumed that if the gauge in A

is chosen appropriately, the wave functions are not
modiYied at all by the Geld. The current density j is

'7 Material in this section was presented at the %'ashington
meeting of the American Physical Society, May, 1952. See Phys.
Rev. 87, 192 (1952).

F=Fo+ (a X) (H, '/8~) C—H, ', (5—.3)

where C may depend on the temperatures. We consider
the penetration terms on only one plane surface of a
superconducting lamina of thickness a&&X, and F is
energy per unit area. The magnetic moment per unit
area of surface is:

M = F/H = (H,/kr—) (—a+X+16m CH, '). (5.4)

The effective penetration depth is

X.tt =X+ 16m CH.'. (5.5)

TAsLE III. Values of 6 for Hg, calculated and estimated from
experiments on the intermediate state.

2.1
3.7
3.97

0.505
0.89
0.96

X
(cm g105)

0.46
0.74
1.24

0.0985
0.0675
0.063

g {s)

1.02
1.14
1.15

s/x
(calc)

10.3
17
18

(I.)

2.6
2.85
2.25

The change is quadratic in the field, as observed by
Pippard. ' This effective change in ) from the fourth-
order terms is in addition to changes in X resulting from
changes in. n, .
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The relative change in X at JI =H, is

hX/X = 16m.CH, '/X. (5.6)

If it is assumed that C is temperature independent, hX/X
will vary with the reduced temperature 3 as

(DX/X) g (1—P)'(1—t') &, (H, =H.), (5.7)

the first factor coming from H, ' and the second from A..
If it is assumed that it is the magnitude of the vector
potential rather than the field which is important, C
will vary as A.4, since according to the London theory,

Ke shall give a brief outline of the theory. The dif-
ference between the Gibbs free energy in the supercon-
ducting and normal states is

col' f'd%q' feA@y'-
I+I I +f(+)

2m, (dxi & hc )
1 (dA)' H.'—H, M dx, (5.13)

Spr 4 dx) Spr

where the magnetization is

XH= ——XH, exp( —x/X). (5.8)

This would introduce an extra factor (1—t') ' into
(5.7), so that

(hX/X) g (1+8)-'(1—t4) & (H.=H,). (5.9)

M'= (H—H, )/4pr.

The boundary conditions are

EI=P at x=0,

0—+4', and A—+0 for x large.

(5.14)

(5.15)

(5.16)
Both (5.7) and (5.9) give a rapid drop in LD/X as t
increases. As shown in Fig. 2, the difference between
using (5.7) and (5.9) for the low-temperature contri-
bution to AX/X is not very large.

To estimate the high-temperature contribution from
the change in n„Pippard assumed that n, changes
uniformly in a slab of depth u adjacent to the surface.
Making use of the Gorter-Casmiri two-Quid model, he
found

X,H exp( —x—/X, ),

H =H. exp( —x/X, ),

(5.17)

(5.18)

We assume, and this will be justified by the results,
that%' does not change much when 3 has an appreciable
value and may be taken to be a constant +, equal to
the value of 0 at the surface x=0. The solutions for 3
and H are then

t4fhkq P,

, (H.=H.).
2a (1—&')''

(5 10) where X, is the value of X at the surface,

X,=ho/@, . (5.19)
To get agreement with experiment, it was found neces- The terms dependent on the magnetic field then give
sary to take u j.0 4 cm.

We have attempted to 6t Pippard's data by adding (a—~,)H.P/S~, (5.20)
expressions of the form (5.10) to [(5.7) or (5.9)j.Shown so that
in Fig. 2 are plots of the following functions:

C= const,

2.914

mph' (d4) '
I +f(+) d*+ ( —~.) . (5.21)

~p 2518 ( dx

+3.6(1—P)'(1—&')*; (5.11) The variation of G with 4 after an integration by parts
(1—P)'(1—t')' gives

2.65/4

X (1+0)'(1—t4) l

3.35 (1—t') *

(]+p)o
(5.12)

The only significance that can be attached to the com-
parison between observed and calculated values of
hX/X is that the minimum occurs at about the right
temperatures. Dr. Pippard has informed the author
that, because of experimental uncertainties, the mini-
mum on the observed curve may not actually be as
deep as indicated.

The change in n, near T= T, may also be estimated
from the theory of Secs. II and III, but when this is
done it is found that the calculated values are too small.
This may indicate that because of imperfections the
range of order may be less than the theoretical limit.

No&'t d+q &o H.P

I+,
2m, 5dx), @P 87r

epk' d'@ df+ 84 — + dx. (5.22)
p 2m, dx' d'Il

Setting 8G=O, we have

)d@y

( dx ), @,' 8prep@'

d'4 df m,

dx d+ Spy

(5.23)

(5.24)

The equations can be simpli6ed by using the reduced
variables U, s, $ tsee Eqs. (4.12)j.With H, =H„we
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have
t'dU) s'

(d(), 2

O'U 4srs' df

dP H,' dU

(5.25)

(5.26)

SoIAA
bU= —=

2(1+P)s
(5.29)

It will be recalled (Table I) that ss for tin is about
0.115.At t= 1, we then have bU, 0.015. The observed
values of L&/X are at least two or three times larger, and
perhaps more serious, the observed rise in 8X/X as T
approaches T, is more rapid than indicated by (5.29).

VI. CONCLUDING REMARKS

Thin Films

Ginsburg and Landau apply their theory to mag-
netization of thin films. If the film thickness is very
smal1, n, wi11 not vary much across the film, but in the
presence of a magnetic field may dier from the equi-
librium value for bulk material. They show that in such
a case the thermal transition in a magnetic field may
be second order rather than first order. The value of e,
then starts at 0 as the critical temperature is reached
and increases gradually as the temperature is lowered.

Our theory would yield results equivalent to those
obtained by Lock by a direct application of the Gorter-
Casimir two-Quid model to thin films. Lock found that
allowing e, to vary did account for some features of the
observed magnetization curves, but that other non-
linear eGects are probably present as well. Pippard has
applied a similar analysis to small spheres and has used
the results to explain some aspects of the colloid experi-
ments of Shoenberg.

Connection with Range of Order

Pippard'4 has suggested a modification of the London
equations so as to take into account a range of order
of the superconducting electrons. In a pure metal, such
as tin, the range is about IO 4 cm, but is less in an

A first integral of (5.26) which satisfies the boundary
conditions for $ large is

(&U/dh)'= (8~s'/K') Lf(U) —f(+)3 (5 27)

Since U is nearly equal to unity, we may write

(5.28)

From (5.25) and (5.27), we have to the 6rst order in U,

impure metal or alloy. He suggests an integral relation,
such as (5.2), for the connection between current density
and vector potential, and points out that such a
modi6cation of the London theory would require a
corresponding modification of the Ginsburg-Landau
theory. The same remarks would apply to our theory
as well. Earlier, "Pippard discussed boundary energies
in a qualitative way from the same point of view. Some
of his conclusions difter from those of the Ginsburg-
Landau theory.

It appears to the author that such a modi6cation of
the London equations is required, and is, in fact, sug-
gested by quantum-mechanical approach of Sec. V.
However, there do not seem to be strong reasons for
taking for g(r,r') in (5.2) the particular expression
chosen by Pippard. While it would not be dificult to
modify our theory along similar lines, it is probably not
worth while to do so until more is known about the
correct form of g(r, r').

On the whole, our theory, as well as that of Ginsburg
and Landau, gives values for the boundary energy which
are too large and for the change in penetration depth
with field which are too small. Both indicate that the
"range of order" given by the theory is too large. It is
possible that the theoretical results apply to ideal
crystals as a result of imperfections of one sort or
another. It is more likely, however, that it is the theory
which is defective. It is uncertain whether or not a
modi6cation along the lines of the preceding paragraph
would give better results. Pippard suggests that the
"range of order" should be determined by the uncer-
tainty relations (1.1) and (1.2), and that 6 should be
roughly inversely proportional to T„and thus large
for metals with low T„such as Al, and small for metals
with large T„such as Pb. Faber' has proposed a test
to distinguish between the Ginsburg-Landau type of
theory and the suggestion of Pippard.
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