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The application of Schwinger’s variational principle to scattering by a Yukawa potential is studied.
A detailed comparison of the Born approximation, variational, and exact results is given in the energy
region from 20 to 150 Mev for a potential strength and range appropriate to the 3S neutron-proton inter-
action. Comparison with the second Born approximation is also made. The utility of the variational principle
is discussed and consideration is given to the high-energy limit. It is judged that for most potentials, the
variational formulation without elaborate trial functions will be better than the Born approximation.

The relation between the variational principles for the total scattering amplitude and for the phase
shifts is analyzed. A new formulation intermediate between these two is presented as a compromise between
the simplicity of the former and the accuracy of the latter. With the potential studied, use of this formulation
leads to considerably better results for the total amplitude than does the original principle.

I. INTRODUCTION

N the simplest and most fundamental quantum-
mechanical scattering problem, the scattering of a
particle by a fixed potential, which also yields the
scattering of one particle by another in the center-of-
mass frame, there exists an important energy region
where no entirely suitable methods are available for the
calculation of differential cross sections. We refer of
course to those intermediate energies for which expan-
sion in partial waves requires the determination of
numerous phase shifts, and for which on the other
hand, such high-energy approximations as the Born
approximation are inadequate for estimating these
phase shifts and, therefore, for estimating unexpanded
or closed form approximations to the differential cross
section. Consequently in this intermediate energy range
the computations are tedious even for the simplest
potentials, involving as they do numerical integration
of the radial differential equation for each of the
numerous partial waves. Moreover the resultant cross
sections vary with energy and other parameters in so
complicated a fashion, and in a manner so tenuously
related to the detailed shape of the potential, that such
calculations are actually not very enlightening qualita-
tively. The result is that the admittedly inadequate
Born approximation, which has the virtue of simplicity,
is frequently used in the hope that it can serve as a
not entirely incorrect qualitative guide.

For the case of neutron-proton scattering this inter-
mediate energy region begins at a laboratory energy Ey,
of about 20 Mev, where the contributions of higher
(than S) partial waves become significant.! With a
Yukawa well the validity of the Born approximation
has seemed questionable at energies as high as 250 Mev
“where the potential picture is getting to be quite far-
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1 G. Snow, Phys. Rev. 87, 21 (1952).

fetched,” since the second Born approximation is
significantly different from' the first, even up to these
energies.? In the present paper we investigate the utility
of Schwinger’s variational expression for the total
scattering amplitude® in bridging this gap for central
field neutron-proton scattering with Yukawa wells,
including exchange forces. The calculations have been
performed for a potential (Voa/7)e~7/* such that
V=53.8 Mev and a=1.35X 1071 cm, corresponding to
the S neutron-proton interaction. In subsequent sec-
tions we describe in detail the comparison of the
variational results for several varieties of trial functions
with the “exact” differential cross sections obtained by
numerical integration of Schrédinger’s equation,* and
with the results in Born approximation.® Briefly we
may state that the Born approximation turns out to be
quite good, particularly in the absence of exchange
forces. As described in detail below, with an improved
formulation and appropriately chosen wave function,
the variational method is superior to Born approxi-
mation, rather more so when exchange forces are
included. Naturally the variational results are achieved
at the expense of considerably increased computational
effort. It is our belief, to be elaborated in a later section,
that the Yukawa case is especially and accidentally
favorable for the Born approximation, while simultane-
ously unfavorable for the variational principle. We feel
therefore, although we are in no position to guarantee,
that for other well shapes the Schwinger formulation
usually will prove superior to Born approximation with
relatively less complicated machinery and trial func-
tions than those we have found necessary,® as confirmed

2 R. Jost and A. Pais, Phys. Rev. 82, 840 (1951).

3]J. Schwinger, “Lectures on Nuclear Physics,” Harvard
University, 1947 (unpublished).

4 Futterman, Osborne, and Saxon (to be published).

5 By Born approximation we mean always first Born approxi-
mation, unless otherwise stated.

6 It must be remarked however that our choice of well shape,
Yukawa, was motivated not merely by its obvious theoretical
interest, but also by the fact that for the Yukawa well the integrals
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by previously reported calculations of the total cross
sections for a square well.”

Irrespective of the degree of generality of our partic-
ular numerical results, our method of application of
Schwinger’s variational principle has independent theo-
retical interest. As originally introduced, this variational
principle was written in two forms. In one, the usual
expansion in spherical harmonics was made, leading to
an infinite set of independent integral equations and
thence to a corresponding sets of variational expressions
for the phase shifts. In the other, the entire scattering
amplitude was expressed in stationary form, thus giving
the scattering cross section directly, without necessi-
tating summing over the individual phase shifts. These
two modes of expressing the variational principle are
formally equivalent, of course. Regarded as the basis
for approximate calculations, however, they have quite
different attributes: The expansion is intrinsically more
accurate, whereas a direct estimate of the entire scat-
tering amplitude is intrinsically simpler. Our method
has been to develop a formulation intermediate between
Schwinger’s two alternatives by expanding in a finite
set of “partial waves” using the eigenfunctions of finite
rotation and reflection operators. This, we believe,
represents a useful compromise between the require-
ments of accuracy and simplicity.

These introductory remarks are amplified in the
following sections.

II. THE VARIATIONAL PRINCIPLES

In the coordinate system in which the center of mass
is at rest, Schrodinger’s equation for two particles
interacting according to the central potential V() can
be written in the dimensionless form

VA (x)+[F+u(x) J (x) =0, ¢Y)

where x=r1/a, with ¢ being a characteristic length (say
the range), associated with the potential, and where

= (2mE/i»a?, u(x)=— (2m/1)a?V (ax), (2)

with m the reduced mass, and E the energy in the
center-of-mass system. Derivations of the variational
formulation can be found, both in terms of the phase
shifts® and of the entire scattering amplitude.® For con-

occurring in the variational principle can be evaluated in closed
form for reasonable trial functions such as plane waves. The
possibility of this evaluation appears to stem from the relatively
simple form of the Fourier transform of the Yukawa potential.
For other well shapes the variational principle need not yield
closed form expressions for the scattering amplitude. In particular
we have been unable to evaluate the integrals in closed form for
square wells (except in the forward direction). Unless the integrals
can be at least approximately evaluated in closed form, compu-
tations using the Schwinger variational formulation can be so
tedious as to offer insufficient or no advantage over exact numerical
integration of the differential equation. L. Mower [Phys. Rev.
89, 947 (1953)] lists some special cases for which the integrals
can be evaluated in closed form.

7 E. Gerjuoy and D. S. Saxon, Phys. Rev. 85, 939 (1952).

8 The S wave shift has been discussed in detail in reference 3
and in the more readily available article by J. M. Blatt and
J. D. Jackson, Phys. Rev. 76, 18 (1949). A discussion for general
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venience in describing our method, we very briefly
recapitulate these derivations.

We first obtain a stationary expression for the ampli-
tude 4 (k—k’) of a wave scattered in the direction k’,
when the incident wave is in the direction k. For this
purpose Eq. (1) is re-expressed as an integral equation
incorporating the proper boundary conditions, namely,

(o) =ent f KCEX U@ W),  (3)

where )
Gxx) == far | x|, @

and where the subscript k on ¢ denotes the incident
wave is in the direction k. Examination of the asymp-
totic form of Y for Eq. (3) then yields the rigorous
expression for the amplitude of the scattered wave in
the direction K/,

1
A(k->k’)=;;f dxe~* *u ()i (x)=B(k—k). ()

From Eq. (5) the amplitude 4 (—Kk
time reversed solution is

—k) of the

A(——k’—)—k)=ifdxeik‘xu(x)¢,kr(x)
4
=B(—k'-»—k). (6)

Moreover, from Eq. (3) and the corresponding time
reversed integral equation it is shown that

1
Ak = 4 (-K——R)=— f A () () ()

1
—Z,n__fdedx,‘//k(x)“(x)G(x,Xl)u(x')‘//_k,(xl)

=C(k—k’). ()
Thereby it follows that

A (k—k’)
_ B(k—k)B(—K——k)
- Ck—k’)

. [ f dxe—ik"’ualxk][ f dxeik"m/z_k,]

- .
f dx‘l/kmp_kw—f f dxdx" Py (X)u (%) G (%" )W_y (x)
®)

Finally it is observed that, regarded as a functional of
¥x and Y_yx, the expression on the right side of Eq. (8)

L values has been given by B. P. Lippman and J. Schwinger,
Phys. Rev. 79, 469 (1950) and F. Rohrlich and J. Eisenstein,
Phys. Rev. 75, 705 (1949).

(1;‘;588)8, e.g., H. Levine and J. Schwinger, Phys. Rev. 74, 958
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is stationary® with respect to arbitrary independent
variations of ¢¥x and ¢ about their true values as
determined by Eq. (3), and the corresponding equation
for Y_y. Furthermore the right side of Eq. (8) is
independent of the amplitudes of ¥« and ¥_x.
Stationary expressions for the phase shifts are ob-
tained in a similar fashion. The standard expansion in
spherical harmonics leads to a set of independent
differential equations for the partial waves ¥z (x), from
which are constructed a set of integral equations
incorporating the boundary conditions, namely,

n@=jult [ et ), ©)

where
gr(x,x)=dkjL(kx)hr® (kxs). (10)

Here x< denotes the smaller, x> the larger, of x and «’;
and jr and %@ are the standard spherical Bessel and
Hankel functions. It then follows that the phase shifts
can be expressed in the form

1 0
k(cotal,—i)=———————2{ f durtup?
[ f dxx’yj Luzh] ’
0
—f f dxdx’xzx’%h(x)u(x)gLM(x')lllL(x')}EQL- (11

The expression on the right side of Eq. (11) is stationary
with respect to arbitrary variation of ¥ about its true
value, as determined from Eq. (9), and is independent
of the amplitude of ¢1.

We now compare some of the features of the formally
equivalent results expressed by Egs. (8) and (11). We
observe first, that Eq. (11) can be derived directly
from Eq. (8). This is effected by expanding the unknown
functions ¥y and Y_w in spherical harmonics. We write

Y= LZ ar™pr(x) Y™ (0,9), (12)
Y= T BV (06). (13)
Substituting in Egs. (5)-(7) we find
Bk—k)= ¥ arm(— )PV ™ (0w o)
L,m
Xf dxxszuszE LZ ar™A 1™,
0 m

B(=k'——k)= X B~V 1™ (0x,0x)
L,m

xf dxx?jrmpr= Y BrmAq™,  (14)
0 L,m

10 Some discussion of the general formal requirements for
constructing stationary expressions like Eq. (8) is given in E.
Gerjuoy and D. S. Saxon, “Variational principles for the acoustic
field” é’o be published).
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1 0
Clk—k)= 3 aL’”ﬁL'”[ — f dxx®u ?
L,m A 0

1 0 ©
e f f dxdx' 62"
4y Yy

Xt//L(x)ML(x)gLuL(x')‘ﬁb(xl)]
=3 ar™B."4s™,
L,m

where the quantities 41", A2.™ A;.™ are defined by
Eq. (14).

A(k—k’), Eq. (8), is stationary with respect to
arbitrary independent variations of ¥, and ¥_yx,, which
means, using Egs. (12) and (13) in Eq. (8), that
A (k—k’) must be stationary with respect to arbitrary
independent variations of the parameters a;” and 8™
about their correct values. We note that

2
5C,

B B, BB
4 (k—k')=—8By+—38B,— (15)
c c c?

where we have condensed the notation, with B;
=B(k—k’), By=B(—k'——k). Using Eq. (14) in Eq.
(15), and equating to zero the coefficients of dar™ and
8B1™, we then obtain

C Aqo™

apm=— , (16)
By Ag™
C Aym

Brm=— . a7
By A3™

These variationally determined values of az™ and 8™,
when substituted into Eq. (8), yield

A(k—k")=3" 1 (2L+1)Pr(cos8) (1/Q1),

where 6 is the angle between k’ and k. Moreover we
observe that Eq. (18) has been deduced without making
use of any of the properties of ¥,(x). Hence, by virtue
of Eq. (11), Eq. (18) is seen to be equivalent to the
standard form!

(18)

1
A (k—k’) :ﬁZL (2LA-1) (e¥2—1) P (cosh), (19)
2

where in Eq. (19) the phase shifts are now defined in
terms of the unknown functions ¥y, by the stationary
expression Eq. (11), and are of course identical with the
exact phase shifts when ¢, are the correct radial
functions. Thus in spite of their formal equivalence,
there is considerable difference in the use of Egs. (18)

U1, I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1949), p. 105.
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and (11) as the basis for actual approximations to the
cross section. Obviously, if the integrals can be evalu-
ated in closed form for suitable trial functions, Eq. (8)
is much more convenient than Eq. (11), which neces-
sarily involves tedious sums over spherical harmonics.
On the other hand, Eq. (11) is inherently more accurate
than Eq. (8) in the sense of the variational principle,
since Eq. (11) corresponds to the use of the “best” or
variationally determined set of parameters az™, 8.™ in
Eq. (8), for the particular set of radial trial functions
¥1(x) which is being used. Or, to put it another way,
use of, say, the incident plane wave as a trial function
in Eq. (11), ie., using ¥5(x)=jr(kx), corresponds to
using in Eq. (8) not the incident wave, but rather an
expression in which the plane wave expansion coeffi-
cients have been replaced by a corresponding set of
variationally determined coefficients.

At this point we interpolate a remark concerning the
reliability of variational methods in general as applied
to scattering problems. Inasmuch as no minimum
principle has been established for these problems, one
cannot guarantee that the use of a sequence of trial
functions containing an increasing number of varia-
tionally determined parameters will uniformly improve
the estimated scattering amplitude or cross section.!?
What is desired is a trial function which approximates
as closely as possible the correct wave function. When
physical reasoning points to a certain trial function,
this choice of trial function probably should be favored
over a variationally determined trial function. In the
absence of physical indications, however, it is reasonable
to expect that a variationally determined trial function
will not be a very bad choice, and that it is likely to be
better to choose the parameters variationally than to
choose them purely arbitrarily. It is in this sense that
the variationally determined set of parameters az™, 8™
are said to be the ‘best” set.

III. PROJECTION OPERATOR FORMULATION

We now seek a somewhat different expression of the
variational principle which represents a compromise
between the greater complexity of Eq. (11) and the
lesser accuracy of Eq. (8). We proceed by analogy to
the angular momentum eigenfunction expansion which
leads from Eq. (8) to Eq. (11). Namely we expand ¢y
in the eigenfunctions of operators which commute with
the Hamiltonian but which are so chosen that they
generate only a finite complete set. In particular, we
shall choose the parity operator and some suitable
finite rotation operator for this purpose.. We first
develop the properties of the associated projection

2 Indeed one cannot even guarantee that for a given trial
function the variational principle will increase the accuracy over
less sophisticated approximation techniques. Thus, for example,
calculation of the Coulomb scattering cross section in Born
approximation gives the correct cross section, as is well known,
while use of the incident plane wave as a trial function in the
variational principle does not. For further details see the discussion
of this point in Sec. IV.
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operators, in terms of which the desired expansion is
conveniently obtained.

Consider initially the parity operator P, eigenvalues
#+1. We denote the corresponding eigenfunctions by
¥4 and ¢ and observe that

P+=%(1+P)7
P_=3(1-P),

(20)
(21)

are the corresponding projection operators since for
any function ¢:

Py=yy, Py=y._. (22)

That is to say,
PPuy=Pyy, PPy=—Py. (23)

Next, introduce the rotation operator R denoting
rotation through the angle 2x/N about some arbitrary
fixed axis. Then R¥=1 and the eigenvalues A, of R are

Ap=er™ilN =0 1, ---  N—1. (24)
The corresponding projection operators are
1 v
P,=—3> \,N?R>, (25)
p=0
since
RP,=\.P., (26)
as is easily demonstrated. Also
N-1
n=0
For any function ¢ we define ¢, by
Yn=Pu. (28)

Then ¢, is an eigenfunction of R with the eigenvalue \,,.
In the preceding equations Ry (x) is understood to
define a new function y/(x) such that

¥ (x)=Ry (x)=y(Rx), (29)

where Rx is the new vector (in some specified fixed
coordinate system) into which x rotates under R. For
any integral over all solid angles (along x), with ¢ and
¥ arbitrary functions,

f o ([RY(x)]= f 6 (Y (Rx) = f o (R5) (x)

_ f [RI6®W®. (30)

Of course the second equality in Eq. (30) is a conse-
quence of the introduction of new rotated polar and
azimuth axes, or equivalently of the introduction of
new primed variables of integration defined by x’= Rx,
x=R7x'. Thus Eq. (30) demonstrates that the defi-
nition of Ry, Eq. (29), retains the orthogonality of R,
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ie., that

R=R

in integrals like those of Eq. (30).

From Eq. (31), using relations like A, '=Ay_y,
R!'=RV¥1 it is simple to show

31

Po=Px_,. (32)

It is also true that if ¢, is an eigenfunction of R with
eigenvalue A,

1y 1y
Pon=—3 A VPN P =— 3 2ritn—nINg
N =0 N »=0
=0nnPn, (33)
and therefore, by Eq. (28), that
P,yPn=08,1Ph. (34)

Hence if ¢, is any eigenfunction with eigenvalue A,,
and ¥y, is defined as in Eq. (28), then, by Egs. (32)
and (33),

[r-sta= [
= [UPrbd= [v6n 69

Similarly, using Eq. (34), one obtains

f¢’m¢n=0, m#AN—n (36)

for any two eigenfunctions ¢., ¢. with eigenvalues
Am, An. It should be noted that in Eqs. (32)-(36) we
have extended the definitions so that Ay=\o=1, whence
also PN=P(), ¢N=\po, etc.

We are now in a position to derive readily the desired
variational expressions in terms of the simultaneous
eigenfunctions of P and R. Such functions, we denote
by ¢, 1. They satisfy the relations

P¢n, += +=¢a, +5 R¢n += )\n¢n +

and can be constructed from any arbitrary function ¢
via the defining equation

37)

PiPy=P.Piy=yn,;. (38)
In analogy to Egs. (12) and (13), we write
Y= Z Z Qp, Do, ik;
n =+
(39)

‘p—k’ = Z Z 6n, 'L¢'n, i—-k’;

n =+

where the superscripts indicate that ¢, % and ¢, /%
need not be the same functions. Corresponding to

E. GERJUOY AND D. S.
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Eq. (14), we have:
1
B(k—>k’) — Z —ay, ,-fdxe‘ik"‘u(x)qbn, ik

n,i4q
EZ Un, 1A n, 1‘(1),
n,%

1
Bl—ks—k) =¥ —8, . f dxe® U (), ¥

n,i 4o (40)
EZ .Bn, 7,A n, 1:(2)1

1
Ck—k)=> an By, zl:Z' f AX¢py, 1 (X) PN, i
n,4 Y g
1
———fdxdx’qﬁn, FX)u(x)
4

XGE X u(xpn_n ¥ (X')]

EZ Oy, iﬁN—n, 1A n, i(3)-
n,%

The expression for C(k—k’) in Eq. (40) is justified
with the aid of Egs. (32), (33), and (36), using obvious
properties of the parity operator and noting that

RE)RE)G(xx)=G(x,x"), (41)
where R(x) rotates x only, all of which yields
Py-a(X)G=N"2, Ay—""?R?(x)G
= N1, Av—n¥PR-?(X)G=P,(X)G. (42)

We require 4 (k—k’), Eq. (8), to be stationary with
respect to arbitrary independent variations of the
parameters ay, ; and B3, ;. Then, using Eq. (15) we find
that, for variationally determined values of a,, ; and 8, ;,

A -k =2 3 An, i(k—K),
n ==+

(43)
A i(b—=k) =4, VAN, P/A4,,:®.

This derivation of Eq. (43) is wholly analogous to
the derivation of Eq. (11) from Eq. (8), for arbitrary
¥z in Eq. (12), via variation of ar™ and B.™. Alter-
natively we can use the expansions Eq. (39) in Eq. (1)
to obtain

Vo, 15 +[F+u(x) Jpn, £ *=0, (44)

and similarly for ¢, +~%. The function ¢, .* obeys the
integral equation

On, 1 (X)=P,Pyet 4 f ax'G(x,x")u(x")pn LE(X). (45)

From Eq. (45) and the corresponding equation for
¢n + ¥, it is not difficult to determine that Eq. (43) is
valid for the exact scattering amplitude, for which in
fact

An i(&—k) =4, (k—k’)

=Ay—n:®k-k)=4,,®k-k'), (46)
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when, in Eq. (40), ¢, :* and ¢,, ;¥ take on their true
values, i.e., ¢, ;* satisfies Eq. (45). Moreover, the
expression for 4, ;(k—k’), Eq. (43) is stationary with
respect to arbitrary variation of ¢, ;* and ¢, ;7% about
their true values. This second derivation of Eq. (43)
is of course analogous to the customary derivation of
Eq. (11) from Eq. (9). :

Equation (43) is the variational formulation we hav
been seeking. It can be expressed in a simpler form by
the following device. We first specify that the functions
ont® and ¢, ¥ are constructed from given trial
functions ¢, and Y_i by means of Eq. (38). We make
the further restriction that y«(x) is a function only of
the angle between k and x, i.e., that it does not depend
on the azimuth of x about k. This condition is certainly
satisfied for the true yx(x) which solves Eq. (3).
Similarly, Y_w (x) is independent of the azimuth of x
relative to —k’. This means that for any rotation R,
in the notation of Eq. (41),

R (k)R ()¢ (x) =k (x), (47)
and therefore just as Eq. (42) followed from Eq. (41)

Pn(x)‘pk(x)=PN~n<k)¢k(x)- (4'8)
From Eq. (48), and also Eq. (42) we infer that
1
A s =— [dx U@L (W Pu ()]
4
= Pn_a(k) P, (k) B(k—k’), 1)

1
Avons®=— f dx¢ T (3)[ Pry—n () P (W ()]

1
Tf X[ P (%) P ()¢ Tt (@i (%)
T Py_a(6)P (k) B(—k'——K),

and, by slightly more complicated manipulations,
using Eq. (34) as well, that

44,2 =Py_n (k)P4 (k&)C (k—K), (50)

where B((k—k’), B(—k'——k), and C(k—k’) are
defined by Egs. (5)-(7).

Equations (49) and (50) make Eq. (43) particularly
convenient, since they merely involve linear combi-
nations of the same functions B and C which enter into
the more familiar stationary expression Eq. (8). We
further note that the extension of our result to the
situation in which space exchange forces are involved
is trivial, since space exchange merely introduces
different interactions in even and odd states. The point
here is of course that Eq. (43) is already decomposed
into sums over even and odd states. Hence one need
only use the corresponding even and odd interactions
in computing the contribution of each to the total
scattering amplitude.’® Thus, for example, for the

13 One could arrive at the same result by inserting different
even and odd interactions #(x) in Eq. (44).
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Serber type of exchange, wherein the interaction
vanishes in odd states, Eq. (43) becomes simply

Ak—k)=3", An (kK. (51)

To this point, R has representated a rotation about
a fixed but arbitrary axis. In the actual application of
Eq. (43), together with Egs. (49) and (50), it is neces-
sary to make some definite choice of the orientation of
this axis, with respect to k for instance. For the true
solutions ¥y and Y_ix the results are entirely inde-
pendent of the orientation of this axis of rotation. In
this event, B(k—k’)= B(—k——k)=C (k—k’) so that,
using Egs. (49) and (50) in Eq. (43), and noting that
P obviously sums to unity, as does Py_n, by Eq. (27),
we have, for the true ¢y and ¢y,

A (k—k")=3 Pr_a(k)P:(k)B(k—k')=B(k—k'), (52)

and B(k—k’) does not involve R.

When ¢« and ¢_i» are merely some suitable trial
functions however, the results using Eq. (43) do depend
on the axis of rotation of R. As an illustration, if the
axis of rotation is chosen to lie along k, the quantities
B and C in Egs. (49) and (50) are seen to be eigen-
functions of R(k) with eigenvalue unity. Then only
the terms with #=0 fail to vanish in Eq. (43), recalling
Eq. (33), and we are left with the not unexpected
result that with this choice of axis

A(k—k)= A, (k—k)+A_(F—F), (53)

where 4, and A_, the even and odd parts of the
scattering amplitude, are given by

1. Pe®BE—R) TP ®)B(—k——k)]
* PL0CE—K) :

(54)

On the other hand, suppose' R corresponds to a rotation
through an angle of %7 about an axis making equal
direction cosines with the three rectangular axes. In
other words, when operating on the coordinate axes,
R causes a cyclic interchange of these axes. Thus, if
(x,y,%) are the components of a vector,

Rf(x,9,2)= f(3,%,9);
Ri=1,

and (55)

An= e%win,

n=0, 1, 2.

Further, suppose we choose the z axis along k and take
k’ to lie in the positive & half of the x-z plane, which
in a rather complicated fashion specifies the orientation
relative to k and Kk’ of the axis of rotation of R. With
¥« and Y_y as previously restricted, i.e., with ¥x(x)
independent of the azimuth of x about k, it is intuitively
obvious, and can be proved formally directly from
Egs. (5)-(7) using Egs. (31), (41), and (47), that
B(k—k’), B(—k'——k), and C(k—k’) are independent
of the azimuth of k” about k. Hence, insofar as rotations
are concerned, these quantities can be written as
FkK)=f(), with 6 the scattering angle. Then for the
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present choice of coordinate axes and of R, R(k)f(6)
=f(|37—0]), R(k)f(O)=fGm), Pk)f(@)=[f(x—0),

and we have

Pﬂ=% 22: e—21rinp/3Rp’
Po(k) Py (k) f0)=3[f @)+ e 23 fy([3m—0])
+etrinif, (37)], #=0,1,2 (56)

f2@)=3L )%= f(r—0)].

Evidently, Eq. (56) combined with Eqs. (43), (49),
and (50) generally does not yield the same result as
Eq. (53).

IV. APPLICATION TO THE YUKAWA POTENTIAL
Procedure

We now describe the specific calculations we have
performed. We have used the interaction

(57)

with #,=2.365, which corresponds to the Yukawa well
depth and range quoted in Sec. I. Scattering amplitudes
have been computed at values of £=0.6630, 1.048,
1.406, 1.624, 1.816, corresponding to laboratory energies
of 20, 50, 90, 120, 150 Mev. In the various variational
formulations, the trial functions Y« and ¢ are always

Yu(x)=exp(ikn-x), Yy (x)=exp(—iKn'-x), (58)

where n is the unit vector along the incident wave
vector k, and n’ is the unit vector along the direction
of the scattered wave k’. Thus we use plane-wave trial
functions, but do not necessarily equate the effective or
average wave number K to the wave number % at in-
finity. This special choice of trial function is physically
reasonable and permits evaluation in closed form of
the integrals which occur. In fact, with Egs. (57) and
(58), Egs. (5) and (6) readily yield

B(k—k')=B(—k'——k)=upg (K ,k0),

u(x) =uoe™*/x,

(59)
where
2(K,k0)=1/(1+k+K>—2kK cosb), (60)

with 6, the scattering angle, the angle between n and n’.
The only complicated integral is the one containing
the Green’s function in Eq. (7), which can be evaluated
for arbitrary K by the same method as used by Jost
and Pais? and by Dalitz!* for the special case K==k, as
well as by standard techniques, without introduction
of auxiliary variables.!® It is found that

Ck—Kk)=ug(K,K,0)—ucG(K k),  (61)

4 R. H. Dalitz, Proc. Roy. Soc. (London) A206, 509 (1951)

15 After transformatxon to momentum space, with n’ as polar
axis and the azimuth axis in the plane of n, n’, integration over
azimuth and thence over the polar angle can be effected by
successive use of formulas 300 and 195, of B. O. Peirce, 4 Short
Table of Integrals (Ginn and Company, Boston, 1910). The
resultant integral, though complicated in form, can be evaluated
by closing the contour in the complex plane, taking care to
avoid circling the branch points of the integrand.
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where g is as in Eq. (60), and where

G(K ) =—

2KA/S sin(6/2)

K(14+K?—k?) sin(6/2)
X { tan—l(
VS
A/ S-+2kK sin(6/2)
+"‘ 10g R }y
2 £/S—2kK sin(8/2) 62)
S= (14 K24 F?)>—4k*K? cos*(0/2). (

In Eq. (62), 4/S>0 and the arctangent lies between
—7/2 and 7/2.

Perhaps the most consistent variational treatment
would be to determine K variationally!® at each scat-
tering angle. However, this would require much addi-
tional numerical work, considerably more so than
appears to be justifiable, see our remark at the end of
Sec. II. Hence we have confined our calculations to the
following three choices of the effective wave number K :

(@) K?*=k=K.,
(b) K2=k2+§uo=sz,
(C) KZ'—k2+—u0

The first is just the free—partlcle wave number, of
course. The second is determined variationally from
the requirement that the forward scattering cross
section in the high-energy limit be stationary with
respect to K. This is, at any rate, a high-energy vari-
ational determination of K, and is obtained without
excessive manipulation. To be specific, we insert Egs.
(59)-(62) in Eq. (8) with §=0, let K*=k*4-3, B finite,
and equate to zero the derivative with respect to K in
the limit that k—. The resultant Eq. (63b) is the
same as would be found from the more complicated
formulation Eq. (43), since in the high-energy limit
the quantities B and C have sharp peaks in the forward
direction, and are small at other angles. Consequently
in Py_,(k)P,(k)B(k—k’) for example, all terms in R
and P are negligible compared to the term in R°P,
i.e., in this limit, at this angle, Py_n(k)P. (k) is
replaceable by 1/2N, and Eq. (43) becomes identical
with Eq. (8). Equation (63c) is determined from the
condition

(63)

f dxu(x)e K[ V24 B24u(x) JeX*=0.  (64)

Equation (64) is an expression of the requirement that
the trial function e™®'*, which does not satisfy the

8 The scattering amplitude is complex and with a single
variational parameter, as with K, in the present instance, it
generally is not possible to cause the derivatives of the real and
imaginary parts to vanish simultaneously. Thus it would be
necessary to decide say that the magnitude of 4 (k—k’) is to be
made stationary, without regard to phase.
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Schrédinger equation anywhere, at least satisfy the
Schrodinger equation on an average weighted by the
Yukawa potential, this weighted average favoring the
region of space, where the integrands in B and C are
significant.!?

Three successively more complicated variational
formulations have been employed, namely:

I. Equation (8), of course with the trial functions of
Eq. (58).

II. Equation (43) in the form of Egs. (53) and (54).
This involves a decomposition into even and odd terms,
and corresponds to using in Eq. (8) a trial function
which is a linear combination of forward and backward
traveling waves, with variationally determined ampli-
tudes.

III. Equation (43) combined with the results of Egs.
(49), (50), and (56). This involves a further decompo-
sition into the eigenfunctions of the rotation operator
R of Eq. (55), and corresponds to using in Eq. (8) a
trial function which is a linear combination of waves
traveling in both directions along three mutually
perpendicular axes including the forward and backward
directions, with variationally determined amplitudes.
#.As with K, so in formulation III the orientation
angles of the axis of rotation of R should presumably
be regarded as variational parameters, to be determined
for fixed IV and K so as to make the scattering amplitude
stationary at each scattering angle. Again the extra
work required does not seem worth while, and we have

or

20 40 60 80 100 120 140 160 180°
(-]

F1c. 1. Differential cross section at 20 Mev s scattering angle.
Curve A4 is the exact result, curve B the result according to
variational formulation III, K= K. The circles and crosses are
points computed respectively according to formulation I and II,

=A4Lp

17 Strictly speaking, Eqs. (63b) and (63c), which have been
calculated on the assumption of ordinary forces, should be
modified for exchange forces, but we shall not worry about this.
They are merely reasonable guesses as to the best choice of K
and, as will be seen, they do yield good estimates of the cross
section when exchange forces are included.
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A

L . T = -1
o 20 40 CY) 80 100 120 140 160 180°

Fi1c. 2. Differential cross section at 90 Mev uvs scattering angle.
Curve A is the exact result, curve B the result according to
variational formulation III, K=Kj. The crosses are points
computed according to Born approximation.

fixed the orientation of the rotation axis mainly for
reasons of convenience. Since according to Eq. (52)
the results are independent of the orientation of the
rotation axis when ¥y and ¢y are the true solutions,
it is likely that the results will not depend strongly on
the orientation of this axis provided the trial functions
Eq. (58) are “reasonable.” In any event this choice of
rotation axis leads to good results, which only should
be improved by a better founded choice of axis. It may
seem that the cross sections using variational formu-
lation ITT will be azimuth dependent, since we have
specifically assumed k'’ lies in the x—z plane in deriving
Eq. (56), and in fact formulation IIT does correspond
to the use of an azimuth dependent trial function in
Eq. (8). The dependence on azimuth is only apparent
however. We always keep k'’ in the positive x half of
the x—z plane, or in other words, we change the axis of
rotation of R, Eq. (58), as the azimuth of k’ changes,
thereby retaining independence of the azimuth of k’
relative to k in our final answer.

Variational and Born Results

Our numerical results definitely show that the vari-
ational formulation IIT is superior to the simpler
formulations I and IT, and that formulation II is itself
an improvement over the more customary formulation
I. By and large, the choice K=Kj is the best of the
three we have tried, although at lower energies K=K,
may be superior. In Figs. 1-3 we have plotted the
differential cross sections do computed according to
formulation ITI, with K=Kj, at energies of 20 Meyv,
90 Mev, and 150 Mev, including ordinary forces only,
and, on the same graphs, display for comparison the
exact differential cross sections® at the same energies.
The differential cross sections, in these and subsequent
figures, are given in the units a? per steradian, where o
is the length introduced in Egs. (1) and (57). In Fig. 1
we have plotted also the 0°, 90°, and 180° differential
cross sections which are obtained from formulations I
and II, with the same value of K= K;. With the simple
formulation I the variational values are much too high
at 0° and much too low at 180°. Formulation IT mixes
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TaBLE 1. Differential cross sections vs energy and angle as calculated by different methods.
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Variational formulation I with

Variational formulation II with

Variational formulation IIT with

Energy effective wave number equal to effective wave number equal to effective wave number equal to

(Mev) Angle Ko Ky K. Ka Ky K. Ka Ky K. Born Exact

0 8.61 9.36 3.73 6.12 6.70 3.79 4.93 4.64 3.13 5.60 3.99

20 /2 1.51 1.49 1.36 1.51 1.49 1.36 1.89 2.14 2.26 1.58 2.28

T 0.41 0.34 0.25 2.01 241 1.48 1.40 1.78 2.06 0.74 2.27

0 6.81 7.19 4.38 6.05 6.39 4.13 5.09 5.08 3.25 5.60 4.58
50 w/2 0.345 0.353 0.372 0.345 0.353 0.372 0.561 0.659 0.757 0.546 0.752
T 0.071 0.067 0.064 0.525 0.591 0.467 0.276 0.359 0.501 0.192 0.531

0 6.27 6.50 4.74 5.99 6.21 4.59 5.34 5.42 3.95 5.60 5.07
90 /2 0.121 0.125 0.137 0.121 0.125 0.137 0.248 0.283 0.333 0.227 0.309
T 0.023 0.023 0.024 0.191 0.206 0.181 0.093 0.115 0.162 0.071 0.151

0 6.10 6.28 4.90 5.94 6.11 4.80 5.44 5.54 4.31 5.60 5.25
120 /2 0.072 0.074 0.081 0.072 0.074 0.081 0.163 0.183 0.214 0.142 0.190
T 0.013 0.014 0.014 0.112 0.118 0.108 0.056 0.067 0.090 0.028 0.048

0 6.00 6.14 5.01 5.90 6.04 4.93 5.50 5.60 4.56 5.60 5.31
150 /2 0.048 0.049 0.054 0.048 0.049 0.054 0.117 0.129 0.149 0.097 0.127
3 0.009 0.009 0.010 0.073 0.076 0.071 0.038 0.044 0.057 0.028 0.048

at 0° the 0° and 180° amplitudes of I, and similarly
at 180° with a consequent significant decrease in the
variational estimate of do at 0°, and a corresponding
increase at 180°. The 90° point of formulation I is of
course unaltered since the odd part of the scattering
amplitude vanishes at 90°. By introducing the addi-
tional partial waves of formulation IIT we produce
additional mixing at 90° and at other angles, and
further improve the variational estimate of the angular
distribution. In fact, in Fig. 1, the 90° value of formu-
lation IIT is very nearly correct, but the variational
estimate is still too high at low angles and too low at
large angles. Presumably the introduction of more
partial waves, with the more complicated mixing which
would result, would produce further improvement in
the differential cross section until finally we expand in
the infinite set ¥, and attain the phase shift formu-
lation of Eq. (11).

The relative merits of these three variational formu-
lations are maintained at higher energies, but the
differences between them become less marked in the
forward peak, which makes the principal contribution

F16. 3. Differential cross section at 150 Mev vs scattering angle.
Curve 4 is the exact result, curve B the result according to
variational formulation III, K=K, The crosses are points
computed according to Born approximation.

to the total cross section. This is so because, just as
explained in the discussion of Eq. (63b), at angles near
0° the large forward peak reduces the effectiveness of
the mixing introduced by the projection operators. At
wider angles the added partial waves of II and then
IIT continue to improve the results. The correctness of
these remarks and of the assertions in the preceding
paragraph, can be gauged from Table I, which sum-
marizes the 0°) 90°, and 180° results at the five energies
for the three variational formulations and the three
choices of K. Included also are the Born approximation
results and the exact values.

It can be seen from Table I that Born approximation
yields a fair estimate of the differential cross sections,
especially at higher energies. This is illustrated in Figs.
2 and 3, in which we have plotted the 0°, 30°, 60°, 90°,
and 180° Born approximation points. Variational
formulation IIT with K=K, is superior to the Born
approximation, but the difference is not marked. By
150 Mev there is not much to choose between Born
approximation and formulation IIT with K=K, or
K = K3, while formulations I and II are inferior to Born
approximation at all energies, for all three choices of K.
This comparison of the Born approximation and the
variational formulations is of particular interest in view
of the considerably increased labor required to compute
the differential cross sections for even the simplest
variational formulation I.

Examination of the usual criteria for the validity of
the Born approximation, which may be written as

Mo((kz, %o/k< 1, (65)

in our notation,'® shows that these are not satisfied even
at 150 Mev where k=1.816, while #,=2.365. Conse-

18 The second of Eq. (65) expresses the requirement that across
the scattering region the phase difference between the actual and
free propagation be small. D. Bohm, Quantum Theory (Prentice-
Hall, Inc., New York, 1951), pp. 553 ff.
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quently, the good estimates of the differential cross
sections yielded by the Born approximation seem rather
accidental, and we anticipate that the phase of the
complex scattering amplitude is not as happily esti-
mated as is its magnitude.”® This is demonstrated in
Figs. 4 and 5 in which the computed scattering ampli-
tudes are drawn in the complex plane. In each Argand
diagram the circle is drawn with a radius equal to the
exact scattering amplitude. The Born amplitude lies
always on the real axis, as it must for any potential,
while the variational and exact amplitudes are complex.
The variational amplitudes in both figures are computed
using formulation ITI, with K=K,. In Fig. 4 we show
the forward scattering amplitudes at 20, 90, and 150
Mev, and in Fig. 5 we plot the 90-Mev amplitudes at
the angles 7/2 and 7. We observe that the phase of the
exact scattering amplitude is in every case rather
different from zero, and that this phase is much better
estimated by the variational method than by the Born,
although the magnitudes of the amplitudes are much
the same, as we have already seen. We note also that
the exact phase becomes smaller as the energy increases,
and that the exact phase is larger at wide angles than
at 0°. Similar figures at other energies share the same
characteristics.

o
Y

F1c. 4. Argand diagrams of (@)
the complex scattering ampli-
tude in the forward direction
for various energies: (a) 20
Mev, (b) 90 Mev, and (c) 150
Mev. In each case the vector
A represents the exact ampli- A
tude, B the amplitude from B
variational formulation III, c
K=Kj, and C the Born ampli- o } }
tude. The arcs are drawn with o 1 2
radius equal to 4.

(b)

o f }
! 2

(c)

1 Tt is reasonable to attribute the good estimates of the Born
approximation to the similarity of the Yukawa to the Coulomb
potential. For the latter, the Born approximation happens to give
the correct cross section but does not give the essentially infinite
phase. The validity of Born approximation for a Yukawa well
has been discussed by Jost and Pais and by Dalitz in the references
cited. Dalitz also considers the transition to the Coulomb limit.

o
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(a) (b)

Fi6. 5. Argand diagrams of the complex scattering amplitude
at. 90 Mev at scattering angles (a) =/2 and (b) =m. In each
case the vector 4 represents the exact amplitude, B the amplitude
from variational formulation IIT, K=K}, and C the Born ampli-
tude. The arcs are drawn with radius equal to 4.

At a scattering angle 6 space exchange forces may be
regarded as producing a mixture of the nonexchange
amplitudes at § and w—@. Since the Born amplitudes
are always in phase, whereas the exact amplitudes have
different phases at different scattering angles, it is
apparent that it generally is not possible to have equally
good results with the Born approximation for all
combinations of ordinary and exchange forces. In the
Yukawa case we have been discussing therefore, where
Born approximation gives such good results for ordinary
forces, we expect rather poorer results when exchange
forces are introduced. In Figs. 6 and 7 we have plotted
the exact and variational results at 90 and 150 Mev
for two special combinations of ordinary and exchange
forces, namely Serber forces in which the well is multi-
plied by P, and “anti-Serber”” forces in which the well
is multiplied by P_. In the former case only the even
waves contribute to the scattering, Eq. (51), while in
the latter case we include correspondingly only the
odd waves. We have used variational formulation IIT,
with K=K, and have plotted also the Born results
at 0°, 30°, 60°, and 90°. Figures 6 and 7 may be com-
pared with the corresponding Figs. 2 and 3. Evidently,
both the Serber and anti-Serber Born differential cross
sections are relatively less accurate than were the Born
estimates for ordinary forces, whereas the variational
calculation remains about equally good for all three
different types of forces. In fact for the odd scattering
the variational calculation is practically indistinguish-
able from the exact at 90° and 150° Mev. Of course
the variational calculation continues to give a good
estimate of the phase as compared to the Born approxi-
mation, as is illustrated in Fig. 8 for the even forward
scattering amplitude at 20 Mev. Figure 8 is constructed
in the same fashion as Figs. 4 and 5, with the Born
phase real, as always. We also use Fig. 8 to supplement
Fig. 1 by showing how the phase as well as the ampli-
tude is improved by adding more partial waves, and
also compare the three different choices of effective
wave number K. To avoid excessive complication of
the figure, only formulations IT and IIT are included in
Fig. 8. We observe tbat both variational formulations
and all choices of K give much better estimates of the
phase than does Brrn approximation, even though the
Born estimate of the magnitude of the amplitude is



488 E. GERJUOY

(o] 30 60 90°
2]
(0)
1.5
1.0
de
0.5
x
0 1
(o] 30 60 90°
(]
(b)

Fi16. 6. (a) Even scattering cross section at 90 Mev vs scattering
angle. Curve 4 is the exact result, curve B the result according
to variational formulation III, K=Kj;. The crosses are points
computed according to Born approximation. (b) Odd scattering
cross section at 90 Mev us scattering angle. The curve represents
the exact results, the circles are points computed according to
variational formulation ITI, K=Kj, and the crosses are points
computed according to Born approximation.

very good and certainly better than formulation II for
K=K, and K;. We see also that for the even scattering
at 20 Mev, K=K, gives a better final estimate of the
phase than does K=K,. This is so for the even scat-
tering at other energies as well, but the odd scattering
phases definitely favor K=K, the differing behavior
of the even and odd waves being especially marked at
low energies. These effects can be understood. Especially
at low energies the even scattering, which includes .S
wave scattering, arises from a region of space on the
average closer to the origin than does the odd scattering,
for which the wave function vanishes at the origin.
Thus the effective wave number K for the even scat-
tering is larger than for the odd scattering, especially
at low energies. It is by considerations of this kind that
a better choice of effective wave number can be made.
For example, we have calculated the differential cross
sections at 20 Mev, ordinary forces, formulation III
for two modified choices of wave number, as follows.

AND D. S.
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The even waves are calculated both times with K=K,
but for the odd waves we calculate in one case with
K=K, and in the other case with K=Kj;. In Table II
the results for these two modified choices are tabulated
at 0°, 90°, and 180°, along with the exact values from
Table I. The choice K=K, for the odd waves is seen
to be superior, but both modifications are good. This
use of different effective wave numbers for even and
odd states does produce an over-all improvement, as
may be seen by comparison of Table IT with the 20-Mev
variational formulation III section of Table I.

Utility of Variational Principle

We may infer correctly from Fig. 8, which is quite
typical, that the variational method, even in its least
sophisticated formulation I, with K=K,=£k, generally
will give a better estimate of the phase of the scattering
amplitude than does Born approximation. For example,
at 20 Mev the correct phase angle, using ordinary
forces, is 57°, while formulation I with K=£% is 45°.
Thus in a very real sense for an arbitrary potential,

%,

Fic. 7. (a) Even scattering cross section at 150 Mev us scattering
angle. Curve 4 is the exact result, curve B the result according
to variational formulation III, K=K,. The crosses are points
computed according to Born approximation. (b) Odd scattering
cross section at 150 Mev uvs scattering angle. The curve represents
the exact results, the circles are points computed according to
variational formulation III, K=K, andthe crosses are points
computed according to Born approximation.

30 60
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the variational method is an improvement on Born
approximation, in that the variational method gives an
estimate of both the real and imaginary parts of the
scattering amplitude. The Born, on the other hand,
estimates merely the magnitude of the amplitude, or
perhaps its real part (it is not altogether clear which).
It happens in the Yukawa case that the first Born
approximation is very close to the correct magnitude
while simultaneously the second Born correction term
is large. Since for cross sections we are interested only
in the magnitude of the scattering amplitude, and not
in its phase, the present case evidently is especially
favorable to the Born approximation.

At the same time, as we proceed to explain, it is
unfavorable to the variational principle. Let us consider
formulation I with K=k, i.e., with Born trial functions.
Under these circumstances, by Egs. (59) and (61),

B= %og (kyk;o) ) C= %o§ (k)k70) - M02G (k;kye)y (66)

where uog(k,k,0) is precisely the Born approximation
scattering amplitude. For the correct wave function B
and C must be equal. Thus a measure of the closeness
to the correct function of a given trial function is the
difference between B and C. Now since G(k,k0) is

TasLE II. Differential cross sections at 20 Mev.

Differential cross sections
Variational formulation III
Even waves: K =K.
Odd waves: K equal to

Angle Ka Kb Exact
0 4.45 4.28 3.99
/2 2.26 2.26 2.28
T 1.92 1.95 2.27

complex whereas g(k,k,0) is real, obviously B and C of
Eq. (66) cannot be equal. In fact, as Jost and Pais?
have shown, #¢’G (k,k,0), which is precisely the second
Born approximation correction to the scattering ampli-
tude, is comparable to #og(%,k,0). Thus B and C in
Eq. (66) are quite different, and the Born plane wave
trial functions apparently are not close to the correct
wave functions. To make B and C equal it is necessary
to introduce a considerable modification of the trial
function from the Born plane waves. On the other
hand, such a modification in the direction of making B
and C equal generally will change the magnitude of B,
which in the present Yukawa case pulls the variational
estimate of the differential cross section away from the
very good Born value. To sum it up, when the magni-
tude of the second Born correction term is large, we
may expect to have to use a considerably different trial
function than the Born plane wave in order to get a
reasonably good estimate of the differential cross sec-
tion. Under such circumstances, it is difficult to get
good results with the variational principle since Born
plane waves so often provide, as in the calculations we
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F16. 8. Argand diagram for the even complex scattering ampli-
tude at 20 Mev in the forward direction. The arc is drawn with
radius equal to the magnitude of the exact amplitude.

are reporting, the only reasonable and tractable starting
point.

If the imaginary part of C is small for Born trial
functions, B and C may be made fairly close by intro-
ducing modifications to the trial function which keep B
real. Moreover, since the differential cross section adds
the real and imaginary parts in quadrature, it is clear
that we can get a quite good variational estimate of
the differential cross section in this way. When the
imaginary part of C is appreciable however, we must
somehow modify the trial function so that B is complex.
In the Yukawa case we have been studying, the imagi-
nary part of C which equals the imaginary part of
u’G (k,k,0) actually is large. Thus we see one obvious
reason why the modification provided by formulation
II, which keeps B real whatever the choice of K, is
inferior to the more general projection operator formu-
lation III, in which the imaginary factors e=*7i/% ex-
plicitly guarantee that B will be complex. As a matter
of fact comparison of our numerical values in this
formulation shows that the complex quantities B and
C do turn out reasonably close to each other in formu-
lation III. This suggests that for a potential for which
exact differential cross sections are not available, the
difference between B and C may prove useful as a
measure of the rate of convergence of the variational
method to the correct values.”

2 Since B is proportional to the amplitude « of the trial function,
and C is proportional to o2, it is clear that B—C or the relative
difference (B—C)/C may be made as large or small as desired
merely by an appropriate choice of a. Thus, with a sequence of
trial functions this measure of the rate of convergence is meaning-
ful only if the amplitudes of the functions are maintained relatively
constant, by fixing the value at the origin for example, or better
perhaps by fixing fdxy*up.
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Second Born Approximation

As a further indication of the performance of the
variational principle we compare second Born approxi-
mation with the variational results for the same trial
function in Eq. (8), i.e., formulation I with K=%k. We
consider ordinary forces only so that the Born amplitude
in this approximation is

Ap(k—k")=uog(k,k,0)+uidG(k,k09), (67)
while the variational estimate is
10g? (k,,0)
Ay (k) =—— 68)

g (k) — G (B, k)

these expressions being essentially identical to terms of
order #¢’G?/g*> when the denominator is expanded in
powers of #¢G/g. In Table III are given the differential

Tasie III. Differential cross sections in second
Born approximations.

Differential cross sections

Variational Second
formulation Born Expansion
Energy I with approxi- parameter
(Mev) Angle Exact K=k mation uoG/g
0 3.99 8.61 13.2 0.43-+0.577
20 /2 2.28 1.51 6.1 0.69-+0.982
T 2.27 0.41 4.03 0.89+1.33¢
0 5.07 6.27 8.0 0.134-0.37¢
90 w/2 0.309 0.121 0.74 0.344-1.20¢
T 0.151 0.023 - 0.336 0.42+4-1.66¢
0 5.31 6.00 7.1 0.084-0.302
150 /2 0.127 0.048 0.30 0.25+41.214
T 0.048 0.009 0.125 0.294-1.64¢

cross sections computed from Egs. (67) and (68), at
20, 90, and 150 Mev, at angles of 0°, 90°, 180°, with
again the exact values for comparison. The variational
entries are of course identical with those in the K=K,
variational formulation I column of Table I. We also
tabulate the expansion parameter uG/g which, for
Born trial functions, is the fractional difference between
B and C and is therefore a reasonable measure of the
accuracy of the variational method, as well as of the
convergence of the Born expansion. Evidently the
variational estimates are better than the second Born
except at those energies and angles where the expansion
parameter is so large that both the Born and variational
estimates are extremely poor and their comparison is
essentially meaningless. The variational phase angles
are similarly closer to the exact phases than are the
second Born approximation phases. With an arbitrary
potential, where the first Born approximation generally
is not close to the magnitude of the correct scattering
amplitude, this comparison of the second Born approxi-
mation with the variational principle for the same trial
function would be expected to be more indicative of
the performance and utility of the variational method
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than comparison with first Born approximation, for
moderate values of the expansion parameter. The
results in Table IIT for the present Yukawa case suggest
that with other potentials the variational method
generally will indeed be an improvement on second
Born approximation, and a fortiori on first Born
approximation, even without improvement of the trial
functions from first Born plane waves.

High-Energy Limit

In the foregoing discussion we have been thinking
mainly of the intermediate energy region below those
energies at which the usual criteria for the validity of.
the Born approximation are satisfied. For any presently
reasonable potential purporting to describe neutron-
proton scattering this region will be roughly the same
20-150 Mev region we have been considering. As the
high-energy Born limit is approached with such a
potential, we might expect the second Born correction
term to become negligible.?! Similarly the exact scat-
tering phases ought to approach the Born value of zero,
a behavior illustrated in Fig. 4. Simultaneously, accord-
ing to the remarks in the preceding paragraph, the
variational method even with Born trial functions,
should generally be better than the Born and become
more and more accurate, except that at high enough
energies both the Born and the variational principle
should yield results indistinguishable from the exact
values.

For most potentials these expectations are fulfilled
at zero scattering angle, as we can demonstrate. We
employ the cross-section theorem,

4 4
o= _I; Im4 (k—k)= _k— ImA (0), (69)

where o is the total cross section, and A4(0) is the
forward scattering amplitude. In the high-energy limit,
o~n6?| A (0) |2, where 6~1/F is the width of the diffrac-
tion peak, with % in units of the range of the potential.
Then from Eq. (69) we obtain

Imd(0) 1
——]A(O)Ia
[40)] 4k

which approaches zero as k—, since |4(0)] is quite
generally bounded.

At angles for which the differential cross section is
not a violently fluctuating function of angle, it is not
difficult to prove, using an extension of the cross section
theorem, that the phase still tends to zero.”? If the

2 In fact for our Yukawa case, examination of the high-energy
limit of Egs. (60) and (62) shows that Eq. (65) guarantees
G /g1, except that outside of the forward peak, % sinf/2>>1, we
require the somewhat stronger condition (uo/k) log[4%? sin?(6/2)]
<«1 to make the imaginary part of the ratio small. This extra
condition probably is connected with the Coulomb-like nature of
the scattering at wide angles or small impact parameters.

2 For the Yukawa well this prediction seems to be borne out
by our results.

(70)
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cross section does fluctuate violently, however, it
appears that large phase shifts may be expected. Thus
we may draw a distinction between the high-energy
limits at angles within the main diffraction peak,
k sin(f/2)<1, and angles outside, % sin(6/2)>>1. Within
the peak, for most potentials, the cross section varies
smoothly and the phase approaches zero in the Born
limit. Outside the peak, even though the usual criteria
for the validity of Born approximation may be satisfied,
the phases in the high-energy limit generally are zero
only for those potentials for which the true cross
sections at those angles do not fluctuate markedly.
Moreover, when such fluctuations occur, the first Born
approximation cross sections can be expected to exhibit
similar but certainly not coincident fluctuations, show-
ing that the magnitude as well as the phase of the
scattering amplitude has been poorly estimated. Corre-
spondingly, we anticipate that at high energies the
variational principle will be quite generally useful
within the main diffraction peak, but that its utility
outside the peak will depend on the potential. Where
the cross sections fluctuate violently, the variational
method probably will readily account for the qualitative
wide angle behavior of the differential cross section,
but will converge only slowly, i.e., will require trial
functions very different from Born plane waves in order
that further improvéments in the trial functions change
the results only slightly. Hence for such potentials it
appears likely that at wide angles the variational
method will be most useful and accurate at intermediate
energies.

Total Cross Sections

We conclude by describing our results for the total
cross sections. These have been computed by the vari-
ational method using Eq. (69), for the various energies,
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TaBLE IV. Total cross sections vs energy.

Total cross section

Variational Variational
formulation II  formulation III
with effective with effective
wave number wave number

K equal to K equal to

Variational
formulation I
with effective
wave number

Ener- K equal to

gy
(Mev) Ka Ky Ko K, Ky K. Ka« K» K: Born Exact
20 12,5 117 431 103 10.8 6.23 8.86 9.44 9.08 8.12 10.1
50 5.05 4.90 2.82 4.61 4.64 3.05 3.82 3.99 3.54 4.16 4.53
90 2.82 2.77 194 270 2.69 1.98 2.33 2.38 2.06 2.51 2.64
120 2.11 2.09 1.57 2.06 2.05 1.59 1.83 1.86 1.61 194 2.01
150 1.69 1.67 133 1.66 1.65 1.33 1.51 1.53 133 1.58 1.63

variational formulations, and choices of effective wave
number K. The values so obtained are tabulated in
Table IV, in units of 7a?, along with the exact and
Born total cross sections. Naturally the Born total
cross sections are computed by integrating the Born
approximation differential cross sections, since for the
Born amplitude Eq. (69) implies zero cross section. It
is seen from Table IV that the variational formulations
give fair estimates of the total cross section in almost
all cases. These results are about as accurate as those
reported earlier for the square well.” It is also seen
from Table IV that, surprisingly enough, formulation
IT is usually superior to formulation III. We have no
very good explanation of this unexpected result. As is
apparent from inspection of the figures, however, total
cross sections obtained by integration of the differential
cross sections determined by variational principle ITI
would give results in good agreement with the exact
values at all energies and better than either formulation
IT or the Born total cross section.
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