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The Tensor Folcaulation of Ferromagnetic Resonance
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The tensor formulation of electromagnetic wave propagation in a conducting ferromagnetic medium is
used to describe resonance phenomena in a test cavity under two diferent conditions of magnetization.
The new formulation alters the prediction with respect to the shape of the resonance curve in the case of
perpendicular magnetization and it predicts a different ratio of energy absorptions in the cases of parallel
and perpendicular magnetization than is given by a formulation based on the concept of a permeability
coefficient. When interpreted according to the new formulation the results of simultaneous measurements
of frequency shift and energy absorption under diferent conditions of magnetization are found to be con-
sistent with each other. Such consistency is not achieved on the basis of earlier formulations.

I. INTRODUCTION

' 'T has been reported previously' that the theory of
~ - ferromagnetic resonance based on the concept of a
complex permeability coeScient is unable to explain
the experimental data under all conditions of magnet-.
ization. Using a reQection type cavity with a ferro-
magnetic metal as one wall of that cavity we obtained
results for the absorption, frequency shift, and the
shape of resonance curves under two conditions of
magnetization; namely, (a) the applied constant mag-
netic Geld is parallel to the surface of the ferromagnetic
sample; and, (b) it is perpendicular to that surface.
These conditions are frequently called the conditions
of parallel and perpendicular magnetization, respec-
tively, and we will use this terminology here. The
important discrepancies observed were in the shape of
the resonance curves for the case of perpendicular
magnetization and in the ratio of absorptions in the
two cases of parallel and perpendicular magnetization.

These discrepancies were to a large extent resolved

by employing the concept of a permeability tensor 6rst
introduced by Polder. ' A consistent application of this
concept shows that only in the case of parallel magnet-
ization is the concept of a permeability coefBcient
equivalent to that of a tensor. In all other cases the
usual theory employing the permeability coeScient
gives incorrect results.

At 6rst sight these conclusions may appear somewhat

surprising in view of the fact that Polder demonstrated
the equivalence of the two formulations for the. non-

metals insofar as the relation between 6elds and magnet-
ization is concerned. The conditions for equivalence

are that the sample dimensions be small compared
with the wavelength and that the displacement currents
be negligible, both of which are fulGlled in our experi-
ments. We will again demonstrate this equivalence,
but. we will also show that in the parallel resonance
case it is a consequence of a deGnite relation between

*Now at the Hell Telephone Laboratories, Holmdel, New
Jersey.

~ J. A. Young, Jr., and Edwin A. Uehling, Phys. Rev. 90, 990
(1953).' D. Polder, Phil. Nag. 40, 99 (1949).

the longitudinal and transverse components of the
magnetic 6eld in that part of the wave which is polar-
ized perpendicular to the constant Geld, whereas, in the
case of perpendicular magnetization, there is in general
no such relation between- magnetic Geld components
because the two waves of opposite directions of circular
polarization are essentially independent.

The theoretical problem will be formulated in Sec. II.
The description of magnetic resonance phenomena mill
be based as usual on the phenomenological equations,
and the usual restrictions to the case of saturation
magnetization in ferromagnetic samples and vanishingly
small alternating fields will be made. The final equations
which express the quality factor Q and the frequency
shift ~co of the cavity in terms of the properties of the
ferromagnetic medium, the frequency of the oscillating
Gelds and the value of the applied constant magnetic
field will be given at the end of this section for both
the case of parallel and perpendicular magnetization
and for the two commonly considered types of damping.
In writing these equations we specialize to the case of
metals. It is a simple matter to rewrite them for the
case of semiconducting ferromagnetic media.

The remainder of the paper is devoted to a discussion
of the experimental conditions under which our data on
a few carefully chosen samples of nickel and supermalloy
were obtained, and to a comparison of the results
obtained with the theoretical predictions. The experi-
mental conditions and the methods which we used to
relate theory and experiment are described in Sec. III.
Finally, in Sec. IV we discuss the experimental results.
Using the theoretical formulation given in Sec. II we
Gnd that the case of perpendicular resonance is as
adequately described by the theory as is the case of
parallel resonance. Consequently, we have some conG-
dence in the validity of comparisons of the results
obtained under these two diGerent experimental condi-
tions. The principal conclusion which we are able to
draw from this comparison is that the Landau-Lifshitz
type of damping is not nearly as satisfactory as the Bloch
type. Both of course lead to an essentially Lorentz type
of resonance curve, but the Landau-Lifshitz damping
introduces terms into the permeability tensor compo-
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nents which have no Bloch counterpart and which on
a priori grounds appear to be physically meaningless.
Consequently, it is satisfying to 6nd the data leading
to the conclusion which we obtain. The conclusion
appears to be unambiguous, but one would like to have
an additional test at another frequency than the one
of 9000 Mc/sec which we used.

Small discrepancies between theory and experiment
still remain. We believe that these discrepancies lie
outside of our experimental errors. These discrepancies
are discussed brieRy.

H. THE RESONANCE EQUATIONS

We will analyze the problem of absorption in a
rectangular cavity in which one wall of the cavity
consists of the ferromagnetic material under test.
According to the methods 6rst introduced by Polder'
and subsequently applied to particular cases by Hogan'
and Weiss and I'ox4 we begin the analysis by consider-
ation of the propagation properties in a ferromagnetic
medium of in6nite extent. Magnetic phenomena in
such a medium may be described by the well-known
phenomenological equations':

for the case of B-type damping, and

yMoh (Ho —N*Mp)

+n[j co+a (Ho &V*M—
o)7)h joie M—oh

(4a)
~'(H, N.Mo)'—y(q' + ~(IIo—N M,)]

yMp{y(Hp N~p)—
+n[j ~+np(Ho N.Mo)—]&h„+j~pMoh.

mrs=,(4b)
v'(Ho —N,Mo)'+ [jco+ny(Ho —N,M )]p'

for the case of LL-type damping.
The magnetic induction is

mx=

where
—b geld t

7

b =h+4rrm.

other demagnetizing factors are used. We then obtain:

y'Mp(Hp N—.Mp)h, YM—p(j p&+1/Ts)h„

y'(Hp N—,Mp)'+ (jco+ 1/T )'

pMo(j pi+ 1/Ts) h +p'Mo (Ho N~—o)h&rN„=, (3b)
p'(Ho N, M—o)'+(j +1/T )'

M, , „=~[MXH],, „—M., „/T„

for BIoch (8-type) damping, and

(1) Thus, . we find Eqs. (3) and (4) are consistent with the
relations:

4= Isa j&h„, b„—=jEh,+ph„, b,=h„
M, , „=y[MXH]., „— [MX[MXH]],, „

—y[MX 8],, „—yn(H, M, , „—MpH. , „),

M =m e&"'
'tlII =h e'"'

H, = Ho NJf p,
—

for Landau-Lifshitz (LL-type) damping, where we have
already used the fact that the applied constant magnetic
6eld is to be taken in the s direction and that this 6eld
is sufficiently strong to produce a saturation magnet-
ization Mp. Also, V=ge/2mc is the gyromagnetic ratio
of the electrons which provide the magnetization, T2 is
the transverse relaxation time of Bloch, o; is the damping
parameter of Landau-Lifshitz, M is the magnetization
vector, and H is the applied field. We now denote the
constant magnetic 6eld in the s direction by Bo. In
addition we apply an oscillating magnetic 6eld in the
xy plane of components h, and h„of frequency co.

Then we solve (1) and (2) after introducing:

H =h e&"' M =m, e&"'
X S

in which
4~y'Mo(II, N', Mo)— 'u=1, (6a)

y'(H p N,Mp)'+ [j—po+ (1/Tp)]'

4s.&Mp[j pi+ (1/Ts) ]
(6b)

7'(H, N.Mo)'+(g—~+ (1/T,)]
'

for B-type damping, and

4pryM p(y (Hp N,Mp)—
+n[j a&+np(Hp N,Mp)])—

tr =1+,(7a)
p'(Ho N~o)s+Lj p&+n&(Ho NMo)]'—

(7b)
~s(Ho —N~o)s+[j~+n&(Hp —N~o)]s

for LL-type damping.
Our next step is to obtain plane wave solutions of

the Maxwell equations:

&Xe= —(1/c)b, V'Xh= (47ro/c)e+ (1/c)d, (8)
where E, is a demagnetization factor which we must,
use in connection with the applied constant Geld. No

o C. L. Hogan, Bell System Tech. J. 31, 1 (1952).
4 M. T. Weiss and A. G. Fox, Phys. Rev. 88, 146 (1952).
o C. Kittel, Phys. Rev. 73, 155 (1948); ¹ Bloembergen, Phys.

Rev. 78, 572 (1950) for applications using Bloch type damping;
Yager, Gait, Merritt, and Wood, Phys. Rev. 80, 744 (1950) for
applications using Landau-Lifshitz type damping.

which are of the form:

b=bp exp[jopt —P(n r)],
h= hp exp[ jest—p(n. r)],
e=ep exp[jcot —I'(n r)],

(9)



J. A. YOUNG, JR. , AND E. A. UEHLING

The substitution of Eqs. (9) into (8) leads to:

PfepX n) = —
jacob p/c, PfhpX nj = (4so+ joie)ep/c.

We obtain a relation between bp and hp by eliminating
eo from these equations. Thus, we write the following
equations connecting both bp and ep with hp

We will now calculate the absorption and frequency
shift in a cavity in which one wall consists of a ferro-
magnetic metal. Thus, we specialize the equations
given above to the case of &ue/4s. o((1 and consequently
li= —4sjo&o/c'. The expressions for the quality factor
Q and the frequency shift Aoi are conveniently deter-
mined from the equation6:

where

lb.bp ——P stn( nhp) —hp),

laces ———joiPLhp X11j,
X= jo—i (4s.~+jppe)/c'

(10a)

(10b)

(10c)

,

"(nXe) hsdS
1 Ace

2J" (14)

Ke now consider separately the two eases of propa-
gation perpendicular to and parallel to the constant
applied Geld Ho. From now on we drop the subscripts
on b, h, and e since we will be working only with
amplitudes.

(a) Propagation Perpendicular to Hp

We will take the direction of propagation as the y
direction. Then,

n =e,=0; n„=i.

We also use Eqs. (5). Thus, we find that Eqs. (10)
have two independent solutions; namely,

h hsdV

where es and hs are the normalized unperturbed electric
and magnetic fields within the cavity for the mode k in
which the cavity is considered to be oscillating, J'd5
is the integral over the bounding surfaces of the cavity,
and J'dV is the integral over the cavity volume. The
equation of reference 6 from which (14) is taken has
been specialized here to the case of a cavity all of whose
walls are conducting, and we have used in addition the
relation:

e esdV= —j h h„dV.

ey
——e,=h =by=0,

e,/h, =jo&P/Xc;

P'= —&(~'—&')!~,

The equation is expressed in Gaussian units to agree
(11) with our other equations.

We will evaluate the integrals in Eq. (14) for each
of the two cases of parallel and perpendicular magnet-
ization.

(f) Parallel cVagnelisatson

e,=e„=h,=0,

h„/h, = —jK/p e,/h, = joiP/Xc. —
(12)

The 6rst case corresponds to propagation in a non-
magnetic medium. In the second case, the magnetic
properties of the medium are contained in p and E
which are given by either Eqs. (6) or Eqs. (7).

(b) Propagation Parallel to Hp

Then n =n„=0, n, =l. Again using Eqs. (5) we
find that Eqs. (10) have the two independent solutions:

P'= —X(p&X),

h, =e,=0,

h,/h„= —e„/e =W j,
e„/h, = e,/h„=joiP/Xc, —

The xs plane lies in the surface of the ferromagnetic
specimen with the constant magnetic field Ho directed
along the s axis. The direction of propagation is along
the y axis which is normal to the surface and directed
outward from the cavity. The magnetic vector h is
linearly polarized and the direction of polarization
makes an angle 8 with Hp. Then from Eqs. (11) and
(12) we have:

P=Pp= (—X)i= (1+j) (27rppo)&/c,

e~=jroPph. /Xc= CPph cos 8/4ro,

for the component of h along the s axis, and

(15)

P= (—1~(P'—&')/P) i= (1+j) (2s oio) '* ((8'—&')/y) 1/c,
(16)

e,= joiPh /Xc= cPh sin8/4s—-o,

for the component of h along the x axis. Since n= j,
fnX eJ= ch (iP sin8+kPp cos8)/4so.

J. C. Slater, Revs. Modern Phys. 18, 441 (1946), especially
Eq. III.53, p. 475.

where the upper and lower signs correspond to the two
directions of circular polarization, each with its own
propagation constant and where the magnetic proper- We regard the unperturbed cavity oscillation as taking

)

ties of the medium are again contained in p and E
given by Eqs. (6) or (7).
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place in a single mode k. Then

h=hp h hpdV,

[n)&ej hp= khan(P sin'8+Ps cos'8)

c
h'(P si '8+Pocos'8) ~h h dV,

4+0. J

Thus for perpendicular magnetization:

1 Ao) c~—2j = (P++P ) hp'dS.
Q tp Sstpo oJ

Defining Qp as before, we obtain:

1 ho) 1 c—2j =— (P'+P ).
Q cp Qp (gs(oo)&

(19)

t [nXe] hg, dS
,

h hpdV

c
(P sin'8+Pp cos'8) hi, 'dS.

4nr

We will now evaluate the propagation constants
using the previously derived expressions for p and E.
Again we consider separately the two cases of parallel
and perpendicular magnetization.

(3) Parallet Magnetisati os
Then for parallel magnetization:

c21 Ao)—2j = (P sin'8+Pp cos'8) h&'dS.
or @nero

where
f'—&'/~=) t—j) p, (20)

Using Eqs. (6a), (6b), (7a), and (7b) with E, set
equal to zero we obtain:

We define 1/Qp as the real part of the right member of
this equation when p=1 and E=O. Then,

1 c——2j =— (P sin'8+Pp cos'8). (17)
Q pp Qp (2scpa)&

(Z) PerPetsdicllar MagrMfisati ort

4iry'Mp(Hp+4PrMp) ((Pp' —cPP)

pt ——1+
(~ 2 ~P)2+4~'2/T 2

4s.y'Mp(Hp+4s. Mp) 2(o
P2=

(~ 2 ~2)2+4~2/T 2

ppp' —y'Hp(Hp+—47rM p)+ 1/T ps,

(21a)

(21c)
The s axis is now normal to the surface of the ferro-

magnetic specimen and is directed outward from the
cavity. It is both the direction of Ho and the direction
of wave propagation. Take the x axis as the axis of the
linearly polarized unperturbed magnetic vector h at
the surface of the cavity. The wave propagates into the
medium as two independent waves of + and —direc-
tions of circular polarizations. From Eqs. (13) and the
condition of linear polarization at the surface,

for the case of 3-type damping; and

v'(Hp+4irM p)'(1+et')+pi'
p,2= 4xyMoo. (o

(tp
2 ~s)2+~2~2~2(2H +4~M )P

(22b)

(Hp+4rrM p) (1+o.' (cop' —pp')
+a'cps 2Hp+4sMp)

iit = 1+4sy'Mp (22a)
(~ 2 ~2)2+~2~2~2(2H +4' )P

h.=h.++A;, where h,+=)'p —;

h„=h„++h„=jh,+ jh. =-0, —-
e*=e~++ e. = o& (P+ P)h, /2'Ac, —

e„=e„++e„=jpi(P++P )h,/2) c,

P+= (—'A(ii+E))&,

P=(—X(p,—E))&, -where X= —4s j o/cp'. c

pip'-y'H p (Hp+47rM p) (1+ix'), (22c)

for the case of LL-type damping. These results for p~
and p, 2 are identical with the expressions for the real

(1g) and imaginary parts of the complex permeability coeK-
cient which have been previously derived from the
point of view of demagnetizing factors. '

Combining Eqs. (16) and (20), we have:

Since n=k and h=hp J'h hpdV, where h=ih, =ih, we
have:

jGOhjg

[n&&ej hp= — (P++P ) h hpdV,
2XC

r jco
[n&(e$ hpdS h hpdV= — (P +P ) ' hp'dS

2)tc

fc
(P++P-)) hp'dS.

Smg

P'= 4' j pro(p, j IJ,s)/c'—
If we set P=Pi+ jPs, we obtain:

(23)

where

Pi= (2x p&orbit)&/c, Pp(+) (2xppo pz) &/c, (24)

pe= (pi +ps )1+ps~ fJr,= (pt+pP)* IJ p (2~)

' See for example Eqs. (10) and (11) of reference 11 and Eqs.
(A-2) and (A-3) in the paper of Yager et al. of reference 5, which
are the same as our Eqs. (21a and b) and (22a and b) if in the
former N, =E,=O and E„=Sr corresponding to the case of
parallel magnetization.
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We will use (&) inclosed in parentheses to signify that
the positive or negative value is to be taken according
to whether the real quantity p, ~ is positive or negative.
Pp is obtained by setting p&= 1 and p,2=0. Substitution
into Eq. (17) then gives us the final results for the
parallel resonant case:

I—=—[(ten) & sin'8+ cos'8j, (26a)

26(d 1
=—

L (&)(tcz) & sin'8+ cos'8$. (26b)

p&E=pl+ —jp2+,

4rry3f p (cop%co)
tea+= 1+

(cop&co) +1/Ts
(28a)

(4) Perpescdicllar Magnetisation

Using Eqs. (6a), (6b), (7a), and (7b) with X, set
equal to kr, we obtain

the case of perpendicular magnetization:

1.

L(»+)'+(I a )'),
e 2e.

2do) 1
t:(+)(t i+)'+ (t i )'j

|'d 2 p

(33a)

(33b)

Equations (26a and b) and (33a and b), together
with the immediately preceding de6ning equations,
represent the anal results of the analysis to which the
experimental results presented in the next two sections
will be referred.

Ke will conclude this section with some remarks
concerning the equivalence and lack. of equivalence of
results based on the concept of the permeability tensor
as compared with results based on the concept of a
permeability coeScient.

In the parallel 6eld case we may have, according to
Eq. (12), two independent waves in which the magnetic
vectors are h, and h„/h, = jE//tc, resp—ectively Thu.s
according to Eq. (5) the magnetic induction is:

4s.yMp/Ts
P2+

(cop&co) +1/I 2

cop ——y (Bp—4s M p),

(28b)

(28c)

b =tch, jEh„= (t—cs—Es)h, /tc,

b„=jEh,+tchs 0, ——

b,=h,.

for the case of 3-type damping; and

4~yM o(coo~co+n'coo)
ter+= 1+—

(coo%co) +n coo

(29a)

p
(copWco)'+n'co p'

coo= y (&o—4~~o),

(29b)

(29c)

(P+)'= 4s jcoa (ter"—jtcs+)/c'.

If we set P+= Pi++ jPs+, we obtain:

(30)

PP= (2scootcn+)&/c, Ps+= (+)(2scocryr+)&/c, (31)

where "= (.,"+.,"):+.,
tel. =(tet +tcs ) tcs

(32)

and the factor (+) denotes that Ps+ has the same sign
as p&+. Since@& is alwayspositive, P2 is alwayspositive.

Substitution into Eq. (19) gives the final results for

for LL-type damping. In contrast with the case of
parallel magnetization these expressions for p~+ and p~+
bear little resemblance to the real and imaginary parts
of the permeability coeKcient as previously derived on
the basis of demagnetization factors.

Combining Eqs. (18) and (27), we have:

Thus the tensor relation is reduced to diagonal form,
and, in particular, the coeKcient relating 6, and h, is,
as we have stated immediately after Eqs. (20) to (22),
3ust the permeability coeKcient previously derived for
the case of para11el magnetization using demagnetizing
factors.

The situation is de'erent in the case of perpendicular
magnetization. According to Eq. (13) the components
h and h„within each of the two waves of + and-
circular polarization are related by

h,/h„= wi,
but the two waves are independent of each other. If
the ampIitudes of the two waves are equal at the cavity
surface they will not be equal within the ferromagnetic
medium since the waves are attenuated di8erently.
But we now see why PoIder obtained the same results
for magnetization as are given by a theory based on a
permeability coeKcient. If we set the amplitudes of
the two waves equal, i.e., h,+=A, it follows that
h„=0. Then, according to Eq. (5),

where tc is given by Eq. (6a) or (7a). These expressions
for p, are precisely the permeability coe%cients previ-
ously derived if in the latter we set all demagnetizing
factors except E, equal to zero and take N. =4m to
correspond to this case of perpendicular magnetization. '

The previously derived results are given by the equations
quoted in reference 7. In order to make the comparison, the
definition of coo given in Eqs. (28c) or (29c) must be used.
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We observe that pg+ and lsd+ in Eqs. (33a and b)
are different functions of the frequencies and material
properties than lsd and pz, in Eqs. (26a and b). Conse-
quently, the correct expressions for the perpendicular
case di6er from those previously used not merely in
the appearance of the factor «„ corresponding to the
fact that most of the loss is in only one of the two
circularly polarized waves, but also in the actual forms
of the loss factors.

III. EXPERIMENTAL METHODS

and we will mention only certain modiGcations I
procedure.

The quantity h~f., is measured directly and the
only problem is the selection of a reference point. The
quantity 1/Q&„ is obtained by a measurement of re8ec-
tion coefEcients at two points, one corresponding to the
desired magnetic state of the ferromagnetic sample and
the other a reference point. Denoting the reQection
coeQicient by I' and using primes to indicate the refer-
ence point we can write:

2Qp I"—I'
A —A'=

Q. (I+P') (1+v'

where Q, is the contribution to the Q of the cavity
which is due to the radiation of power from the cavity
to the microwave system.

The two problems which must be solved in order to
obtain useful experimental data are the determination
of Q, and Qp and the determination of suitable reference
points.

Q, is determined by a measurement of the frequency
response curve of the cavity. " Qp is more dificult to
determine. In accordance with the definition of Qp given
in Sec. II immediately before Eq. (12), it may be calcu-
lated using the formula given there. This value js
usually larger than the correct experimental value.
However, Qp for our case is not easily measured since
it is the nonmagnetic contribution of the portion of the
cavity walls which are occupied by the ferromagnetic
sample and the losses due to this wall are small com-
pared with all other losses including the iris and clamp-
ing arrangements. However, we have shown that the
clamping loss in our case is nearly constant since we
were able to obtain a high degree of reproducibihty of
data obtained after assembly, dissassembly, and reas-
sembly of the cavity. Also the effect of the iris on Qp
is negligible as shown by experiments on the frequency
shift using different irises. In our experiments Qp is
finally determined as that quantity which provides
consistency between theoretically and experimentally
determined quantities under a large variety of condi-
tions. In particular, one obtains a relation at resonance
relating 3, the reference value A', the measured F and
I", the measured Q, and a theoretical expression
involving the parameter g= 2prq Mp/ppp and the damping
constant. coo is measured and y and M'0 are determined
as the solutions of simultaneous equations for Np

corresponding to the two cases of parallel and perpen-
dicular magnetization. The damping parameter is
determined to provide the shape of curve which most
nearly Gts the experimental curve. Thus, in eGect an
actual value of Qp is not required, but results consistent
with a single reasonable value of Qp are found.

The reference points are usually chosen to correspond
to some value of the applied magnetic Geld which is
suKciently large so that A and 8 are e6'ectively equal
to unity independent of the nature or approximate

The experimental techniques and the methods of
reducing data are similar to those used by others and
described previously. Thin metallic foils of the ferro-
magnetic specimen form one end or side waIl of a
reQection-type cavity excited in the TE&02 mode which
terminates a wave-guide system and is coupled to it by
an iris of suitable dimensions. The cavity is excited at
its resonant frequency of approximately 9200 Mc/sec
and the wave reQected from the cavity is led through
a directional coupler to a detecting system. Detectioo
is obtained by mixing the reQected signal with the
modulated signal of a local oscillator in a manner
similar to that described by Yager et al.~ The magnetic
Geld is current stabilized and variable over the range
of 800 to 13000 gauss. Its intensity is measured by
determining the frequency of magnetic resonance of
protons and lithium nuclei. The homogeneity of the
Geld is such that the variation of field over the volume
of the cavity is never more than —,

' gauss. Frequency
stabilization of the source klystron is used. This is by
means of a Pound-type cavity controlled circuit' with
some improvements in the discrimination. " The re-
sulting stability was within 1000 cps at 9200 Mc/sec.
With the use of this equipment frequency changes of
the order 0.02 Mc/sec could be measured with accuracy.

The experimental quantities which are measured are
the resonance frequency and the reQection coeKcient
of the cavity under prescribed conditions of cavity
coupling and magnetic state of the wall material.
Actually we are interested in the change of frequency
and the change of Q as a function of the magnetizing
Geld at the ferromagnetic sample in the cavity. These
quantities are given by Eqs. (26a and b) and (33a
and b) in Sec. II and they have the form:

1/Qr„= 2/Qp,

26Mrer/M =8/Qp&

where A and 8 are the theoretical quantities which are
to be related to the experimental measurements. The
methods for doing this have been discussed previously"

' R. V. Pound, Rev. Sci. Instr. 17, 490 (1946) and Proc Inst. .
Radio Engrs. 35, 1405 (1947).' Tuller, Galloway, and Za8'arno, Proc. Inst. Radio Engrs. 36,
794 (1948).

"See, for example, N. Bloembergen, Phys. Rev. 78, 572
(1950);a general discussion of these and other techniques is given
in C. G. Montgomery, 1echmigle of Microwave Meuslrements,
NIT Radiation Laboratory Series (McGraw-Hill Book Company,
Inc., Neer York, 1947), Vol. 11.
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magnitude of the damping constant. Ke performed the
the following experiments to determine whether or not
this procedure is correct for our maximum field.

(a) With the sample on an end wall and the constant
magnetic Geld parallel to the surface of the sample,
revolution of the cavity through 90' about the axis of
the wave guide can be made to bring the system from a
position corresponding to that of parallel magnetization
(constant magnetic field parallel to the surface of the
specimen and perpendicular to the rf field) to a position
of no magnetic eRects (constant magnetic field parallel
to the rf field). As shown by Eqs. (26a and b) with
0=0 the last case corresponds strictly to A=B= j..
Thus, the reference points are experimentally deter-
mined for the case of parallel magnetization at the
same time that the data for this case is being obtained.
It is true that one also observes certain small field
eGects in the so-called nonmagnetic orientation which
are presumably due to the fact that 8 is not exactly
zero, as well as other eGects of greater interest which
are due presumably to the failure of the small Geld to
saturate the sample. The latter requires special study
but is not relevant to our discussions of reference points.

(b) With the sample on a side wall rotation about
the wave-guide axis gives the difference between the
cases of parallel and perpendicular magnetization.
Having the reference points for the case of parallel
magnetization one now obtains them for the case of
perpendicular magnetization. Thus, the reference points
for both cases are measured absolutely. The results for
supermalloy using Ho=f3000 gauss give the experi-
mental values:

(Jail) &= 1.30 and (pi,)&= 1.22,

in the parallel Geld case, and

in the perpendicular field case. The calculated values
from Eqs. (25) and (32) are 1.27 and 1.27 in the parallel
field case and 1.74 and 1.71 in the perpendicular field
case. Thus, we Gnd that A and B are not equal to
unity at the highest Geld available and we used, conse-
quently, these procedures for the determination of the
reference points.

TABLE I. Numerical values of g and kr3IIO for nickel,
supermalloy, and 399 alloy. '

Material

Supermalloy
Nickel
399 alloy

2.10
2.22
2.28

4xMg

7770
6170
5890

& The supermalloy samples were furnished by Dr. S. O. Morgan of the
Bell Telephone Laboratories. The nickel samples were obtained from
Baker and Company and are 99.5 percent pure. The 399 alloy is a Driver-
Harris alloy of nickel and 0.2 percent silicon and with no contaminant
greater than 0.05 percent.

One additional remark with regard to the experi-
mental procedure should be made. Various sizes of iris
were used. It may, for example, be chosen so that at
the reference point the reQection coeScient is zero
corresponding to critical coupling at this point. Under
these conditions small eGects are most accurately
measured, and in particular, one obtains an accurate
determination of the cavity frequency. If one now
reduces the field and thus increases the loss in the
cavity which is due to the approach to resonance of
the ferromagnetic sample, the cavity becomes under-
coupled (negative reflection coeKcient F). But F may
also approach unity in magnitude and since A —A' is
proportional to (1+F) ' the errors of measurement
may become fairly large. In order to reduce these errors
one then chooses an iris size so that the cavity is
slightly overcoupled at the resonance point and the
quantity (1+F) is never permitted to be very much
diferent from unity. We believe that the over-all error
in our measurement of the reRection coefBcient is not
greater than $0 percent.

IV. RESULTS

In principle the complete determination of an ab-
sorption or a dispersion curve is sufhcient to Gx the
numerical values of aII relevant parameters. Since we
are measuring both the absorption and dispersion, and
since these measurements are being made for two
diferent conditions of magnetization, aII of our param-
eters are overstipulated. Thus, we obtain a rather
stringent test of the adequacy of the theory to describe
the phenomena in question.

Two of the parameters are rather easily determined
independently of the nature of the theory used and
independently of the nature and numerical value of
the damping constant provided that it is small. "These
are the saturation magnetization No and the gyro-
magnetic ratio p=ge/2mc. The resonance frequency
for the case of parallel magnetization is given by Eqs.
(21c) and (22c) in the cases of 3-and LL-type damping,
respectively, and by Eq. (28c) or (29c) in the case of
perpendicular magnetization. Thus, e.g., in the case of
3-type damping Mo and y are determined as the
solutions of the two simultaneous equations:

where H" and H are the values of the constant mag-
netic Geld intensity at resonance in the cases of parallel
and perpendicular magnetization, respectively. The
principal source of error is in the determination of the
resonant point. An error of &10 gauss in B" and H~
leads to an error of 35 gauss in 4m&0 and 0.03 in g.
Our errors lie within these limits. The results which we
have obtained as a consequence of a number of determi-
nations on our samples are given in Table I.

One of the original objectives of these experiments
~ Kittei, Yager, aiid Merrit t, Physica 15, 256 (1949).
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was to distinguish between the Bloch (B) and Landau-
Lifshitz (LL) types of damping. Since both types lead
to a Lorentz shape of curve it was expected that within
the accuracy of the experiments it would be dificult to
distinguish between the two damping mechanisms on
the basis of line shape alone. Thus, Healy" has shown
that he could fit his experimental curves equally well
using either type of damping. But we expected that
the ratio of absorptions in the two cases of parallel and
perpendicular magnetizations would permit a dis-
tinction to be made. According to the usual theory of
ferromagnetic resonance this ratio is independent of
the numerical value of the damping constant but its
dependence on the parameter 2s.yMs/cps is different in
the two cases. Our experimental results diGered from
the predicted ratio in the most favorable case by a
factor of about j..s. In addition we observed that the
shape of the resonance curve was correctly predicted
only in the case of parallel magnetization, "but that in
the case of perpendicular magnetization there were
marked discrepancies.

These results may be interpreted to mean that
neither type of damping mechanism is appropriate.
However, the agreement between theory and experi-
ment on line shape which is obtained in the case of
parallel magnetization suggested the type of analysis
which we have given in Sec. II, and it is now on the
basis of this analysis that we will describe the experi-
mental results obtained.

The experimental results will be presented under
three headings:

(a) The ratio of absorption at resonance in the cases
of parallel and perpendicular magnetizations.

(b) The over-all shape of resonance curves.

(c) Details in the shapes of resonance curves.

(a) Ratio of Absorptions at Resonance

In the case of parallel magnetization Eq. (26a) with
8=0 gives

1/Q= (u~)'/Qs.

At resonance we set p~—0 and we express Hp in terms
of cop and other parameters. Making the substitution
into pg=2p2, we obtain:

TAsr.E II. Experimental and theoretical values of
(Q~/Q„)' at resonance.

Specimen

Nickel
Sup ermalloy

Experimental

4.i&0.4
5.5&0.5

Eq. (39)
(Usual theory based

on a complex
permeability
coefBcient}
LL B

1.7 2.5
1.8 2.8

Eq. (38)
(Present theory

based on a
permeability

tensor)
LL B

2.6 3.8
2.9 4.6

In the case of perpendicular magnetization we have,
from Eq. (33a):

(Qsi'

1~1+r) l 1'
=go&sT's 1+—

I I B-type damping
2 &g~,r, )

11 1+r)q &-'
=- 1+-I n

n 2( g i
LL-type damping. (36)

The usual theory in the case of parallel magnetization
gives Eq. (35). In the case of perpendicular magnet-
ization it gives:

(Qs/Q)'= 2r)s&sTs B-type damping

=2r)/n LL-type damping, (37)

where the values of p~ and p2 can be obtained from the
equations quoted in reference 7 with N. set equal to
4x to correspond to the case of perpendicular magnet-
ization.

Taking the ratios of Q in the cases of parallel and
perpendicular magnetization, we have:

(Q.&
' 1(1+g) &--s

I
=2'+�(1+v')'] 1+-I

E Q„) 2 (g(g,r,j
B-type damping

(1/Q) = (1/2Qo)l:(~~')'+ (~n )'j

At resonance we set p,~+=0, p, 2 =0 and substitute
Bo=~s/y+4s'Ms into pn+=2ps+ and yn =pt . We
obtain:

(Qo/Q)'
= 2r)(apTsI g+ (1+q')&$ 8-type damping

1t' 1+qq & -'
=2I:1+~(1+~') 'j 1+-I ~

2&

= (2q/n)t1+g(1+g') &) LL-type damping, (35)

where

g = 2s 7Ms/cop.
rs D. W. Heaiy, Phys. Rev. 86& 1009 (1952).
"As observed also by others; e.g., N. Bloembergen, reference

11;W. A. Yager, Phys. Rev. 7S, 316 (1949);W. A. Ysger and F.
R. Merritt, Phys. Rev. 75, 318 (1949).

LL-type damping, (38)

whereas the usual theory gives

(Q.&
'

I
=g+ (1+vj)& B-type damping

(Q„i = 1+r)(1+g') 1 LL-type damping. (39)
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FIG. 1. Nickel parallel Geld case.

experimental values if Bloch damping is assumed. The
remainder of the discussion will be based on only this
type of damping.

(b) over-All Shape of Resonance Curves

Values of Q and Dcv are measured with respect to the
appropriately chosen reference point as discussed in
Sec. III. Since Qp enters here only as a normalization
constant we will plot values of A and 8 as a function
of the applied constant field Bo. A=(p~)' and 8
= (&)(pz) & for parallel magnetization, and 2 = —,

'
L (p~+) &

+ (pz )&$ and 8=-,'P(&)(pl+)&+ (pz )'*$ for perpendic-
ular magnetization. All measurements are at an rf
frequency of approximately 9200 Mc/sec, the exact
frequency in each case being determined by the cavity
resonance.

The experimental results for nickel and supermalloy
and for the cases of parallel and perpendicular magnet-
ization are shown in Figs. j., 2, 3, and 4.

5-
i A

I ~

) 4
I I
I

9

2-
g

4~ a
4-- 4~~~~IF 4~~~

l- ~o

I

2 'i 4 6 8,' IO l2

K-Gauss
0

OI'

»2-I

FrG. 2. Nickel perpendicular 6eld case.

The parameter g is known from the experimental
determinations leading to Table I. The parameters T2
and n must be chosen to give the proper width of
resonance curve. This cannot be done unambiguously
to 6t both the cases of parallel and perpendicular
magnetization unless the type of damping used is
actually the appropriate one. For our present purposes
the quantities we are considering are relatively insensi-
tive to the actual numerical value of the damping
parameter. 'the comparisons which we now make are
with 1/T2=2. 8&(10 sec ' and n=0 048 fo.r nickel and
1/T2=1.7&&10' sec ' and a=0.029 for supermalloy
Table II gives a tabulation of our experimental values
of (QJQ„)' together with the theoretical values calcu-
lated from Eqs. (38) and (39).

Thus, the theory of Sec. II gives results for the ratio
of .absorptions which is in fair agreement with the
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Fro. 3.Supermalloy parallel 6eld case and comparison with theory.

We will use our measurements on supermalloy as the
basis for a discussion of line shape. Exactly similar
results are obtained in the case of nickel. In both cases
the results depend on heat treatment and surface
polishing. These eGects are particularly pronounced in
the case of nickel and in the measurements of frequency
shift for perpendicular magnetization. They are not,
however, the object of the present study and conse-
quently we now restrict the discussion to uniformly
prepared specimens of the metal supermalloy.

We consider erst the case of parallel magnetization.
The usual theory does not dier from the present
analysis in this case, both leading to Eqs. (26a) and
(26b). These equations with 8=0 are plotted as con-
tinuous solid and dotted line curves in Fig. 3 for
comparison with the experimental data. Bloch damping
has been assumed and 1/T2 has been set equal to
1.7X10' sec '. The agreement between theory and
experiment is almost as good as could be desired.

We consider next the case of perpendicular rnagnet-
ization. The experimental values of A and 8 given in
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Fig. 4 are now transferred to Figs. 5 and 6, respectively,
where they are plotted against Hp —4~3Ep. The dotted
and solid line curves given for comparison are the
theoretical curves as obtained from the usual theory in
terms of demagnetization factors and the present
theory leading to Eqs. (33a) and (33b). We note the
following:

(1) Insofar as absorption is concerned the present
theory gives results in almost perfect agreement with
the experimental data. On the other hand the usual
theory leads to a curve which differs from the experi-
mental curve in two important respects. It possesses a
minimum which is not observed in these X-band
measurements and the curve is too wide in the neighbor-
hood of the resonance point.

(2) Insofar as frequency shift is concerned the
present theory predicts correctly the rate of frequency
change near resonance together with the correct peak-

4
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Present Theory' Experiment

I I I I i I I I I I I I
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FIG. 5. Experimental and theoretical values of A in the
supermalloy perpendicular Geld case.

occur at a value of Hp which is approximately given by

(Bp 4prM p) = ((o/'7—)—4prMp.

Thus it will not be observed at X-band frequencies for
which co/y 4000 gauss and 4prMp 7700 gauss, but a
small minimum might be detectable at E-band fre-
quencies. This has not been observed. "The failure to
detect a minimum in the absorption at perpendicular
magnetization in our measurements at X-band fre-
quencies as well as in previous measurements was one
of the indications that the usual theory was inadequate.

(c} Details in Shape of the Resonance Curves

FrG. 4. Supermalloy perpendicular 6eld case.

to-peak values. However, there are discrepancies in
details of the 8 curve which remain to be discussed.

The minimum in the absorption which is predicted
by the usual theory is a consequence of the fact that p&

goes through zero and remains negative over a certain
portion of the range of Ho below resonance. In the case
of perpendicular magnetization it predicts that this
minimum should occur at

(Hp —4prMp) =2prMpL(1+g ') &—1$—1100 gauss,

for supermalloy at X-band frequencies. The prediction
with respect to a minimum in the absorption which is
made by the present theory differs in two respects. In
the 6rst place only p, &+ can become negative and conse-
quently the minimum, if present, is less marked than
in the usual theory. In the second place it occurs for a
different value of Hp than that given by the usual
theory. According to Eq. (28) the minimum should

8 = —,'(p v„+~v;)

I-~

p I
g 4 5 6

o-4' Ms
in K-Gauss

——Usual Theory
Present Theory

~ ~ Experiment

Fn. 6. Experimental and theoretical values of 8 in the
supermalloy perpendicular Geld case.

The data are actually of sufIj.cient accuracy to permit
a closer examination of the agreement between experi-
mental and predicted curve shapes. We can, for ex-
ample, attempt to make independent determinations
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of the value of the time constant T2 by relating it to
critical parameters of the resonance curves. Four such
parameters are: (a) the absorption at resonance, (b)
the width of the absorption curve at half-maximum,
(c) the peak to -pe-ak value of the frequency shift,
(d) the separations in the peak-to-peak values. When
this is done an over-all spread of about a factor 2 is
obtained in the various determinations of T2. Some of
this spread is probably due to errors in the determi-
nation of some of the critical points, e.g., the positions
of maximum positive and negative frequency shift.
The spread may possibly be reduced by a better choice
of Qs. However, much of it appears to be inherent and
to be related more sensitively to the frequency shift
curve than to the absorption curve. At the present

time we are able to conclude only that the experimental
methods used provide a rather stringent test of the
phenomenological theory which may not be completely
adequate for a precise quantitative description.

Other features of the resonance curves which r main
unexplained are in the low Geld region. For example, in
Figs. 2 and 4 we observe a second minimum in the
frequency shift curve occurring at about 5700 gauss
for nickel and 5500 gauss for supermalloy. Since these
are perpendicular 6eld cases, we are here in the region
of unsaturated magnetization. The theory is conse-
quently unable to explain the phenomena in question
and it is for this reason that the data of Fig. 4 were
replotted iri Figs. 5 and 6 only for values of Ho greater
than 4x3EO.
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Theory of Boundary EfEects of Suyerconductors*
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An extension of the phenomenological London equations to take into account a space variation of the
concentration of superconducting electrons is presented. The theory diBers from that of Ginsburg and
Landau in that it makes use of the Gorter-Casimir two-Quid model rather than an order parameter to derive
an expression for the free energy. An effective wave function is used for the superconducting electrons. The
theory is applied to calculate the boundary energy between normal and superconducting phases and the
relative change AX/X of penetration depth with magnetic Geld. Calculated values of boundary energies are
somewhat larger, and of AX/X somewhat smaller, than observed. It is suggested that additional nonlinear
terms are required to account for the observed AX/X at low temperatures. The connection of the theory with
Pippard's ideas on range of order is discussed brieQy.

I. INTRODUCTION

0 estimate the energy of the boundary between
normal and superconducting phases and for

related problems, it is necessary to have a theory which
takes into account a space variation in the eGective
concentration of superconducting electrons n, . Across
such a boundary, n, changes from an equilibrium value
on the superconducting side to zero on the normal side.
%e present here a theory based on the Gorter-Casimir'
two-Quid model. It is an extension of the Ginsburg-
Landau theory' so as to apply over the entire tempera-
ture range.

The theory of Ginsburg and Landau (denoted here

* Most of the results reported here were obtained in 1951 and
j.952. The work was started while the author was employed at
the Sell Telephone Laboratories and continued at the University
of Illinois. At the latter institution, the work was supported in
part by the Once of Ordnance Research of the U. S. Army
Ordnance Corps.' C. J. Gorter and H. B. G. Casimir, Physiit Z. 35, 963 (1934);
Z. tech. Phys. 15, 539 (1934).See D. Shoenberg, Snpercondnctioity
(Cambridge University Press, Cambridge, 1952), second edition,
Chap. VI.

2 V. L. Ginsburg and L. D. Landau, J. Exptl. Theoret. Phys.
(U.S.S.R.) 20, 1064 (1950).

by G-L) applies for temperatures close to the critical
temperature T,. These authors identify n, with an
order parameter g which is small near T,. The free
energy is expanded in a power series in g. It is assumed
that rt, (and thus rt) is given by the square of an effective
wave function 4'(x), and that there is an energy term
proportional to (grad%(s. The coefEcient of (grad%js
is evaluated in terms of the critical 6eld H, and the
penetration depth, X, so that there are no undeterm, ined
parameters. In addition to the calculation of the
boundary energy, the theory was applied to the mag-
netic and thermal properties of thin films and to
estimate the change in X with magnetic fi.eld.

Using a microwave method, Pipparde has shown that
for tin the change in X with ield is no more than 3
percent for 6elds up to H=H, . From these results he
estimated that the ordered regions must extend over
distances of the order of j.0 cm. Presumably the width
of the normal-superconducting boundary is at least of
this order.

The author' has pointed out that Pippard's result is

' A. B.Pippard, Proc. Roy. Soc. (London) A203& 210 (1950).
e J. Bardeen, Phys. Rev. 81, 10'N (1951).


