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FIG. 8. Total cross section for scattering of positive mesons
from protons. Only pg and s~ phase shifts, taken from upper curve
Fig. 3 and from Eq. (12), are considered. For experimental work
see reference 19.

lower energies, in disagreement with experiment for
positive mesons.

There is a rough consistancy between this phe-
nomenological theory and experiment. The limitations
of the theory are also quite evident. In the region near
310 Mev, where the assumption of energy independence
should introduce only small errors, the agreement
between theory and experiment is only within 10 or 20
percent. Of course absolute errors of this order may be
present in the data, but this seems an unlikely ex-

planation of some of the present difhculties. Improve-
ment in the theory might be obtained by adjusting the
coupling constant (i.e., see Fig. 5). Also the less im-
portant angular momentum isotopic spin states could
be considered more fully. It is further seen, for example
in do+/dQ(90') (Fig. 5), how the theory breaks down
completely at the high and low ends of the energy
region. That the matrix elements should decrease in
this region is indicated by examination of the Born
approximation term ~' and there is, perhaps, room for
extension of the theory by making a detailed examina-
tion of the energy dependence of the various terms.
Rapid changes are not indicated, however, and it seems
clear that unless fairly rapid change of parameters with

energy should be predicted, very good agreement with
experiment would not be obtained. As our Born
approximation term is only calculated in the weak
coupling approximation, such difhculty is not surprising.

The author would like to thank Professor H. A.
Bethe for his interest in this work.

~In the spirit of the present theory, the photoproduction
reduces to the weak coupling limit as threshold is approached
(see Fig. 4 with G'/Sr=16). This is in accord with the idea of
N. M. Kroll and M. A. Ruderman, Phys. Rev. 93, 233 (1954).
The cross section do+/do(90')=6 at about Ez(lab)=175 Mev,
recently reported by Bernardini (reference 16), would be fitted
in this theory by a coupling constant of about 14.
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A covariant equation for the meson-nucleon system is presented, in which the renormalization of divergent
processes is carried out to all orders. A closed expression is given for their contribution to the wave function
after renormalization, while the contribution coming from Rnite processes still involves a series expansion.
Exact formulas are derived for the scattering phase shifts.

I. INTRODUCTION

ECKNT experiments on pion-nucleon scattering'
have made apparent the inadequacy of the Born

approximation for the calculation of this process and
the necessity of a theoretical analysis based on more
elaborate methods.

Several attempts have been made~ to analyze the

' Barnes, Angell, Perry, Miller, Ring, and Nelson, Phys. Rev.
92, 1327 (1953); Bodansky, Sachs, and Steinberger, Phys. Rev.
93, 918 (1954); Anderson, Fermi, Martin, and Nagle, Phys. Rev.
91, 155 (1953}.

s G. F. Chew, Phys. Rev. 89, 591 (1953};J. S. Blair and G. F.
Chew, Phys. Rev. 90, 1065 (1953); S. Fubini, Nuovo cimento
10, 564 (1953); Dyson, Schweber, and Vissher, Phys. Rev. 90,
372 (1953); Sundaresan, Salpeter, and Ross, Phys. Rev. 90, 372
(1953); ¹ Fukuda, Proceedings of the International Conference
of Kyoto, September, 1953 (unpublished).

data by means of the Tamm-DancoG' nonadiabatic
method, or an improved form of it.4 Although this
method seems to yield results which are in qualitative
agreement with experiment, at least for the p wave,
its defects are even more apparent here than in the
treatment of nuclear forces. ' A rapid calculation shows
indeed that, even for low-energy scattering, high mo-
menta play a decisive role in intermediate states, and
that, consequently, the convergence of the interaction
expansion can be expected to be very poor. Moreover,
the main contribution to the scattering cross sections

3I. Tamm, J. Phys. U.S.S.R. 9, 449 (1945); S. M. Dancoff,
Phys. Rev. 78, 382 (1950).

4 F.J. Dyson, Phys. Rev. 91, 1543 (1953).
s M. M. Levy, Phys. Rev. 88, 72, 725 (1952); A. Klein, Phys.

Rev. 90, 1101 (1953).
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comes from radiative corrections which cannot be
handled correctly within the framework of the Tamm-
DancoG method.

These difficulties are partly removed if one uses,
instead, a covariant nonadiabatic two-body integral
equation, analogous to the one proposed by Salpeter
and Bethe, ' which can easily be extended to the present
case. (As in Karplus et al. ,r it will be called, in the fol-
lowing, the M.N. equation. ) However, as in the case
of quantum electrodynamics, renormalization —that is,
the unambiguous elimination of unobservable divergent
quantities —has still to be performed on the integral
equation, using the methods of Feynman' and Dyson. '

In the present problem, however, special difficulties
appear in the course of the renormalization process,
which are essentially due to the fact that + mesons
can play simultaneously the dual role of virtual .field
quanta and of real interacting particles. Mathemati-
cally, the difhculties arise through the fact that integral
equations which possess perfectly 6nite kernels do not
yield finite solutions, because they involve summation
over a series of virtual processes, some of which include
radiative eGects. Partial solutions to these difhculties
have been proposed by Karplus et ul. 7 and Fubini. "In
the treatment of these authors, however, renormaliza-
tion is performed through a special device, the validity
of which is limited to the lowest order, and it is not
easily seen how the solution can be extended to all
orders. Moreover, they work in terms of the Feynman
two-body kernel, which is really convenient only when
total cross sections need to be computed. When a
phase-shift analysis of the experimental data is neces-
sary, it is much easier to work in terms of the M.N.
"wave function, "as will be seen later.

The purpose of the present paper is to provide a
framework within which scattering phase shifts and
cross sections can be computed to all orders without
renormalization di%culties. All the inlnite diagrams
are separated out, and a closed expression is given for
their contribution to the wave function after renor-
malization. The calculation of the contribution coming
from 6nite processes, however, still involves a series
expansion, the convergence of which is not discussed
here. "

The removal of divergences in the M.X. equation is
most easily understood if, at first, only the two lowest-
order diagrams (which are of the second order in the
coupling constant) are included in the interaction
kernel. This is done in Sec. II.The solution is presented,
however, in such a form that the extension to all orders
(Sec. III) is almost immediate. Exact expressions for

' E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951);
M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).' Karplus, Kivelson, and Martin, Phys. Rev. 90, 1072 (1953).

e R. P. Feynman, Phys. Rev. 76, 749, 769 (1949).
e F. J. Dyson, Phys. Rev. 75, 486, 1736 (1949).I S. Fubini, Nuovo cimento 10, 851 (1953)."See, however, the concluding remarks of Sec. V.

Pro. 1. The two basic
diagrams of meson-nucleon
scattering to the second
order in the coupling con-
stant.

(b)

the scattering phase-shifts are given in Sec. IV. In the
handling of the M.N. "wave function, " a good deal is
implicitly used of a covariant theory of scattering, which
starts from a relativistic four-dimensional wave equa-
tion, and is therefore the logical relativistic extension
of the standard Faxen-Holtzmarck treatment'~ of the
Schrodinger equation. This theory, which also yields
a variational principle for the scattering phase-shifts,
will be discussed in a subsequent paper.

The application of the formal results contained in
the present paper to the analysis of low- and high-
energy pion-nucleon scattering data will be presented
later. The connection between meson-nucleon scatter-
ing and nuclear forces will also be discussed at that time.

These definitions imply therefore the following con-
nections with the well known S~ and Ap functions, as
defined by Dyson:s

E~(p) = sA~(p) = i(p'+t ') —',
E (p)= ,'S (p)= ('&—p+—~)—

where p, and M are the meson and nucleon masses. The
Feynman two-body kernel (see, for example, reference
6) will be written as E(oc,g; y, it).

For the sake of definiteness, we shall assume that
we are dealing with a symmetrical mixture of pseudo-
scalar mesons .with pseudoscalar coupling to the nu-
cleons, wiiting therefore the interaction Hamiltonian as

H; r, iGgysrsiPyt„—— (2)

where G is the coupling constant, tP and ys the nucleon
and meson 6elds, respectively. The theory can be, how-

"See, for example, N. F. Mott and H. S. W. Massey, The
Theory of Atomic Cottesions (Oxford University Press, London,
1949), second edition, Chap. II.

IL COVARIANT EQUATION TO THE LOWEST ORDER
IN THE COUPLING CONSTANT

In this section, only physical processes corresponding
to an infinite number of iterations of the two basic
diagrams of Fig. 1 mill be considered. We shall call
Etrr(oc, y) and Etv(x, y), respectively, the meson and
nucleon propagation functions between two points x
and y in space-time, their Fourier transforms being
defined as follows:

Esr(oc y) = (2sr) "Esr(p) exp' p(cc y))d p
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ever, easily generalized to all "renormalizable" types
of interaction.

1. Unrenormalized Equations

The integral equation for the Feynman two-body
kernel corresponding to an infinite number of repeti-
tions of Figs. 1(a) and 1(b) can be written as

where E& contains only the convergent graphs which re-
s44tt from theiteration of graph (1,b) alone (examples are
given in Fig. 3). The equation for Ep is simply obtained
by suppressing the second term of the right-hand side
of (3) and by writing Eb instead of E:
Ep(»6 y») =E~(»y)E~(E', n )

iG— K~(x,f)E~($;,$p')y p«Ex($', rt')

Xypr (E ()1',g (', y, rt,)d4$'d4rt'

$G
J

KN (x)$ )EM($))re ) VprEEA'($ )rt )

Xy "E(~',r', y,~;)&Y&'~', (3)

where the isotopic spin indices have been written as
subscripts to the meson variables. Equation (3) con-
tains implicitly divergent higher-order eGects such as,
for example, those described by the two reducible"
diagrams of Fig. 2. It leads to an unrenormalized equa-
tion for the wave function )P(x, (~) defined as follows:

f(x,4) = »m E(x,t'; y,n )V44p(y, n))dy&», (4)
ty, tg~ —oo j

—iG' K~(x,g')K~($;, rt),')y priE~( f,rt')

X~ ~ E (~',P '; y, ~~)d'~'d'~'. (8)

The kernel function E, contains all remaining divergent
graphs, which essentially consist of three parts: a self-
energy part which is an arbitrary combination of two
types of diagrams, the general terms of which are
represented in Figs. 4(a) and 4(b); and a vertex part
on each side, belonging, respectively, to the general
types described in Figs. 4(a) and 4(P). E (x,g;; y,rt;)
can therefore be written formally as

K.(x,t, ; y, g )=)—iG' K~(x,x')KM(g;, gi, ')

X&4«'(g~'; *',y')rpE~'(y', x")rP"pi ~(p4 ', x",y")

XE~(y",y)K4r(p~', rt;)d'x'd'x"d'y'd'y"d'('d'g'. (9)

where )Pp is the free wave function of the system,

)Pp(x, p;) = lim ~E~(x,y)E~($;,rh)

XV4A(y, ~ )~yd», (5)
and which can be written

~(*,s)=~.(*,~;)

/ (j)
FIG. 3. Two reducible

graphs corresponding to
convergent processes and
resulting from the iteration
of diagram (b) of Fig. 1.

r-G' K (*,~)E (~,,~. )y."E (~;)
Xvpr ~4'(n', ni') de&'

E~(x,Ã)E~(k', op')v p«E~(t', n')

W(x, t') =4.+lb, (10)

where )pp is the finite solution of the convergent integral
equation

By using Eqs. (4), (7), (8), and (9), the wave function
)p(x, p;) can now be written

2. Separation of the Divergences

We split the two-body kernel into two parts:

E=E,+Ep,

XVpriK'~((', g')V primp(rt', $4')&'P'd'rt', (11)

(7) and )P, is defined by the expression

r~r~
rr

(&)
.r~

r
r

r~r

FIG. 2. Two reducible
graphs of the meson-nucleon
scattering matrix, which re-
sult from the combination,
in high orders, of diagrams
(a) and (b) of Fig. 1 and
include divergent e6ects.

it, (x,P;) = —iG') K~(x,x')K~(P;, gp')

X& 4«'($.'; *',y') rpK~'(y', x")«1'p" (e'„yx")
X)pp (y rti )d4x'd4x"d4y'd4y "d4$'d'at'. (12)

"A graph of the meson-nucleon scattering matrix is called
irreducible if it is not possible to draw a line through it, cutting
one nucleon line and one meson line only. Otherwise, it is called
reducible.

All the in6nities are now concentrated in the vertex
functions F5& & and I'5&&', and in the modified nucleon
propagation function E~'. Our remaining task is to
calculate these functions in closed form in terms of



M ESON —NUCLEON SCATTER I NG

Es and Ps, and to renormalize them by means of the
usual methods.

3. Calculation and. Renormalization of
Fs(n) and I' s(5)

I.et us write for p=n, P

I' "'(4;*,y) =7 ~( —E)~(y—k)+A "'(k;;,y) (13)

Calculating the successive contributions of the graphs
contained in A5( ', one can write a power series ex-
pansion in G~:

l
/

(c)
\

;h )i ~ ($}

I

,,
'

(p)

As( ) (P,', x,y) = iG'ysrs—EN(x, g)Esr(xs, ys)

—s(P I EN(x, g')Esr'(xs, gs')ysr(EN(g, g )

XV srsEN (g', $)Esr (6',yi)d'A'S'

+ ' ' ' VsriKN(kj)Vsrs) (14)

and, by comparison with the corresponding expansion
of Es(x,g;; y,rl,), one obtains the following relation:

As(~) ($;; x,y) = iG'y—srsKs(x, xs, $,y()

Xysr;KN((, y)Vsri (15).
Similarly, A5't'& is expressed in terms of EI, by the
equation

FIG. 4. General form of the divergent self-energy and vertex
parts of diagrams corresponding to processes included in the
kernel function E .

and consequently

As, ( )(Po,Po) = sG'ysrs—
~

E,(x,x„;$,y,)&sr;KN(g, y)

Xys«exp/iPo(y x) jd4yd4x—,

(21)
A s~ (p)po)=o—iG'V«i EN(x, k)ysr'Es(h» yys)'

Xysrs exp[ipp(y x)fdsyd—4x

These relations can be simplified by expressing them
in energy-momentum space, where E& is defined by
the equationAs(» (P;; x,y) = iG'ysr—(KN (x,g)

Xys,K.(g,*(;y,y.)vs ' (16) Es(*,g, ; y,n;) = (2 )-" "Es""(p,q; p'q')

In order to perform the renormalization of these two
vertex operators, we introduce first their Fourier trans-
forms, which can be written, for p=n, P, as

As;(» (P q) = As(» (P,"x y)

x&(p+q p' q') expL'—(p*—+qg p'y q—'~))—
Xd4pd4qd'p'd4q'. (22)

The results are

A, ;( '(po, pp) = iG'ys(2~) 'r—s t Ks(" "

Xexp) ip (x g)+—iq (y —
g) jd'xdsy —(1/).

The renormalized operators are then obtained by the
usual method:

X (p,po p; q,po —q)r r;KN(q)rsr d pd q,

(23)
I

As, ' (pp pp) iG Ysrs(2s) KN(p)%sr Ks
As, 'p(n) (p q) =As,..(p) (p q) As, (p) (pp p ) (18)

where pp is the energy momentum of a free nucleon
satisfying the relation (iypp+M) =0. In configuration
space, Eq. (18) can be written as

As*(&)(P, ; x,y) =As(&}(g,; x,y)
-A „'"(po,p.)~( -r)~(y —~), (»)

X (popo p; q,po q)'Vsr(d pd q

4. Calculation and Renormalization of EN'(x, y)
The modi6ed propagation function introduced in

subsection (II,2) is, according to Dyson, ' the solution
of an integral equation of the form

where As, ;(&)(pp,pp), for p=n, P, are two divergent con-
stants which have to be calculated. Equation (17) gives EN'(x, y) =EN (x,y)+ J EN (x,s)P (s,z')

XKN'(s', y)dsds', (24)
As,.(p) (pp pp)

— I As(p) (g,.~

where F(s,s') contains only the irreducible self-energy
Xexp/ipp(y —x)jd'xd'y, (20) graphs, namely those which cannot be split into two
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parts by cutting only one nucleon line and no meson
line. The series of self-energy processes, the general
term of which is represented in Fig. 4(a), corresponds
therefore to only one (irreducible) term in F, namely,

F,(...') = —~0&;,KN(z, z')7.T.K (.„.,'). (25)

The processes which are represented by diagrams like
Fig. (4b) are, on the contrary, all irreducible. Their
contribution to P is consequently represented by a
power series expansion in t""

Fp(z, s') =( ~')'ikr—k EN(z, ')EM(sk, nk)

XyprlKN(g)q)yprkE N(g)s)K'M(g')si)caprid gd g

+( ~) 75rk KN(s)f)KM(sk)'Vk)ykrmKN((pl)

XyprkEN(n)$)ypriKM($-)n-)V sr-EN(g)z)

in a closed finite form in terms of Ek and fk.

E.(x,p,", y,g;) = —K') KN(x, &')KM(p, ,gk')

x('..k'1 —Apk»3'(~' —n')~(k" —"')

~'y -K (r',"')y "K (~', S '; '",r".b ")
XK '(~",~")h '[& Ao—"3&(n" e"—)~(e" ""—')

zG'y—pr„Kb(q",g, '; P",g.'')ykri

XE (g"',~'")y...PC (~'",y)K (g"',~,)

d4$'. .d4$"'d g' . de'", (32)

where we have put Ap,'"(pp, pp) =ypA0, "', for p=~,p.
Equation (32) can be simplified by integrating over the
8 functions and by making use of the integral equation
(8) for Ek(x, p;; y,g;), as well as another one which is
completely equivalent to (8), namely,

d4@4 d4~)dq)+ (26) Ek(x, ', ; y,g;) =EN(x, y)EM(p, ,g;)

A rapid inspection of this expansIon shows that it is
directly related to Ek(z,sk, s',si'), through the equation

Fp(z, s') = iG'yprk'—Ek(z, sk, s',si').
—EN(s, s')EM(sk, zi')gypri. (27)

Combining (25) and (27) yields the relation

iG' —Ek(X)), ; $',qk')ykriEN($', g')

X' "K (&',y)E (~',n, )«'d"' (»).
The resulting expression for E is given by

F(s,s') =Fi+F' —«G'y«kE=k(s)s» z', s')capri. (28) E,(x,p, ; y,~;)= —W' $Ek(x, p, ; p', (k')

Expressing Eq. (24) in momentum space and using
(22) and (28), we are led to a purely algebraic expres-
sion for EN'(p):

K '(p)=K (p)/I 1—'(p)E (p)3, (29)

where we have introduced the notation

Z(p) = pG'yprk Ek&k'&—(q p q. q' p q')— . —

Xypr, d'qd'q'. (30)

The only divergent quantity is evidently Z(p) which
can be renormalized by the usual method (see refer-
ence 9):
'*(P)= (P)— (Pp)

. »(P)-
+ ', (iy„P„+—M) iy„-, (31)

'Pv -n=np

where pp is again the energy-momentum of a free
nucleon satisfying the relation: iypp+M=O. The re-
normalized modi6ed propagation function is then ob-
tained by putting Zp(p) instead of Z(p) in Eq. (29).

5. Final Expression of Q, (x)(;)
Having obtained finite expressions for F5„& ), I'5, ;&&'

and E~', we are now in a position to calculate E and

Apk EN(& 5)KM(4 kk)]ykrk

XK '(P',"')y LE.(~',~'; y,";)

Ap, & &KN(g—',y)EM(g, ',g))]d('dq'. (34)

Making use of Eqs. (4) and (5), one obtains next an
equation for P, (x,$;):

'( 6)= i&J Ãk(%4" 4')

Apk»KN(*, ~—')EM(~, ,4')]vprkKN'(~', n')

Xyp g[pk(g', gi') —Ao"Vo(g', q&') jd('dg'. (35)

This expression, which is a kind of inhomogeneous
term to be added to Pb in order to get the exact wave
function f, is actually a "contact" term since, in the
center-of-mass system, it only involves the value of
fk at the origin. This leads to a particularly simple ex-
pression for the contribution of f, to the S-matrix ele-
ments, as will be seen in Sec. IV.

III. RENORMALIZATION TO ALL ORDERS

The treatment given in Sec. II can now be extended
to the irreducible processes corresponding to all orders
in G' by very small modi6cations of the formalism.
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and

+ ) KN(xis)Ettr(piigb)Ib(»i(bi s ii l ).
XKb(»', f t'; y,n, )dsd»'di df', (36)

A(x 5')=to(x, h)+~ K~(x»)K~(bfb)

XIb(sfb s fl)A(» it)dsd»dpi' (37)

where Ib(s, (b, sf' ')tis an interaction function which
can be described by means of a series of graphs having
the following properties:

(a) they are all irreducible (in the sense defined in
reference 13);

(b) they contain no vertex or self-energy parts;"
(c) they are all finite and lead individually to finite

expressions for Eb and fb (we do not discuss here the
convergence of Ib).

I~ can be expanded in a power series in &:
Ib=Ib"'+Ib"'+ . .+Ib&"'+, (38)

where I~&"' is proportional to O'". I~&'& corresponds to
diagram 1(b) and has therefore the expression

Ib&"= iG'ybrtE~(s—,l)ys bb(s s')8(i f'). —(39)—
I&"& corresponds to only one fourth-order diagram,
represented in Fig. 5(a), and is given by the relation

Equations (7) and (10), through which the separation
of divergences is performed, are still valid, and so are
Eqs. (34) and (35) which express the renormalized
functions E, and f, in terms of Eb and pb. The latter
quantities, however, obey now more general integral
equations of the form-

'
Kb(X,&;; y,ri,)=Etv(X,y)Eor(p, ,rh)

t

I's

{c) &,

/
fi

(ls) '
rI, r

I

W/

(7)'i
FIG. 5. Irreducible fourth- and sixth-order diagrams

included in the interaction function If,.

can be handled by standard methods: namely, in the
final expressions for E„Kb, f„and fb, all the Kbt and
E~ functions should be replaced by the exact modified
propagation functions" EN' and E~', and p5 by the
vertex operator F5. Finally, the contributions of proc-
esses involving meson-meson scattering should be re-
normalized by means of an additional nonlinear Xy~~p'
term in the interaction Hamiltonian" and added to the
function Ib introduced in this section.

IV. CALCULATION OF SCATTERING PHASE-SHIFTS

The elements of the S matrix between two free states
Po(x,$,) and yo(x, P;) are related to the Feynman two-
body kernel by the relation

(ki', ko', jl&—1
l ki, ks,i) = lim xo(x, $;)y4

tm, ,to~+ ii
ttj, trf-+ —oo

X{K(»kt"y n') K~(x,y)E—~(6,n') }
Xylo�(y,r),)dxdyd(dn, (41)

where the initial and final states are delned by the
equations

Ib &s& = ( iG')'ybr„Ert (s—,i')y sr tK~ (1',g)
XyorbEtv (f,s')ysr Esr (s'„,» ). (40)

Po(x, P,)=14&"(ki, ks) exp$iktx+iksg),

xo(x,h) =xo"(kt', ks') expfsI&i'x+4&o'$$
(42)

I~('& corresponds to seven sixth-order diagrams, which
are drawn in Fig. (Sb,c,d,o&,P,y,8), etc.

The above description makes it clear how the inter-
action function I~ has to be computed. The main point
is that going to higher orders does not introduce any
new divergence. All divergent processes have been,
once and for all, separated out in E, and f„and their
renormalized contributions expressed in terms of the
finite functions Eb and fb

It is perhaps worth mentioning that we have been
concerned, so far, only in the removal of the special
types of divergences introduced by the combination,
in higher orders, of graph 1(a) with the other graphs
of the meson-nucleon scattering matrix. There remain,
of course, all the "normal" types of divergences which
"This means that they are also irreducible in the sense de6ned

by Dyson (reference 9), whose definition is di8erent from the one
given in reference j.3.

Using Eqs. (4) and (5), putting S—1=R=R,+Rb,
we can write (41) as follows:

(ki', ks', jlR, l kt, ks,i) = lim xo(x, P,)toto~+ wJ,
Xpe, (x,$;)dxd(, (43)

(ki iks ijlRbl kiiksis) 1™ xo(xi')74
tx,tg-b+ oo g

Xgb(x, 4) fo(x,4)}dxd(—(44).
'4 This modi6ed propagation function Ktv' (as weII as the vertex

operator I'5) should not be confused with the functions ION',
r, and F5 t' which we have introduced in Sec. II. These func-
tions have been expressed, once and for all, in terms of the un-
modi6ed functions Ett, Attr and &4 through Eq's. (13), (15), (16),
(29), (30), and (36)."A. Salam, Phys. Rev. 86, 731 (1952).
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1. Expression of the R-Matrix Elements with P„'= (Pp', P'), P'= ki'+ko' and Po' ——Ebi'+o&bs'.

The matr~ elements of R defined b (43) can }e The resulting expression of the R, matrix elements is

expressed in terms of Kb and pb by means of Eq. (35):

xo(y, r),) = lim, xo(x, (;)y4K&) (x,y)
tx, t(—b+ aO J

XKsr (t,,r),)d xd g,

and Xb(y, &I;) satisfies the integral equation

x (y,~;)=xo(y,~,)+ x (,1..)»(,1-.;",|')

(47)

XK&(s',y)Ksr(f&', rt;)dsds'dt df', (48)

which can be obtained from Eq. (36) by multiplying
on the right by &&p(x,$,), integrating over the space
components of x and P and letting the corresponding
times go to infinity. Equation (45) becomes, then,

(k,',k, ',j)R.( k„k„i)= —u
~

"[gb(P',P, ')

-Ao. &@go($',g.')gVsrbKx'(f, n') V oui

XB (.", )-A.«-)e.(.", )jdÃ. '. (49)

It is now convenient to separate out the motion of
the center of mass, by means of the transformation:

X=&rx+ (I—&r) $,

s=x—$,
(5o)

where the parameter o. expresses the well-known am-
biguity in dining relativistically the position of the
center of mass. YVe can write'

where
fb(x, g;) = oob&') (s) exp(iP„X„), (51)

Po (Ppp}p)y} p —kl+ koan Pp Pbl+o&b2y +)bl (~1 +~ )
and

&ebs
——(ko'+ p')'*.

(ki', ks', j~R, ~ki, ko, i)= lim iG—' ' xo(x,P,)yot„t(~+~

X[Kb(x,t;; (',4') A—ob")KN(x, (')K~((',4')j
X'rsrbKN (( )r) )rbrlgb('g qrI& ) Api fo('g )rll ))

Xdxd ddt'dr&'. (45)

This expression can be simplified further if one intro-
duces the function gb(y, r),) defined by

x (y,n')= »' " o(,4)T~ (*,4", y, *)d d4 (46)
tx, tp —b+ &&oj

which is adjoint to that particular "wave function" of
the system which, after an infinite time, transforms into
the final free state xp(y, rl;). There exists obviously the
relation

(ki', ks',j( R. ( ki, ks, i)
(2~)'[r»"'(0)—Aob ~'»o"'(0) jv«bK~'(P)vbri

X [&ob&'& (0)—Aoi& '&op&') (0)]&&(P—P')&)(Pp —Pp'). (53)

In the same way, the matrix elements of R~ can be
simpliaed to some extent by transforming them to the
coordinate system (50). This gives:

(ki', ko',j[Rb f ki, ks, i)

= (2or)'b(P —P') lim {exp[i(Pp—Po')7)}
phoo

t ps 8 (z 0)[pb
)' (z 0)—po&D (z 0)jdz (54)

where )op
&') (z,0)—=xp (k,',k, ') exp[i (ki' —&r P') z). In the

derivation of Eq. (54), the adiabatic decoupling of the
meson and nucleon fields when time goes to infinity
has been implicitly assumed, since the limiting process
t„ to ++~ has b—een performed on the assumption
that t —t~—+0. Using the same procedure as Kita,"we
introduce the definition

(ki', ks', j~Rb~ ki, ks, i)
= (ki,ks g ~

Rb
~
ki, ks,i j5(P—P )5(Pp —Pp ) (55)

and obtain the relation

8+ (Pp —Pp') [ki', ks',j ~
Rb

~
kr, ks, i)= (2a)'xp &&') (k, ',k, ')

t [&ob(2) (z 0)—&op(1) (z 0)]

Xexp[—i(ki' —nP')z$dz, (56)
where the identity

lim exp(iTx)&)~(x) =b(x)

has been used.
In the system where the center of mass is at rest

(ki= —ks ——k, ki' ———ks'= k'), this gives simply

8+(Po—Po') Itk', —k', j)Rb) k, —~,ii
= (2 )'xo""(k' —k')

X f &ob&" (k') —&oo&'& (k) (2or)'|&(k—k') }, (5'l)

where &ob&'&(I&) is the Fourier transform of p&b&& )(z,0)'
and oop&'&(k) =—Pp&')(k, —k).

Scattering phase-shifts can then easily be obtained
by means of a partial wave analysis of Eqs. (53) and
(57).

2. Introduction of Three-Dimensional Wave
Punctions and Connection with the

Tamm-Dancoff Method
Similarly, we have

gb(x, g&) = pb&o (s) exp( —iP„'X„),
"H. Kita, Progr Theoret. Phys. Japa. n 7, 217 (1952).

The calculation of the R;matrix elements by means
(52) of Eq. (53) implies the knowledge of both functions

&tb(y, r);) and pb(x, p;). It is perhaps more convenient to
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obtain the corresponding phase-shifts through a direct
analysis of the asymptotic behavior of the function
&P, (pc, g;) for equal times of the interacting particles.
The connection with calculations based on the Tamm-
DancoA method will, at the same time, become more
apparent.

Let us write, in the system of coordinates (50),

means of the relations

C."'(p) =Z u. (n) (~.) '~.")(p)

C'p") (P) =2 u, (1))(~.) 'B."'(P)
(66)

where the Dirac-spinor u, (p), in which the index p
takes the values I and 2, is defined by

and eliminate the X dependence by means of Eqs. (22)
and (51). The resulting expression of op, &"(s) is

(p
(') (s) = —iG'(2s) exp( —inPs) Kv (p)Ksr&'&

I isa V—&,(I&)+~hu, (f&) = o,

with Ei(y) = —Ep(1&) =E~. Let us similarly write

(op&'& (0)=P u, (k) ((pk)
—

&C, &'&.

Equation (65) can then be expressed in the form

(67)

(68)

X (P p)—[Rk' "(p; P)—Ap's'(i, k)]yprkE)T'(P)ypT(

X[po"'(0)—Ao(' 'ooo"'(0)] exp(iPz)d4P, (59)

where the following definition has been introduced:

(2&T)
4 Kp&'"(P P Pq P —q)d49—
4

=K)o (p)KM "&(P—p)RO&' » (p; P), (60)

Rk&' "(p; P) being a logarithmically divergent function
which obeys the following integral equation:

Xppr;K~(u)K)&r&k&(P u)Ro&k»—(u) P)du. (61)

Since, according to Eqs. (23) and (60), Ap&s&(i,j)
can be written in the form

f
Ap(S& (i,j)= —iG'(2~) 4&prk K&(u)ppT+&(u)

XKs4(k)(P —u)Ro&k "(u; pp)du, (62)

it is easily seen that

Rp((, i) Rk((, i) gp(P)—(i j) (63)

which appears on the right-hand side of (59), is a
finite quantity. We now introduce the Fourier trans-
form of pp, &'&(s) through the equation

( "'(s)=exp[i(1—~)»j(2~) ' ' C'."'(p)

Xexp(ips)dp, (64)
and consequently,

C,(') (p) = iG'K&((p+P)K—kl&" (p)RO~&' "& (p+P; P)
XrfirkKN'(P))(OT([po"'(0) —Ao( opo (0)]. (65)

R,&' ~'&(p P) =t&,; zG'(2'—) QOTk -K~(u+p P)—

In order to obtain the three-dimensional Fourier™
component of the wave function corresponding to equal
times of the particles, we must' calculate the quantity:

p+(e

, '(p)=- .„~,'(.,p.)dp'
2'~

While doing the integration over pp, however, we
can take advantage of the fact that we only need the
asymptotic form of the Fourier-transform f,&'&(r) of
a~&'&(1&), so that only the poles exhibited on the right-
hand side of (69)—and not those eventually existing in

F,&')—will contribute to the integral. The result is

G'O,F &4&(p —p op
.Pp)

a (4&(p)~
(d»+ Po[Ep(P) P—(73)

with pi ——+1, ps= —1, E,(p) = O,E„.Only the positive
energy component (p=1) of , a' (&&)1d&oes not vanish
at inlnity. Introducing polar coordinates (p,8, pp) and
(r,O",C) in momentum and configuration spaces, re-
spectively, we can analyze a(&'&(p) and fi&'&(r) into
partial waves:

G'F."'(~,p. ; P.)~."'(PP)= —,(69)
(~' p') [E—.(I&) po P—o]—

where the function F,&') is defined by

F "'(p p Pp)=p& '(p 1 p u (p)Rp""
pr

X (p,Po+Po) 0,PO)VOTkK&T (0,PO)

Xypriup (k)B,*&'&, (70)

with pp= —ip4, the finite constant B,*&" being ex-
pressed as

B ~&'&= i(2') 4+ ~u, *(k)u,.(y)

X(Ok&op~ 'B;&'&(p,po)dpdppi —Ap, & &Cp&'&. (71)

Let us now split C,&'&(P) and Co&") (P) (which is re-
lated to Opk&'& (s) through an equation analogous to (64)),
into their positive and negative energy components by

ai"'(p)=Z ai. i-"'(p)I i. (~ p)

fi&'&(r)=Q fi, ( &'&(r)Y'4, (O.C').
(74)
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where the sums on the right-hand sides involve also a
summation over spin-eigenfunctions. We then get for
the asymptotic form of fi, i~(') (r)

, P" ji(Pr)Fi. i-"'(P, ~. '—Po)
f '*'( )-

2s' " o& +E Pp—
Xp'd p, (75)

where ji(x)= (s/2x) Vi+;(x). Since the main contribu-
tion to the asymptotic form comes from the pole p= k

(defined by Pp ——opb+Eb), we can write

Eb(ob ('"j,(pr) p'dp
fl, i "(r)-—G Fi. i '*'(k,—(ob; Po)~

7l Po p ps k2

Z kE@OIe—G' Fi i„('&(k,—o)b, Pp)gi(kr),
2m Pp

(76)

V. CONCLUDING REMARKS

It might appear, at 6rst sight, rather surprising that
meson-nucleon scattering can be formulated covari-
antly in a much more compact form than other two-
body problems. The main reason is probably that the
meson-nucleon system is not properly a two-body sys-
tem, but should be more appropriately described as a
"radiative one-body system. " It is this reason which

's S. Deser and P. C. Martin, Phys. Rev. 90, 1075 (1953).
"Brueckner, Gell-Mann, and Goldberger, Phys. Rev. 90, 476

(1953).
~ G. Wentsel, Phys. Rev. 86, 802 (1952).

with gi(x)= (s./2x) V ((+i)(x). Because of the defini-
tion of pop("(0) in Eq. (68), Eq. (76) leads to the fol-
lowing expression for the contribution of &P, to the
phase shift:

(—1)'CPk Ebo)bFi, i (') (k —o)b, P )
tan5(„(') (a) = (77)

4s1 Pp(2l+1)'Cr('&

The same method can be used to calculate the con-
tribution of &Pb to the scattering phase shifts. In this
case, however, the reduction of integral equation (37)
to a three-dimensional form involves some manipula-
tions, which can be based, for example, on the iteration
method which has been worked out for the nuclear
two-body problem' and extended to pion-nucleon scat-
tering by Deser and Martin. '

A 6nal remark should be made about the factor
ybrbK)v'(O, Pp)ysri on the right-hand side of Eq. (70).
If the E~~~'& function which appears on the right-hand
side of Eq. (30) were replaced by its zero-order approxi-
mation K&v(q)K)&r(P —q)5b» this factor would just be
the damping coefficient calculated by Brueckner, Gell-
Mann, and Goldberger. " However, since the exact
kernel does probably not have the same dependence on
momenta and isotopic spin, the resulting effect might
mell be entirely diGerent. The results of the present
section provide, in fact, a method to ascertain to what
extent the damping eGects predicted by WentzeP' are
actually present in pion-nucleon scattering.

makes the writer feel that it might be possible to for-
mulate the problem in an even more compact way than
has been done in the present paper. There might exist,
for example, an integral equation for the 6nite inter-
action function I~ introduced in Sec. III, which would
enable one to solve the problem in a completely closed
form. So far, however, only integral equations which
take into account parts of the diagrams contained in I~
have been obtained.

Another problem is, of course, to determine to what
extent the predictions of the theory agree with experi-
ment. This problem is partly related to the preceding
one, since the convergence of the series of diagrams
described by I& for any physically acceptable value of
G~ might well be doubtful. The agreement with experi-
ment also depends on the compared magnitude of the
"damping" or "resonance" effects (depending on their
sign) in the contributions of &P, and &Pb to the scattering
phase shifts. It is likely that the inRuence of renor-
malization, which leads to a completely different treat-
ment of these two parts of the wave function, will be
felt there very strongly.

The author is indebted to Professor R. E. Marshak
for many stimulating discussions.

Addi&olal note: After the completion of this work, we have
received, through a private communication, a summary of the
results obtained by D. Ito and H. Tanaka, which are similar to
those of S. Fubini (reference 10).

Note added in proof In orde.—r to take properly into
account the difficulties of overlapping divergences, the
renormalization prescriptions (18) and (31) have to be
replaced, respectively, by the following:

".()(P,~)
Fs ."(»(p (7)—

1+t4,(»

8
~'(p) =& (P) —& (Po) —(P-Po) —& (P) (b)

-()p —@=no

where Pi(p) is defined by the equation

~(p)
~ (p)=

1+&ob"+~oi(e)
(c)

These prescriptions preserve the main conclusion of the
present paper, namely that the vertex operators Fb(p)
and the modified propagation function K)v'(p) can be
renormalized in closed form and expressed in terms of
the 6nite functions &Pb and Kb. Some of the equations
of Sec. IV have to be modified accordingly. For example,
Eq. (53) becomes

P b(b) (0)
(&i'&s' jIE Ilr»lr»j)= iG'(2s.)'

1+~ob(e)

4»b("(o)
XybrbK)v'(P)porc 5(P P')5(Po Po'). —

1+3.pi(~)

Proofs of prescriptions (a), (b), and (c) will be given
in a subsequent note.


