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A kinetic theory approach to collision processes in ionized and
neutral gases is presented. This approach is adequate for the uni-
6ed treatment of the dynamic properties of gases over a continuous
range of pressures from the Knudsen limit to the high-pressure
limit where the aerodynamic equations are valid. It is also possible
to satisfy the correct microscopic boundary conditions. The
method consists in altering the collision terms in the Boltzmann
equation. The modified collision terms are constructed so that
each collision conserves particle number, momentum, and energy;
other characteristics such as persistence of velocities and angular
dependence may be included. The present article illustrates the
technique for a simple model involving the assumption of a
collision time independent of velocity; this model is applied to
the study of small amplitude oscillations of one-component ionized
and neutral gases. The initial value problem for unbounded space
is solved by performing a Fourier transformation on the space

variables and a Laplace transformation on the time variable.
For uncharged gases there results the correct adiabatic limiting
law for sound-wave propagation at high pressures and, in addition,
one obtains a theory of absorption and dispersion of sound for
arbitrary pressures. For ionized gases the difference in the nature
of the organization in the low-pressure plasma oscillations and in
high-pressure sound-type oscillations is studied. Two important
cases are distinguished. If the wavelengths of the oscillations are
long compared to either the Debye length or the mean free path,
a small change in frequency is obtained as the collision frequency
varies from zero to infinity. The accompanying absorption is
small; it reaches its maximum value when the collision frequency
equals the plasma frequency. The second case refers to waves
shorter than both the Debye length and the mean free path; these
waves are characterized by a very heavy absorption.

1. INTRODUCTION

'HE dynamic theory of gases may be studied from
two points of view. One may take as starting

point the macroscopic equations of aerodynamics with
the density p, mass velocity q, and temperature T as
independent variables, and involving various coefli-
cients, e.g., viscosity, heat conduction, etc. On the
other hand, one may use a more fundamental and
general microscopic formalism. The most fruitful of
such formalisms available at present is that in terms of
one particle distribution functions satisfying integro-
differential equations of the Soltzmann type. The dis-
tribution function f(v, r, t) is defined by the condition
that f(v, r, t)dvdr is the number of particles at time t, in
volume element dr about position r, which have ve-
locities in a range dv about v.

The aerodynamic equations are adequate for treating
a certain wide class of problems in gas dynamics and
most of the developments of the theory have been in
this domain. In this range the microscopic theory would
not yield significantly different results. In fact, subject
to certain conditions which delimit their range of
applicability, the aerodynamic equations, together with
explicit formulas for the various coe%cients entering
into them, are derivable from the microscopic theory.
A detailed account of this derivation is presented in
the book of Chapman and Cowling. '

There are, however many important situations in
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which the macroscopic theory does not give a correct
description. During recent years interest in such prob-
lems has increased considerably. An extreme example
of the breakdown of the aerodynamic theory, vis. , in
the Knudsen region, has been known for some time;
here the mean free path of a molecule is large compared
to some linear dimension of the apparatus, and behavior
at the boundaries becomes important. Other examples
are provided by high-frequency sound waves in a
rare6ed gas and by plasma oscillations.

The solution of the Boltzmann equation is, in general,
a matter of considerable difhculty even in cases corre-
sponding to the physically simplest situations. Signi6-
cant progress has been confined practically to the study
of two limiting cases in which two diferent approxima-
tion procedures can be applied. A criterion for the
range of validity of the approximate methods is pro-
vided by the comparison of some characteristic time
T (or characteristic length L) for the relevant process
with the average time r, (or mean free path I.,) be-
tween molecular collisions.

For high density (r»r, or L»L,) the Enskog-
Chapman (E-C) theory may be used. The first approxi-
mation of the theory consists in assuming local thermo-
dynamic equilibrium and a common drift velocity for
all molecular species. The next approximation corrects
the distribution function by terms proportional to the
6rst derivatives of temperature, velocity, and density;
this corresponds to the aerodynamic equations with
coe%cients of heat conduction, viscosity, and diGusion.
The high-density region (r»r, ) is in fact the range in
which the aerodynamic equations provide an adequate
description. Higher approximations of the E-C theory
lead to correction terms proportional to higher deriva-
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tives of T, q, p. The successive approximations of the
K-C theory correspond to an expansion of the distribu-
tion function in powers of the mean free path L,. If we
consider sound waves with wavelength L))L„ the first
and second approximations are already sufhcient to
give all significant features of the process. However,
when L becomes comparable with L„ it is necessary to
go to the third and even higher approximations to
obtain adequate results; as discussed by Herzfeld'
important dynamic contributions appear only in ap-
proximations higher than the second. The third approxi-
mation already involves formidable labor and has been
used to solve only the simplest problems. Consideration
of higher approximations is, in any case, of doubtful
value as the entire procedure breaks down in just the
range where the contributions from these higher-order
terms become important. In addition, the boundary
conditions in many problems cannot be specified
properly within the scope of the E-C formalism. A
diferent approach, using expansions in terms of
Hermite polynomials in velocity space, has been given
by Grad. ' He uses some moments of low order in addi-
tion to the usual ones representing p, q, and T. The
procedure involves a gain in simplicity over the K-C
theory but is still quite complicated. It is basically a
high-density theory and is capable of dealing only with
boundary conditions which can be specified in terms of
the moments appearing in the theory. The limitations
of any theory based on the use of a finite number of
moments will be brought out in the discussions of this
series of papers.

The opposite limiting case (r«r, or L«L,) has been
studied extensively by mean-free-path methods. Jaffe'
has shown that this case can be treated from the point
of view of the Boltzmann equation by expanding the
distribution function in a series of inverse powers of the
mean free path; the first approximation consists in

neglecting collisions completely. In contrast to the high
density limit, the problem can be solved subject to
correct microscopic boundary conditions. The method
becomes extremely complicated when one attempts to
carry out higher approximations to obtain results which

go much beyond those obtainable by simple mean-
free-path arguments. For this reason this method has
not been applied to any great extent.

The low-density case is of particular interest for
ionized gases where the coupling of the material motions
with the electromagnetic field plays an essential and
determining role. Ionized gases occur widely in nature
and in the laboratory with densities and temperatures
covering a large range. In laboratory discharge tubes
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R. Schamberg, J. Acoust. Soc. Am. 18, 334 (1946); C. S. W.
Chang and G. Uhlenbeck, Univ. Mich. Dept. Eng. Research,
Repts. , February, 1948 (unpublished); M. Kohler, Abhandl.
braunschweig. wiss. Ges. 2, 104 (1950).
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and similar devices pressures ranging from 10 ' mm up
to 10 mm are commonplace. In the negative glow of a
discharge tube at 10 ' mm the material is at least
singly ionized; the electron density is about 10"/cc and
the mean free path is of the order of a few cm. At
pressures of the order of an atmosphere the ionization
is only partial; the electron density is of the order of
10"/cc and mean free paths are of the order of 10 ' cm.
In nature the range covered is considerably wider. ' The
interstellar medium has a density varying from 10 '4

g/cc up to 10 "g/cc. The gas may be neutral as in the
low-temperature HI regions, or completely ionized as
in HII regions near very luminous stars. In the outer
corona of the sun the degree of ionization is high and the
electron density is of the order of 10'/cc. As we proceed
in towards the center of the star, the degree of ioniza-
tion varies considerably. In the photospheric layers
(mainly responsible for the sun's continuous spectrum),
the particle density is of the order of 10"/cc and the
ionization is small. Near the center of the sun we of
course have very much greater densities and tempera-
tures and a very high degree of ionization.

It would be very desirable to have a theory capable
of treating the whole range from low to high densities
for mixtures of neutral and ionized gases. The treatment
of an ionized gas involves certain new elements in
addition to those for neutral gases; this will be dis-
cussed in detail in Sec. 2. The region of intermediate
density (r r, or L L,) has thus far been practically
unexplored on account of excessive mathematical com-
plications. The procedures discussed above for the two
limiting cases of high and low density are not applicable
in this region. For similar reasons, the solution of
definite initial and boundary value problems with the
Boltzmann equation has also not been studied to any
extent. In order to make some progress in the investiga-
tion of such problems it is necessary to simplify the
mathematical procedures quite considerably.

The aim of this series of papers is to propose a treat-
ment of collision processes in gases which leads to just
such a simple mathematical formalism. The main

difhculty in handling the full Boltzmann equation arises
from the complicated nature of the collision terms. In
contrast to other procedures, ours consists. in replacing
these troublesome collision integrals by mathematically
simpler terms; these, however, are chosen so as to con-
form to the conservation laws for mass, momentum, and
energy and at the same time to represent certain essen-
tial features of collisions, e.g. , persistence of velocity.
This approach makes possible a survey of the whole
range from low density to high density, including the
intermediate region. It leads to the correct asymptotic
behavior in the two limiting cases mentioned above.
The mathematical simplification introduced with the
model enables one to solve problems which are physi-
cally more complex than those soluble with the standard

' J. A. Hynek, Astrophysics (McGraw-Hill Book Company,
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Boltzmann equation; in addition, one is able to treat
definite initial and boundary-value problems.

Each collision term in a Boltzmann equation consists
of two parts. The one part, ' —J'J'fi(vi, x,t)fs(v, x,t)
Xkisdkdvs, represents particles removed or absorbed
from a definite velocity range by collisions; the other
part represents the particles emitted into that range as
a result of collisions. Our absorption term, —N(x, t)
Xk(v, x,t)f(v, x,t), where e(x, t) =ff(v, x,t)dv, is sub-
stantially the same as that in the Boltzmann equation.
The emission term (which is the real source of difficulty)
is replaced in our crudest model by a term representing
a Maxwellian distribution of the emitted particles
with a density, mass velocity, and temperature satisfy-
ing mass, momentum, and energy conservation require-
ments. This bears some resemblance to the "local
thermodynamic equilibrium" model used in discussing
the formation of the continuous spectrum in stellar
atmospheres. The similarity of the Boltzmann equation
to that governing propagation of radiation has been
discussed by Jaffe.4 The method proposed here is quite
different, however, and is capable of considerable ex-
tension and generalization to include the study of
physically complex problems.

The plan of this series of papers is the following: In
the first paper we study systems which are, or may be
represented by, one-component systems; to illustrate
the technique we avoid mathematical complications by
making the simplified assumption of constant collision
time. This model is applied to the study of dispersion
and absorption of sound in a simple un-ionized gas and
also to the oscillations of an ionized gas with the addi-
tional simplifying assumption that the positive ions
may be replaced by a uniform constant distribution of
positive charge. The physically most significant feature
here is the transition from low-pressure plasma waves
to high-pressure sound-type waves.

In the second paper we extend this treatment to a
consideration of two- and three-component systems.
This includes a discussion of the translational dispersion
effect for sound waves in un-ionized gas mixtures. The
further effect on small oscillations arising from the
coupling between positive ions and neutrals will be
studied over the whole range from low to high pressures;
the two types of wave which occur at low pressures are
found to merge into a single type of wave as the pressure
increases and the collision mechanism begins to pre-
dominate.

A third paper will deal with the oscillations of ionized
gases in static external magnetic fields. The range of
validity of the conventional magnetohydrodynamic
theory will be discussed there. An important point
dealt with in that paper is the way in which gaps in
the frequency spectrum, present at low densities, dis-
appear as the density is increased.

The discussions of the first three papers are confined
to initial value problems in the theory of small oscilla-
tions. The accent there is substantially on the study of

the mechanism of cooperation in ionized and unionized
gases. In a fourth paper we abandon the assumption of
constant collision time and examine physically more
realistic models. The connection of our kinetic equa-
tions with the standard Boltzmann equation is dis-
cussed in more detail. In subsequent papers we shall
study particular boundary value problems and some
nonlinear processes.

2. EARLIER TREATMENTS OF SYSTEMS OF
CHARGED PARTICLES

The theory of oscillations in ionized gases is still in
a rather tentative state. However, a number of features
can be understood at least qualitatively. An essential
difference from the theory for neutral gases is that
approximately undamped waves can be propagated
not only at high pressures (r))r,), but also at low
pressures (r«r, ).

The mechanisms responsible for the cooperative be-
havior of the medium are different in the extreme cases
of low density and high density. ' At low densities the
collisions are only of secondary importance, and the
forces acting to change the state of motion of a particle
are electromagnetic in character. Energy and mo-
mentum are transferred from one group of particles to
another through the intermediary of the electromagnetic
field in a way now familiar from the study of microwave
devices. It is important to note, however, that the
transfer of energy by the high-frequency components
of a pulse is a very slow process in low-pressure plasmas.
If one neglects the effect of random thermal motion,
the group velocity of the waves is zero and a disturbance
would remain completely localized. The angular fre-
quency oi is independent of the wave number p and is
the plasma frequency co~ = (4s uses/m)', where —e, m are
the charge and, mass of the electron, and eo is the num-
ber density. Including the effects of thermal motions,
the group velocity of high-frequency waves is approxi-
mately v, = (3pa/ro~)a, where a= (kT/m)', and )'s is
Boltzmann's constant; this is much smaller than the
sound velocity, 5a/3, for waves whose wave number p
is smaller than the inverse of the Debye length (a/o&~).
In addition, waves with p a/co~ are very heavily
damped.

Let us now consider some attempts which have been
made to treat the oscillations of ionized gases quanti-
tatively by the methods of kinetic theory. The long
range of the Coulomb force implies that the concept
of a definite binary collision will be inadequate except
for very close encounters. Instead, every charge par-
ticle is continually interacting with all the particles
of the assembly. An important theoretical step, making
possible the approximate treatment of many properties
of ionized gases, was taken by Vlasov. ' Langmuir' had
already pointed out that the Debye length is character-

' D. Bohm and E. P. Gross, Phys. Rev. 75, 1851, 1864 (1949).
~ A. Vlasov, J. Phys. (U.S.S.R.) 9, 25, 130 (1945).
s I. Langmuir, Proc. Natl Acad. Sci. U. .S. 14, 627 (1928).
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istic of the dynamic behavior as weII as of the static
properties of an ionized gas. Processes involving char-
acteristic lengths longer than the Debye length call
into play the cooperative behavior of the particles of
an ionized gas. Vlasov assumed that apart from close
collisions, a particle moves in an average electric field
arising from the other particles and proposed to de-
scribe the system by a one-particle distribution function

f(v, x,l). He wrote for the description of longitudinal
disturbances,

Bf eE Bf 8f+(—v &)f
Bt m Be bt,

~ E=4se ns —
~

fdv (2)

where eo is the density of the uniform continuous posi-
tive background. The force eE arising from the charge
concentrations of the particles themselves has been
inserted in the kinetic equation in the position appro-
priate to body forces. Vlasov termed this the integral
interaction term; it is designed to treat the forces
on a given particle arising from other particles at
distances greater than a Debye length. The term bf/ht (,
represents the instantaneous change of the distribution
function arising from closer collisions. The question
then arises as to the explicit form to take for 5f/bt~, .

The very close encounters at a distance less than the
interparticle distance can be represented by the binary
collision term of Boltzmann type. For the more distant
collisions such a representation is less certain. It is
important to note that in a low-pressure plasma the
Debye length is, in general, many times the interparticle
distance. Thus, in a collision between two particles
there are, in general, many other particles between
them. In spite of this, many authors' have treated
various processes in ionized gases using the binary
collision approach even for distant collisions. Such dis-

tant collisions involve small momentum transfers. Ex-
pansion of the distribution functions in the collision
integral term in powers of the momentum transfers
leads to terms very similar to those given by the
Fokker-Planck equation. This procedure is, of course,
approximate since it attempts to replace many-body
collisions by a series of binary collisions. The equation
neglects the "Onsager correction" and other correlation
effects; these require a more refined description in

terms of many particle distribution functions. However,
in the present primitive state of the theory it is worth
while exploring the consequences of this approach. In
a later paper we shall discuss the application of this

. method to the plasma oscillation problem in some detail.
The Fokker-Planck approach has already been used in

' D. Gabor, Z. Physik 84, 474 (1933); L. Landau, Physik. Z.
Sowjetunion 10, 154 (1936);D. Bohrn and L. H. Aller, Astrophys.
J. 105, 131 (1947); Cohen, Spitzer, and Routly, Phys. Rev. 80,
230 (1950).

the study of plasma oscillations by Logunov. "He ob-
tains damping and dispersion of the waves, but his
method is incapable of treating high-pressure plasmas
because of an inadequate representation of the collision
terms.

3. KINETIC MODELS OF COLLISION PROCESSES

The equations described above for neutral and ionized
gases are complicated to handle in practice because of
the intractable nature of the Soltzmann binary collision
term. We shall now discuss some simple kinetic models
which permit of exact mathematical treatment includ-
ing the solution of definite boundary value problems.
A more detailed discussion of the validity of our repre-
sentation of collisions and its relation to the standard
Boltzmann equation will be given in a subsequent paper.
In this section of the present paper we introduce the
simplest kinetic model; we give the underlying motiva-
tion for the form of this model from one point of view.

In many kinetic problems, for example, the eQ'ect

of electron collisions on the propagation of radio waves
in the ionosphere, it is convenient to avoid the com-
plexities of the Soltzmann equation by using a mean-
free-path treatment. One replaces the collision integral
by a relaxation term of the form

5f fs f(v, x,t)—
r (e)

where r(w) is a velocity-dependent collision time. This
expresses the fact that collisions tend to relax the dis-
tribution function to an equilibrium value fs. We
illustrate our discussion of collision models by referring
to oscillatory problems where a characteristic time
enters in a natural way. The relaxation model then
describes the destruction of phase of an ordered motion
on collision and leads to a damping frequency of order
1/r in the amplitude, where r is some suitable average
collision time. This type of model has the defect" that
charge is not conserved instantaneously but only on
the average over a cycle. It is, however, easy to remedy
this at least in the case of constant collision time by
taking for the collision term

8f f e(x,1)= ——+ fs(v),
St,

where e(x, t) =ffdv is the fluctuating density. Thus,
particles in a range dv about velocity v are absorbed at
a rate proportional to the number f(v, x,t) at (x,t), and
re-emitted at a rate proportional to the density at (x,t)
and with a Maxwellian distribution of velocities. "Ke
may regard this as a model representing electron-neu-
tral collisions. (This representation will be studied in

+ A. A. Logunov, Zhur Eksptl. i Te.oret. Fis. 20, 458 (1950)."E.P. Gross, Phys. Rev. 82, 232 (1951).
'~ For a discussion of this model from a different point of view,

see reference 6, p. 1864.



MODEL FOR COLL I SION P ROCESSES I N GASES

more detail in Paper 2, where we treat the coupling of
charged and uncharged systems more adequately. ) Upon
integrating over velocities we find J'8f/htl, dv=0 so
that the number of particles is instantaneously con-
served in collisions in contrast to the earlier case where
the conservation applies only for the averages over
finite times. There is, however, no instantaneous con-
servation of momentum or energy. In fact, we have

ttf m r t mv'bf
mv—dv= —vfdv, I

— —dv
2 u,

m 3krp
VPfdv''r

m ~ I'

We shall show later that this procedure is valid for the
treatment of certain types of initial value problems for
finite collision time and for waves of large wavelength.

e write

f=fp(1+re) fp=npF,

n(x, t) =np(1+i),

(&)

(8)

where rt and v are dimensionless quantities small com-
pared to unity. We assume rtr, i, and E= Ir', oscillate as
exp[i(px —p&t)] and neglect products of these variables.
Then Eq. (5) becomes

i(pM —pp)P+ (eE/kTp)N =X(v—y),

where e is the x component of v. We also have

To being the equilibrium temperature. This represents
a gain or loss of total energy and momentum by colli-
sion, depending on the phase of f.

Thus far we have discussed a model which can repre-
sent only electron-neutral or ion-neutral collisions in
which the collision term is linear in the electronic dis-
tribution function. The linear feature would also be
present in a more exact study of the collisions. How-
ever, in considering electron-electron or ion-ion colli-
sions which are important in the high-pressure ionized
gas, we should have collision terms quadratic in the
electron and the ion distribution functions. (In the
study of small amplitude disturbances such terms may,
of course, be linearized, but we now seek a general
formulation. ) We shall construct a simple model, quad-
ratic in f which reproduces certain essential features of
the collisions without introducing the troublesome
Boltzmann collision integral. However, this model will

still not satisfy all conservation requirements. Let us
write

Bf eE Bf
+(v V)f-

Bf 8$ Bv

n (x,t) np(x, t)
f(v, x,t)+ F, (5)

m
F=

l l exp( —mv'/2k').
&2 kr.)

Thus, J'Fdv=1. We have taken the rate at which
particles leave a particular velocity range at (x,t) as
proportional to f(v, x,t), and to the density n(x, t). The
number of particles emitted at (x,t) equals the number
absorbed at (x,t); this number is proportional to the
square of the density and is emitted with a Maxwellian
velocity distribution. X=np/0' is a collision frequency,
here assumed independent of velocity. It is easily veri-
fied that the total number of particles is instantaneously
conserved by the collision processes, while momentum
and energy are not.

It is now worth while to examine the dispersion rela-
tion for small-amplitude oscillatory processes governed
by Eq. (5). For brevity, we adopt the approach of look-
ing for plane-wave solutions of the type exp[i(px pit)j—

ir= ) F@dvr

F.= —(4m en p/ip) r

Eliminating E we 6nd the distribution function

v
l

4xnpe' I
l&=Re X+

~+'(P~- )1 kr. 'pl'

(10)

(12)

and the dispersion relation

r Fdv t 4xnpe pt
l~X+

& ~+'(pu- ) I kr. 'pl
(13)

We conclude from this relation that the oscillations are
strongly damped at high pressures. For the case of a
plasma gas the complex frequency is approximately
pi~ ',iX~(——-xiV+pr~')'; this is of the order of the
collision frequency for X small and always corresponds
to damping. For a neutral gas, &u„= (4s.npe'/m) &=0, and
so &u'~ —6'+ (kTp/m) p9i/(X —ip~); thus in the limit of
very high collision frequency one obtains highly damped
oscillations instead of undamped sound waves.

We thus see that this model is incapable of yielding
correct results at the high-pressure limit. What is the
origin of this failure) As discussed earlier and in refer-
ence 6, the processes of organization are very diGerent
for a plasma and for a sound wave. In particular, one
must recognize the velocity organization characteristic
of a sound wave. Statistically, a particle with excess
velocity at a point makes collisions which slow it down
to the Aow velocity at the point in question. Similarly
particles which are moving too slowly tend to have their
speed increased to that of the Qow velocity. The colli-
sion models studied thus far fail to incorporate this

If one expands the denominator of (13) in powers of
ipg/('h —ipr) and restricts the study to long wavelength
one Gnds

kTO f 3'~
pp'= p&

'—ipiX — P"
m I (g i )'
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feature so that it is not surprising that they do not
yield sound-type collisions in the high-density limit.

We now propose a simple model which succeeds in
giving an adequate description of both the high- and
low-density plasma. For a one-component system, one
writes

si(x, t) = ' f(v, x,t)dv, (17)

q(x, t) =1/N(x, t) vf(v, x,t)dv,

(19)

(20)

where q(x, t) and T(x,t) define the flow velocity and
temperature at x and f. We have assumed the re-emitted
particles at (x,t) to emerge with a Maxwellian distribu-
tion centered about the liow velocity q and correspond-
ing to temperature T(x,t). It is easily verified that,
with the definitions of q and T' given, the collision terms
instantaneously conserve particle number, momentum,
and energy. The kinetic equation (15) is a nonlinear
integro-partial diGerential equation. However, it is con-
siderably simpler than the standard Boltzmann equa-
tion since the distribution function enters into the
collision terms of Eq. (15) in a simple way: as f, J'fdv,
J' vfdv, and J'v'fdv. Thus, one finds a solution of Eq.
(15) in terms of the undetermined functions q(x, t),
I(x,t), T(x,t), E(x,t), and then inserts this solution into
Eqs. (17) to (20). This establishes the conditions of
compatibility which serve to determine the solution
completely. For the particular case of small-amplitude
oscillations the procedure yields a dispersion relation
specifying the connection between frequency and wave-
length in its dependence on collision frequency, plasma
frequency, temperature, etc.

The use of conditions of compatibility bears a certain
resemblance to the first step in the Enskog-Chapman
technique of solving the Boltzmann equation. However,
the methods are quite diferent. In the K-C technique
one assumes a locally Maxwellian form for the distribu-
tion function in first approximation and then deter-
mines the density, velocity, and temperature entering

r}f/r}t+ (v ~)f eE/—m r}f/r}v
= —(e(x,t)/o) f(v, x,t)+ (n'/a) C, (15)

C = Pm/2~AT(x, t)g'*

Xexp( —m/2kT (x,t) $v —
t1 (x,t)]'), (16)

in this choice by conditions of compatibility; here we
change the collision term itself and solve for the dis-
tribution function rigorously. The solution will, in
general, not have the form assumed in the Enskog-
Chapman method. Our approach has the virtue that
one can solve definite initial and boundary value prob-
lems wholly within the frame work of a microscopic
formalism. The model we have described involves the
assumption of a collision time independent of velocity.
In a later paper we shall show that this is not an essen-
tial restriction and shall make, along with other general-
izations, the one to velocity-dependent coHision times.
In the present paper we shall study the consequences of
Eqs. (15) to (20) inasmuch as it appears to be the
simplest model capable of yielding physicaHy satis-
factory results throughout the entire range of pressure.

There exists a number of studies of the oscillations
of ionized gases using transport equations. For example,
the Thomsons" and subsequently Bailey" base their
discussions on Maxwell's equations of transfer. As
applied to a one-component system of charged particles
these are the equations of continuity, of momentum
transfer, and Poisson's equation. When no static mag-
netic field is present one obtains the dispersion relation
or'= ~„'+(kT„/m) p'. It is not clear from these transport
treatments whether the results are meant to apply at
low pressures or high pressures; in fact, they could be
valid only at high pressures. Even there, however, they
are inexact, as they correspond to an isothermal treat-
ment. Thus, in terms of the model discussed above, the
temperature T is treated as a constant and energy
balance is not maintained instantaneously in collisions;
we shall obtain Thomson's results from our model at
high pressures and in the isothermal approximation.
The high-pressure nature of the Thomson approach for
a one-component system is brought out in an alterna-
tive treatment by Linder" who adds a pressure term to
the equation of motion of a particle and with an iso-
thermal assumption obtains the same result as Thom-
son. At low pressures the correct dispersion relation as
found by an exact treatment of the kinetic equation is
cu'= e+ev(3kTs/m)p', differing from that at high pres-
sures by the factor 3. We expect then that, in an iso-
thermal treatment, there will be a change in the fre-
quency corresponding to a given wavelength as one
goes from low to high pressures. This is indeed the case,
as will be shown with our collision model; in addition,
we 6nd an accompanying absorption which reaches a
maximum value when the collision frequency is of the
order of magnitude of the plasma frequency.

We have thus far confined discussion of the transport
method to isothermal models. It is possible to generalize
the transport procedure to include temperature varia-

'3 J. J. and G. P. Thomson, CondlcIion of EIectric@y through
Gases (Cambridge University Press, Cambridge, 1933), Vol. 2, p.
353.

'4 V, A. Bailey, Phys. Rev. 78, 428 (2950)."E.G. Linder, Phys Rev. 49, 753. (1936).
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Fro. 4. Absorption of ionized gas for wavelength
equal to Debye length.

the exponential in Eq. (16) (neglecting q' and higher
powers), we find

e'&&* "'&. One must consider also the solutions of the
homogeneous parts of Eqs. (20) and (27) and take the
correct linear combination in order to solve a definite
initial or boundary value problem. In this paper we
examine a one-dimensional initial value problem, the
propagation of a pulse. Suppose that at times t&0 the
particle density is uniformly eo throughout unbounded
space except for a small region between —xo and xo
confined between two walls, where the density is
Its(1+vs). At time t=0 the walls are removed and we
ask about the subsequent behavior of the system. To
solve the problem the distribution function at 1=0
must be specified. This initial distribution depends on
the particular (macroscopic) mode of preparation of the
system. If, for example, the present system has been
prepared by compressing the gas in (—xs,+ms) slowly
over a time very long compared to the mean time be-
tween collisions, the initial distribution function will be
very nearly Maxwellian.

We take as initial conditions at /=0:
m

C=F- 1+ v «1
7T, I

The linearized kinetic equation then becomes

(26) p(v, x,0) = voF(v) for —xs&x(xs'
=0 otherwise

v= vo for —xo(x(x'0
=0 otherwise

8$ eE v ( III—+(v v)e+ =)
I

v —e+ v. « I (27)
8$ IT, & IT,

------ Reol port of «I

irnoginory port of st
/

/J
/

/
/

//
/

/
/

Equations (21) to (27) form the basis for the further
analysis of this section.

Landau" has emphasized the lack of rigor in the pro-
cedure of looking for solutions of Eq. (27) of the type
where all quantities have a time and space variation

The mass velocity q is zero throughout all space at
t= 0.

For the case of sound waves it is clear what will

happen. Two pulses are propagated with sound speed
in opposite directions parallel to the x axis; the shape
of each pulse is maintained except for the small ab-
sorption and dispersion sects. In a low-pressure,
ionized gas the pulse will move slowly but will alter its
shape appreciably because of the high dispersion.

'The special problem is typical of a large class of
problems which may be solved by first performing a
Fourier expansion in unbounded x space. We write

Q(v, x,t) = ~ @,(v, t)e'v'*dp, etc (29)

From Eqs. (23) to (27) we find the following equations
for the Fourier transforms:

0.6

B@s eEv v
+sp ' vip+

Bt kTQ

BZ

=~I vv
—&v+ v «v I, (30)

kTs )

0.4
(31)

O.R

qv (t) = tv Fdv, (32)

0
0-4 0.6 0.8

p/x
&.0 t.e t.4

ip E,= —4ireIIsvv(t).

Pro. S. Absorption and dispersion of sound for isothermal case.

&s L. D, L@ndau, J. Phys. (U.S.S.R.) 10, 25 (1946).

These equations are a determined set if one specifies

p, (v, t) at time t= 0. Thus we must find the solutions of
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(X+o+ipu)gp, ,= —(eu/kTp) (Ep, ,),+Xvp, ,
+ ('Am/kTp)u(qp, ,).+Pp(v, o), (37)

Eqs. (30) to (33) for which each Fourier component (33) become
satisfies the appropriate initial condition. One then
superposes the Pp to 6nd p(v, x,t).

For example, in the problem discussed above

4, (v,o) =
p+ &p +00 g+00

voFe 'I"dx
4 -~0

vp, ~=
J Qp, (pFdv, (38)

sin(p, xp)= 2vp 5(p„)8(p.)F (qp, ~)~= uPp ~Fdv) (39)

sin (p.xp)
(0)= 2 o ~(p.)~(p.)

where b(x) is the Dirac delta function. Let us suppose
that vp(t) has the value v, (t) = p' vp(0) (e+'"'+e '"'). For
oscillations of a one-component plasma without thermal
motions, co= cop is independent of p and the disturbance
remains localized. For isothermal sound waves,
=p(kTp/m)'* and we obtain two oppositely directed
pulses. For long wavelengths and low pressures, the
plasma, including thermal eGects, obeys the dispersion
relation a& pp„+(3/2)(kTp/m)(p'/cop). To investigate
the properties of a density pulse we form

ip(Ep, .),= —4~eepvp, (40)

Here ttp(v, o) is the Fourier transform of the initial
velocity distribution. By multiplying Eq. (37) by F
and integrating over all velocities one finds

where
ovp, .+ip(qp, ..).= v, (0),

v, (0)= I yp(v, o)Fdv.

Using this equation together with Eq. (40), we elimi-
nate (qp, ,), and (Ep, ,), from Eq. (37), and are left
with the set of equations

sin(p, xp)
~(p.)&(p.)

3 kTp
X e'"&'expj i ppt—~+—conj. comp.

2 m )

The detailed discussion of this integral is complicated
and will not be given here. In the limit of long times,
v(x, t) tends to zero throughout all space indicating the
spreading of the initially sharp pulse due to dispersion.
As we shall see later, the actual form of vp(t) is more
complicated than that assumed here; for pulses with
widths large compared to the Debye length the general
features are unaltered.

We solve Eqs. (30) to (33), following Landau's pro-
cedure, by performing a Laplace transformation with
respect to the time variable. We write

4p, .=
U p

yp(v, t)e "dt—
for the image of Pp(v, t). The inverse t;ransformation is

y, (v, t) =
2' Z

~ 0+4&+

Pp e"do, (36)

where the integration is carried out along a line in the
right-half plane of the complex variable 0-. For the case
of waves propagated along the x axis Eqs. (30) to

Solving for u, we find

(Xm uv, (O)
Fd

~
+y, (o) I

(kTp ip )
Pp, rr=

Fdv
t

)m uo.
1— X— —+

~ 7,+o+'put kT, ;p

(44)

Here kp'= a&„'/u'. An expression for gp, is obtained by
inserting this value of vp, , into Eq. (42). Equations (42)
and (44) thus provide a complete solution to the initial-
value problem since we have merely to invert the
Laplace transform to find the dependence of the density
and velocity distribution on time. However, the inte-
grations are along paths in the right-half plane of the
complex variable 0. and, aside from being difFicult to
evaluate, yield little physical insight into the behavior
of the solution. We therefore note that although Eqs.
(42) and (44) are deined only for o in the right-half
complex plane it is possible to effect an analytic con-
tinuation of the functions into the left-half plane of 0.

by modifying the path of integration in the integrals
with respect to velocity. We integrate in the complex I

'Amu o kp' q
(X+o+ipu)y, =~ X—

kTp ip ip )
)mu v, (0)

+4p(o)+, (42)
kTp ip

(43)
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plane along a path C which passes below the singu-

larity, u= —(X+o)/ip. The two integrals entering in

the numerator and denominator of Eq. (44) are then
entire functions in the complex o- plane. "

Kith the path of integration C, the Laplace trans-
form of the density v~, will have poles at values of o.

given implicitly by

Fdv

X+0+ipu

Xm uo. kp'
X— —+—u =0. (45)

kToip ip

There will be an infinite number of such poles, all lying
in the left-half plane of cr. If one deforms the contour
into the left-half plane in Eq. (45), one Ands that the
density after a long time t is given very nearly in terms
of the poles at the residues of v~, . For shorter times the
remaining parts of the contour give a significant con-

tribution and there is in fact no advantage in deforming
the contour in the above way. For t large then

(Xm uv, (0)
v(i)= Fdvl +p, (0) lQ e ~',

&&To ip

since the numerator in Eq. (44) is independent of o.
The first term in the integrand is an odd function of u
and gives no contribution. v (t) may thus be represented
approximately as a sum of damped oscillating terms.
The asymptotic behavior for t large is determined by
that root o.

& of the dispersion relation Eq. (45) which

has the largest real part.
The dispersion relation Eq. (45) differs from that

obtained by the e'&&* ""substitution in that the path
of integration is not necessarily along the real axis.
We shall see shortly, however, that the substitution
analysis gives a correct account of the behavior at long
times when the damping is not very great.

The behavior of the velocity distribution P, (v, t) is
different from that of the density vv (t) since the Laplace
transform of gv, , has an additional pole at a value of 0.

given by
&+Oo+ipu=0 (46)

In this expression the velocity u is, of course, real since
we are investigating the behavior of the distribution
function for particles of a given real velocity u. The
asymptotic behavior of @(v,t) depends essentially on
the relative values of the real parts of the pole op
= —ipu —X and of the pole oq with largest real part
satisfying the dispersion relation Eq. (45). The dis-

persion relation will be the determining factor when
the damping frequency is smaller than the collision

frequency X. For this case both the density and the
distribution function (for any value of the velocity)
have the same time dependence e 1'. We shall call this
the "collision-damping" case. From our later expression
Eq. (68) for the frequency as a function of wavelength
and collision time, it follows that Ree~=co;= —[X/

(X'+1)$[p'a'/&o„') for waves larger than either the
Debye length or the mean free path. We see that the
damping frequency is indeed smaller than the collision
frequency for these waves. This condition has the
further consequence that the contour C may be taken
along the real axis so that the e'~"' "'& substitution
analysis will lead to correct results for the behavior at
large values of time.

If, however, one is dealing with processes in which
wavelengths less than both the Debye length and the
mean free path are important, the path C cannot be
deformed into the path along the real axis; this is due
to the fact that the damping frequency is higher than
the collision frequency. The distribution function at
long times will vary as e ~'e '""', while the density will

have the more rapid decay given by the root o-& of the
Eq. (45). Thus the distribution function for long times
contains, in addition to the organized component of
velocity, "free-particle" components which give rise
to negligible macroscopic density Quctuations. '

For the "collision-damping" case one can easily
write explicit expressions for the asymptotic behavior
of the oscillating quantities. We have

v= vo Re(e'~" "'~)= voe"" cos(px oo,t), —(4&)

eno
E = — e""sin(px —oo„i), (48)

v ecojE

( ( Xs);) ucov'

X (l+~')I 1+ —l~-(pu-~. )l 1-
pu'i ~,'3 pa&

Zko„)
+sin(px —(o,t) X(pu —oo„)l 1+

pu')

Zoo;i uo)v'
(49)

o)„') pa'

y—+vo cos(px —co,t)[1+(u/a') (oo„/p)). (50)

The real and imaginary parts of co are given by the
equations obtained in our study of the dispersion rela-
tion in Secs. 5 to 7.

Using the above expressions it is now easy to verify
that the approximations made in the linearization pro-
cedure are valid for all velocities in this long wavelength
case. The amplitude vp can be chosen arbitrarily small

and, provided the collision frequency is not zero, the
linearization leads to consistent results.

For the high-pressure limit we have from Eq. (68)
&u„—&~„+-',(p'a')/~v', co,—&0 as X—&oa. The distribution
function is
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For the low-Pressure Plasma &o„—+cP„+pP(P'a')/Pi„', ~,—+

—(X/pi, ) (p'a'/~„') as X~0. Then
from the destruction of phase by drift motion. The
representation of this latter type of damping requires
the use of the contour C. The damping frequency is
small for long wavelengths but increases rapidly as the
wavelength approaches the Debye length.

The most direct approach to the evaluation of Eq.
(53) would appear to be an expansion of the term
1/(&+a+ipf') in powers of ipse/(X+o) and an integra-
tion term by term. This is a development in powers of
p/P, +p.) or, reverting to usual units, in powers of
pa/(X ipp—) Th.us one requires pa to be small compared
to either the collision frequency or the frequency of the
waves. Alternatively, the wavelength has to be long
compared to the Debye length or the mean free path.
This actually applies in two important limits. The case
of sound oscillations in neutral gases is one where the
collision frequency is large compared to pa for all but
very short waves and very low pressures. A second case
occurs with electron plasma oscillations of wavelength
long compared to the Debye length (pa/pp~pa/~~
=Debye length/wavelength((1) irrespective of the
collision time, so that one can study the entire range of
pressures. In fact, both of these cases can be treated
by the same expansion. The expansion breaks down for
heavily damped waves in both the neutral and ionized
gas cases. An objection to the above procedure is that
the series does not converge; it is, in fact, asymptotic
so that it is useful where the drst few terms are all
important. In order to establish this and to give alter-
native developments, we express the dispersion relation
in terms of the error function of complex argument.

The real axis as path of integration may be replaced
by the contour C consisting of the straight line, Imp
=Imt (A+a)/ —

ipse, with an indentation at the singu-
larity and below it. Resolving the integral into the
contribution of the small semicircle about the singu-
larity and that of the principal value of the integral
one finds

Sao„2

—cos(px —pp, t) (pu. —p~,)
Q

roe"'
(j) —+

X'+ (pu —pi )' p
'Amo)„'—sin (px —&o„t)2

pa 2
(51)

For sound waves in an uncharged gas we again have

( u&a, p
y-+ip cos(px —a)„t)

)
1+——i;a' p)

here, however, one must take p~„=pa. Thus

p~i p cosp(x at) (1—+u/a) (52)

All the above distribution functions exhibit the same
general feature that the magnitude is greater for those
particles moving in the direction of the wave than it is
for those moving in the opposite direction. This is in
fact necessary for maintaining a wave. For the low-

pressure plasma case we note also the opposite con-
tributions from particles moving faster, and those mov-
ing slower than the wave.

5. DISPERSION RELATION FOR INITIAL VALUE
PROBLEM

The present section is devoted to a discussion of the
techniques needed for the study of the dispersion rela-
tion Eq. (45). The results for important special cases
are given in the following two sections. At this stage,
it is convenient to introduce dimensionless variables.
We measure frequencies in units of the plasma fre-
quency co„, velocities in units of the thermal velocity
a= (kTp/m)', and lengths in units of the Debye length

lid= (kT/4irepe')&. In these units the dispersion rela-
tion becomes

1 t'exp( —P/2)df 1

(2pr)*'~, (2pr)'
We shall at times deal with co rather than o-,. the two
quantities are connected by cr = —i~.

Let us lrst study the position of the singularity of
the integrand in the f plane. Since the oscillations are
damped, 0- has a negative real part and a negative
imaginary part. Thus li+p can be either positive or
negative according to whether the damping frequency
is less than or greater than the collision frequency.
Since p is real, this means that the singularity gp
= —(X+o.)/ip is in either the first or the fourth quad-
rant in the f plane. For t p in the first quadrant, the
contour appropriate to the e'&" "" substitution, i.e.,
the real axis, gives correct results. This represents the
situation where the main damping arises from colli-
sions. When fp is in the fourth quadrant, the damping
frequency is larger than the collision frequency; the
additional damping is of the Landau type and results

r
" sinh8f

Xexp (—8'/2) per —2 exp (—P/2) dt', (54)
40

where
8= (pi+pl~)/p. (55)

Making use of the identity

sinh8t' (pr y
'

exp( —f'P/2) di =
j

—
~

d8' exp(8"/2), (56)
E2i ~p

and introducing

0= i8v2 = ()—ipp)/pV2, —

we find the dispersion relation

P' i' pp+ili
=1+ + iV2F(Q).

+ip~X 1+ippX p.

1 t di exp( —tP/2)
iP= (i.+iPX a) i.)di —(53).

(2~)». X+ayipi-
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Here

F(0)= —— exp( —0")dQ' exp(Q')
2 p

(59)

or, with ordinary units,

i~{—oP+3p'a'+a) '}=A{or '+p'a' —oi'} (66)

p
X 02n+1

F (0)=exp(Q') ——P (—1)"
2 -s (2I+1)N!

(60)

convergent for all values of 0, but useful only for values
of 0 with modulus less than unity. F(0) can also be
expanded in an asymptotic series of the form

F(0)=1/20 —1/4Q'+1 3/8Q' —1 3 5/160'+ ~ . (61)

This asymptotic series is in powers of pw2/(X —ko),
and yields the same result as the procedure outlined at
the beginning of this section.

Finally, we note that F(0) can also be expanded as a
continued fraction,

F(0)= 1/2Q+2/20+4/20+6/2Q, (62)

for 0 in the 6rst and fourth quadrants. This expansion
does not correspond to a simple development in powers
of the Debye length or mean free path divided by the
wavelength; however, it converges rapidly over a large
portion of the complex 0 plane and is more generally
useful than the asymptotic development. To obtain
information in the regions of moderate and strong ab-
sorption for both neutral and ionized gases, we require
a knowledge of F(0) over portions of the complex 0
plane not covered by any of the developments given;
this knowledge has been obtained by numerical com-
putations.

We also require a knowledge of F(0) for 0 in the
second and third quadrants. This is found by making
use of the identity,

is the error function of complex argument.
Examination shows that, for waves with positive real

frequency, 0 lies either in the fourth or third quadrant.
The function F(0) is treated in detail by Rosser. " It
has the ex ansion

(Z—3i ) p'a'
~'=~ '+I

EX—ioo) co„'
(67)

We obtain results correct to order p'a'/ohio' by sub-
stituting the value co=co„on the right-hand side. The
frequency is

ps@2

(o=Mo+ — {X'+3'„'—i 2hoo}.
2oi„' X'+M ' (68)

%e see that the damping frequency is proportional to
p', in contrast to the damping arising from the electron-
neutral gas collisions, which contains a leading term
independent of wavelength. The coefficient of p'a'/too'
is plotted in Figs. 1 and 2. The absorption reaches a
maximum when X=co„, i.e., when the collision frequency
equals the plasma frequency. At this point the real
part of the frequency is exactly halfway between the
limiting values for zero and infinite collision times. The
absorption is approximately linear with ) at the low-
pressure limit, varying as (p'a'/co„')pi/oo„), while at
high pressures it is hyperbolic, varying as (p'a'/~~')
&( (too/X). The negative frequency root of Eq. (67) yields

The same result is obtained using the asymptotic series.
This shows quite clearly the various limiting cases. If
the collision frequency A, tends to zero we have

~2 ~ 2+3psii2

the correct dispersion relation for low-pressure electron
plasma oscillations of wavelength long compared to the
Debye length. In the limit of high pressures the collision
frequency X tends to infinity and we find ro'= to„'+p'a'.
This is the Thomson result.

By solving Eq. (66) for intermediate values of X it
is possible to trace the transition from the one solution
to the other. From Eq. (66) we have, after grouping in
powers of p'a'/coo',

F(—0) =7r& exp(0') —F(0).

O. IONIZED GAS OSCII,LATIONS

(63)
ps@2

oo= —oo„+ {Xs+3ioos—i 2hoo}
2oo„' X'+(o„'

For an ionized gas the continued fraction and asymp-
totic series are useful when

~ pa/(X —ioi)
~
&1. Thus for

waves of large wavelength where pu/ceo«1, one can
obtain information for arbitrary values of collision fre-
quency. If we break oG the continued fraction after
the third term we have

F(0)= 1/2Q+2/2Q+4/2Q= (0'+ 1)/0(20'+3). (64)
After some algebraic manipulation the dispersion rela-
tion can be put in the form

s~{—~'+3p'+1}= l {1+p' —~'} (65)

'r J. B. Rosser, Theory and Application of J'o'e 'dx (Mapleton
House, Brooklyn, 1948).

and gives absorption and dispersion which corresponds
completely to the results for the positive frequency case.
It is important to note that the absolute magnitude of
the damping is very small since it is proportional to
p'a'/ohio'. For example, for pa oo„iiw the maximum
damping frequency is less than 10 4 co„.

The dispersion relation Eq. (68) gives adequate in-
formation for pa«a&o. We are also interested in the case
where pa is approximately equal to, or greater than co„,
i.e., waves of length comparable to the Debye length.
For this case the development in powers of pa/oi„ is
not appropriate; one must also have detailed numerical
information concerning F(0). In Figs. 3 and 4 we plot
the real and imaginary parts of a& for the case pa=oo„
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(waves equal to the Debye length) as a function of the
collision frequency. The results are the same as for the
long-wavelength case when )))co„.However, at values
of ) smaller than co~ the very large "drift" damping
discussed in Sec. 4 manifests itself.

7. OSCILLATIONS OF AN UNCHARGED GAS

The general results of Secs. 3 to 5 apply to the initial-
value problem for uncharged gases; the plasma fre-
quency cv„ is then zero. For our constant-collision time,
isothermal model the general dispersion relation Eq.
(58) becomes, in ordinary units,

P'—a'/ipiX= 1+[Pa/oi+ pi+iX/Pa JiV2F (0), (69)

Q = X iso/—pa%2

As discussed in Sec. 5 the asymptotic expansion Eq.
(61) is valid provided pa«X, i.e., the frequency of the
sound wave is smaller than the collision frequency. The
first few terms of this expansion yield the result

pp'+ p'a'{ —(1+4ipi)/X/ (1—ipse/X)'}

+ (p4a4/X') {(3—18ipi)/X/(1 ipse/—X)4}=0. (70)

In the limit of infinite collision frequency we find
pi'=p'a', the correct isothermal sound speed. The cor-
rection for finite but large collision frequency, expressed
in powers of pa/), , is

pp =pa{1—ipa/X+ —,
' (pa/X)'}.

This expression indicates both an absorption and dis-
persion of sound for finite value of the collision fre-
quency. The physical situation is similar to the Lang-
muir description of the damping of plasma waves with
wavelength near to the Debye length. ' Here, because
of the translational motion, fast-moving particles can
occasionally move well ahead of the sound wave without
undergoing a collision; they then carry ordered motion
from one region to another in which the phase for
ordered motion is different. The ordered energy is then
dissipated into random thermal energy by collisions,
This effect, of course, increases with increasing mean
free path and with decreasing wavelength.

The series expansion Eq. (70) breaks down when
pa~A and one must resort to numerical methods in
solving Eq. (69).The results for the real and imaginary
parts are presented in Fig. 5. The accuracy of these
results is, however, limited by the inadequate tables of
the function F(Q) available to us at present.

According to the discussion of Sec. 4 the asymptotic
behavior of the distribution function differs according
as op ———ippp —— X ipu, —or —oi —— ippi, has—the larger
real part, r& being given by the dispersion relation Eq.
(69).The second case is what we have previously called
the "collision-damping" case. For this case the damping
frequency is less than the collision frequency and the
asymptotic behavior of the distribution function is the
same as that of the density. From Fig. 5 we see that

this is the situation when pa(1.5X. For Reo.p)Reoi
the damping frequency is greater than the collision
frequency, the distribution function and density have

. different asymptotic behaviors, and the distribution
function is directly sensitive to its initial value. The
individual features of the particular initial value or
boundary-value problem treated are then important.

For the "collision-damping" case, one may study the
physical processes with the aid of the distribution
function Eq. (49). Using the value of p& given by Eq.
(71) we see that the deviation from the Maxwellian
distribution is greatest for fast-moving particles and
short wavelengths. From Eq. (39) we verify that the
greatest contribution to the out-of-phase component of
mass velocity comes from fast-moving particles and
short wavelengths, in accordance with the picture dis-
cussed above.

T(x,t) = Tp{1+r(x, t) }. (72)

Equations (21) to (25) remain valid in the general case,
but the expansion of C in Eq. (26) must be replaced by

C =F{1+(m/kT p) v q+ p. (mo'/2kTp —p) }. (73)

Equation (19) defining the temperature leads to

3kTo
(v+ p.) = v'Fydv.

m
(74)

The basic set of linear equations governing the Fourier
transformed variables for a disturbance in the x di-
rection is

Byp e(E,).
+ip7kjhp+ B

&TO

nz ( mv' 3)
,—e,+ (v.)*+ .(

———I,
kTp (2kTp 23

(75)

(qp). = pt&, Fd v,

3kTp
(Pp+ 7'p) = vfpFdv, '

ip (Ep),= —4preippup

8. GENERAL TREATMENT

In this section we shall remove the restriction made
previously and allow for temperature fluctuations. The
problem is now characterized by the full set of Eqs. (15)
to (20). The passage to the linear approximation in-
volves the additional fluctuating quantity p-(x, t), de-
fined by
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Xss sa ko s
Fdv X— —+

rrp, g»
t kTp ip ip

'A+a+ipu

One may eliminate (Ep), and (qp), in the same way as
in the isothermal case. Corresponding to Eq. (44) one
now Ands a coupled set of equations for the Laplace
transforms of vp and r~. This set is

YVe hand

1
t I t

exp( —v'/2)dv V2
=—F(0),

(2ir)»& ~ j 7+i(pu ro—) p
C

1 r
t I

exp( —v'/2)v'dv

(2n.)»" " " A+i(pu ro)—

W2
=—{0+2(1—0')F(0)}

I'dv
—rp, r'

m'v 3——X
2kTp 2

1 r r r exp( v'/2—)v4dv

(76)
(2ir)»j ~ " A+i(pu ro)—

Vp, »r 1

X+rr+ipu

()m ur, (0)
Pdv~

'
+y, (0)

~

&kTp ip

X+o+ipu

m
I

v'Fdv
X +

3kTp& X+o+ipu kTpip ip

Xm no- ko'I,

Xm r v'Fdv ( mv' 3)+,. 1--
3kTp& X+o+ipu» 2kTp 23

V2
=—{50—2Q'+4(0' —20'+2)F (0)},

1 r r r exp( v'/2)—uv'dv

(2ir)»" ~ " A+i(pu —ro)

1
=—{3—20'—4Q (1—0')F (0)},

t p t exp( —v'/2) (3—v')dv

(77) (2ir)»~ ~ ~ A+i(pu ro)—

(79)

m r v'Fdv Xm uvp(0)
+Qp(0)

3kTp" X+o+ipu kTp ip

The dispersion relation in dimensionless units is then

1
t t

pexp (—v'/2) d v Xiao u
1— X+ +-

(2ir)»~ & ~ A+i(pu-ro) p ip

v2
=—{—Q+ (1+2Q')F}

t
exp( —v'/2) (3—v')v'dv

(2ir) 4 j j A+i (pu ro)—
=—{—20+20'+ (—2+20' —404)F}

We also find

A+i(pu —pp)

~
r exp( v'/2)v'(—3 v')—

X 1+
6(2ir)»» ~

1 r r r exp( —v'/2)dv
(78)

(2v.)»j & " A+i(pu —(g)

1 r r rexp( v'/2)v'd—v ( Xupr u )
3(2ir)»& " ~ 7+i(pu —a&) 0 p ipse

Xuo) I
X lb+ +—=—

p ip-

(1+Xi—pkv20)

X/2 t r r exp( —v'/2) (3—v')dv
X

(2ir)»& & ~ )+i(pu pp)—
~XV2 20

+F(0) +—(1+&'—pXV20) ~

1 r
t

t.exp( —v'/2) v'dv gupr u
In order to study this dispersion relation we express &+ +-

all the integrals occurring in terms of the single integral ( ) " + (p

(80)

r exp( 2/2)d{—
iV2F (0),

(2~)»j. {-—e

which was discussed in Sec. 5.

{0+2(1—0')F (0)}

j.—(1+X'—pX&20) [3—2Q' —4Q (1—0')F]
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(1+V—pXV20)

—F(0)
Xv2 20

+—(1+it' —pltv20)

l~ K2
1+——

t
—20+ 20'+ (—2+ 2Q' —404)Fj

6
(81)

1 X+2
1—— [0+2 (1—0')Fj

Using these results we can write the dispersion relation
as

mum damping frequency for the general case occurs
again when the collision frequency is equal to the plasma
frequency; this damping is —', that for the isothermal
case. The decreased absorption accompanies the smaller
dispersion for the general case. The detailed variation
of frequency as a function of collision frequency is
given by Eq. (83) and represented in Figs. 1 and 2. In
the event that the wavelength is comparable to both
the mean free path and the Debye length one must
resort to numerical information concerning F(0).Tables
of suKcient accuracy to solve the complicated Eq. (81)
are not available to us at present; we leave the detailed
investigation to a later time.

For a neutral gas the expression Eq. (82) reduces to

1
+ (1+X'—pX&20) L3—2Q' —40(1—0')Fj

1

X ——
L
—0+ (1+20s)Fj

. 2

The dispersion relation, Eq. (81), for the general case
is considerably more involved than the corresponding
relation, Eq. (58), for the isothermal case. However, as
emphasized in Sec. 5, one can obtain simple results for
wavelengths long compared to either the Debye length
or the mean free path. For this case the asymptotic
development for F(0) holds and one finds (in dimen-
sionless units)

XP' 5 19aP 5ie~X 3i(o
(1—')(—s )+ — ———+--

(X—i(u)' 3 3 3

p l 20
+ ' 5'A' —iaA—'+—'A(7+3oP)

(lt—s )'1 3

—20 (1—cv') —15'(o I =0 (82)
~

~

For the study of the oscillations of an ionized gas we
obtain an expression for the frequency which corre-
sponds to Eq. (66). Retaining terms of order Psa'/a&„'

we find for the frequency,

p'a' 1
cs (o„+ ( (~he+ 3(ops) s4/3Xs) y) (83)

2(a, (lt'+(o„')

At high pressures the collision frequency ) is large
compared to the plasma frequency, and one finds
~~~.+ (p'a'/». ) X5/3. This is the value found previ-
ously by a generalization of the Thomson method" and
verifies the high-pressure nature of the transport type
of procedure. At low pressures we lnd ~—&~i,+(p'a'/
2&v~'). 3, the correct dispersion relation for waves of
length large compared to the Debye length. The maxi-

p'a' 19 z'co 5 l
~2+

(1—~/X)' 3 X 3!

1
Si) 20 3ico

=0. (84)
lI,'(1—so)/li)'I a) 3 X 1

p4a4

Thus one 6nds both an absorption and a dispersion of
sound waves. No attempt has been made in this paper
to connect our collision frequency ) with molecular
parameters; it is known, therefore, only to within a
factor of the order of unity. This comparison will be
undertaken in a later paper where we also discuss models
more realistic than the present constant-collision-time
model. For the present we note that if one fits 'A by
taking the absorption equal to that predicted by the
Navier-Stokes equations (and also the Burnett equa-
tions), then X= (90/35)a'/g, where q= —',ps(8kT/mm)&l;

g is the coefFicient of viscosity; / is the mean free path.
The coeKcient of the dispersive term in Eq. (85) is
then 25 percent higher than that given by the Navier-
Stokes equation; it thus lies between the predictions of
the Navier-Stokes and of the Burnett equations. The
interesting experimental observations of Greenspan'
on the dispersion and absorption of helium gas reveal
important discrepancies between experiment, and the
predictions of both the Navier-Stokes and the Burnett
equations when pa~)."From the point of view of the
present work the study of this region requires a nu-
merical analysis of Eq. (81). We shall therefore later
take up the study of the translational dispersion in a
more detailed way.

"M. Greenspsn, J. Acoust. Soc. Am. 22, 568 (1950).
»The experimental observations refer to a boundary value

problem rather than an initial value problem.

Developing in powers of pa/X, we have, for pa/g«1,

pa 9 p'a'
ei= (5/3)'Pa 1—s(5/3)&—X—+11.3 . (85)
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