42 K. S.

The value of U (7mi) is, therefore, very sensitive to the
value chosen for ¢max. For the Bloch-Nordsieck method
to be applicable, we may suppose ¢max < (1/20) X Debye
cutoff, i.e., gmax SSX10% Then 7,;=2X10"7. This
gives

U(rmim) =102 ev,

SINGWI AND B.

M. UDGAONKAR

which is the same as that given by Frohlich using the
second-order perturbation theory. It should be clearly
understood that the above choice of ¢max Is entirely
arbitrary and there is nothing in the B-N method to
guide us in this respect except that the momenta of the
phonons have to be much less than those of the electrons
with which they interact.
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Uniaxial tension causes a change of resistivity in silicon and germanium of both # and p types. The
complete tensor piezoresistance has been determined experimentally for these materials and expressed in
terms of the pressure coefficient of resistivity and two simple shear coefficients. One of the shear coefficients
for each of the materials is exceptionally large and cannot be explained in terms of previously known mecha-
nisms. A possible microscopic mechanism proposed by C. Herring which could account for one large shear
constant is discussed. This so called electron transfer effect arises in the structure of the energy bands
of these semiconductors, and piezoresistance may therefore give important direct experimental infor-

mation about this structure.

INTRODUCTION

HE effect of pure hydrostatic pressure on resis-
tance has been extensively studied, notably by
Bridgman, who also made the first piezoresistance
measurements! known to us on several polycrystalline
metals. Bridgman has also outlined the formal nature
of the piezoresistance effect in single crystals® and
applied this analysis to the measurements of Allen® on
bismuth. Cookson* later corrected the original outline
by Bridgman. Allen has reported single crystal tension
coefficients in addition for tin,’ antimony,® and zinc
and cadmium.” The present observations® for ger-
manium and silicon are apparently the first for cubic
crystals and the first giving the complete tensor.

The change in resistance caused by stress induced
dimensional changes is small and may be corrected for,
allowing any remaining effect to be expressed as a
change in resistivity p. The resistivity may be stress
dependent through either the mobility or the number of
the charge carriers. The effect of stress on the mobility
of the charge carriers has been observed for many
materials. For example, values of dInp/d Inv running

1P, W. Bridgman, Proc. Am. Acad. Arts Sci. 60, 423 (1925).

2P, W. Bridgman, Phys. Rev. 42, 858 (1932).

3 Mildred Allen, Phys. Rev. 42, 848 (1932).

4J. W. Cookson, Phys. Rev. 47, 194 (1935).

5 Mildred Allen, Phys. Rev. 52, 1246 (1937).

6 Mildred Allen, Phys. Rev. 43, 569 (1933).

7 Mildred Allen, Phys. Rev. 49, 248 (1936).

8 The large tension effects were noticed in these laboratories by
J. R. Haynes. The stress sensitive drift mobility observed by
Lawrence in # germanium is probably the same effect. R. Law-
rence, Phys. Rev. 89, 1295 (1953).

from two to six are reported for pressure experiments;’®
these values agree fairly well for a number of metals
with a simple calculation® of the change of mobility
produced by the change in the amplitude of thermal
vibrations with volume v,

(d Inp/d Inv) = (2av0/x0C.), (1)

where « is the thermal expansion coefficient, x the
compressibility, and C, the specific heat. For silicon
and germanium the calculated values of this quantity
are 1.4 and 1.7.

In semiconductors the stress may be expected to
change the number of charge carriers. The stress X
causes a volume change 6v which in turn causes a change
8E, in the energy gap between the valence and con-
duction bands. The number of carriers and hence the
resistivity therefore change. For germanium at 300°K
0E,=—4.0dInv (electron volts),”® and for intrinsic
germanium this means that dInp;/d Inv=—77. This
volume-energy gap effect can be shown to be roughly
proportional to (p/p;)?; the observations reported below
were carried out at values of (p/p,)? where the energy
gap effect is detectable but small.

The piezoresistance results for germanium and silicon
which are reported here have been expressed in terms
of the pressure coefficient of resistivity and two simple
shear coefficients. One of the shear coefficients for each
of the materials is exceptionally large and cannot be

9N. F. Mott and H. Jones, The Theory of the Properties of
Metals and Alloys (Oxford University Press, London, 1936), p. 271.
1 1. H. Taylor, Phys. Rev. 80, 919 (1950).
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explained in terms of these previously known mecha-
nisms. The mobility mechanism appears to be too
small to account for the magnitude of the large shear
coefficient, and the energy gap effect gives zero contri-
bution to both shear coefficients. Thus the explanation
of the salient feature of the present work must be
sought in an essentially new mechanism.

EXPERIMENTAL

As shown in the Appendix it is necessary to make
three experimental measurements of at least two types
in order to determine the complete piezoresistance in
germanium and silicon. The essential features of the
arrangements which have been used are shown in Fig. 1.
Uniaxial tensile stress X was applied to single crystal
rods by hanging a weight on a string, and the IR drop
was measured. The two crystal orientations shown in
the figure were used in combination with the two
electrode configurations shown, yielding the necessary
three measurements of two types. The extra measure-
ment was made for a few specimens as an internal check.

Procedure

The IR drop across the potential electrodes was
read by a type-K potentiometer. The stress induced
difference potential 6V was indicated directly in micro-
volts on the output meter of a Type-9835A Leeds and
Northrup dc amplifier.

The observational procedure was to load the speci-
men, balance the potentiometer at a convenient meter
reading, lift the weight and replace it, observing the
throw of the output meter 6V, and then to repeat the
process for the next load. The potential change 6V was
found to reverse with the sign of the stress, to show no
detectable hysteresis, and to be linear with load in the
range employed.

The fast response of the indicating instrument made
it possible to make the observations in spite of small
drifts caused by ambient temperature changes. The
electrical observations were all made at constant current
supplied from a 300-volt, 300 000-ohm source. The
potentials V' ranged all the way from a few millivolts
to a few volts for the different electrode arrangements
and resistivity values'studied. Loads ranging from 0.1
to 1 kg were applied, corresponding to stress levels
from 107 to 10® dyne cm™2. In the constant current
case 0V/V=06R/R; values of this quantity ran from
10~% to 1073 for different specimens.

Materials and Specimen Preparation

The starting materials were single crystals of As-
doped #n-type germanium and Ga-doped p-Ge and
silicon crystals which were grown » or p from selected
raw material. The crystals were oriented on an x-ray
goniometer. The individual specimens A, B, C, D
(Fig. 1), of a given nominal resistivity value were cut
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Fic. 1. Schematic diagram showing the stress system, the
crystallographic orientations and the electrode structures which
have been used. Arrangements A and C are designated as longi-
tudinal in the text; B and D are called transverse.

from adjacent slices to hold the resistivity variation
within the group to 10 percent. The specimen ends
were waxed into small grips with sealing wax in the
transverse cases (B, D), or rhodium plated and soldered
in the longitudinal cases (A, C). The grips were aligned
manually with only small difficulties from misalignment
as noted below. The long transverse electrodes were
rhodium and copper plated.

“Corrections

The directly observed quantity in the present experi-
ments is (1/X)(6R/R), which must be corrected for
dimensional changes to yield (1/X)(8p/p) by adding
for the several cases as follows:

(A), —(Su—2812); (O), — (3Su—Sw);
(B), +Su; (D); +(%S44+512)-

The elastic compliances S;; are well known for silicon
and germanium.!

The transverse measurements are then subject to
another correction which arises because the current
lines are not straight at the ends of the electrodes.
Such a correction would not be necessary if the medium
were isotropic in resistivity under stress. An approxi-
mate correction has been worked out by H. Suhl of
these laboratories and is

w
M7=z (obs)+— (Mp— ), 2
r=1r(0 SH_ZIIl( r—1I1) (2)

where the II’s are (1/X)8p/p, L and T stand for longi-
tudinal and transverse, w is the width of the specimen,
and / the length of the transverse electrode. This
correction is nearly negligible for the reported results
for arrangement B. It amounts to around 10 percent
for the reported values of arrangement D and its
uncertainty becomes significant. Arrangement D, how-

11 E. M. Conwell, Proc. Inst. Radio Engrs. 40, 1327 (1952).
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Tasre I. Values of (1/X)(80/p) in units of 102 cm? dyne™
for the experimental arrangements shown in Fig. 1. The values
of D calculated were obtained by combining observation A, B,
and C. The observations are adiabatic. The specimen resistivities
are in ohm-cm.

Type Observed Calculated
materiz'd, A B c D D
and $(Mu+Me (42 3O+
resistivity I 12 +144) —1l44) —I4s)
n Ge 1.5 -2.3 —71.8
n Ge 5.7 —-2.7 -39 —71.7 +62.0 +65.1
n Ge 9.9 —4.7 5.0 —73.8 +66.2 +64.1
n Ge 16.6 —-5.2 5.5 —74.7 +67.9 +64.0
pGe 1.1 —3.7 +3.2 +48.1
? Ge 15.0 —10.6 +35.0 +46.5
»Si 11.7 —102.2 —31.2
nSi 18.6 —102.2 —-31.0
pSi 7.8 +6.6 —-1.1 +71.8
pSi 227 +6.5 +71.9

ever, has been used only as an internal check of the
derived coefficients. The combined results omit this
observation.

Precision and Errors

By the nature of the apparatus the electrical precision
was constant at something better than one percent in
8V for all specimens except those where a combination
of two out of three things obtained: low resistivity,
transverse electrodes, or small piezoresistance.

The crystallographic orientations of the final rods
were within 20 minutes of the nominal values in all
cases. This accuracy of alignment is quite satisfactory
because the piezoresistance effect, although - highly
anisotropic, varies as the square of the error angle at
the orientations used.

The transverse measurements are generally of less
precision than the longitudinal simply because V is
small. Moreover, a rectifying contact on such specimens
will give a spurious reading arising in the energy gap
effect.’? The procedure which has been adopted is to
test all transverse specimens for rectification, keeping
only those which showed linear V-I curves. Thus, for
example, the transverse scheme failed entirely for # Si,
and the necessary third observation was obtained by
an isothermal pressure measurement.

The longitudinal results for » Ge and some of those
for p Ge were obtained with rods to which the potential
electrodes were directly applied by rhodium plating.
All the silicon and most of the p Ge measurements were
obtained with “bridges” which are rods with integral
semiconductor side arms. Contacts could be made to
the side arms which are well outside the stress field,
thus eliminating any question of stress induced electrode
effects. In several cases rod specimens were checked
against bridge specimens with excellent agreement.

‘Certain specimens showed slight piezoresistance non-
linearity in the initial mounting, but this nonlinearity

2 Hall, Bardeen, and Pearson, Phys. Rev. 84, 129 (1951).

was removed in all cases by straightening the mount or
remounting. Another indication that these small effects
were caused by poor alignment of grips and sample was
the inconsistency of the magnitude and sign of this
nonlinearity. The origin of the nonlinearity has not

‘been tracked down but there are several ways in which

nonuniform or biaxial stress plus tensor piezoresistance
could account for it.

Conditions

The piezoresistance was observed with the specimen
in a thermally lagged and reasonably light tight enclo-
sure. The room temperature results were either obtained
at 2541°C or a short extrapolation was made to that
temperature. The low-temperature results were obtained
by mounting the specimen in a dewar flask over boiling
liquid N,.

The resistivity values which have been studied were
chosen to be below the point where minority carrier
conduction is important and above the point where
impurity scattering becomes significant.

The present observations are considered to be adia-
batic rather than isothermal. The measured thermal
time constant of the specimens in their measurement
environment was about 15 seconds, while the time
constant of the amplifier was 0.6 second. The difference
between the isothermal and adiabatic values is small
in any case, roughly 0.5X10™2 cm? dyne™.

RESULTS

Table I shows the end product of the foregoing
procedures; the entries in that table are termed obser-
vations. The tensor nature of the piezoresistance effect
is outlined in the appendix where it is shown how the
observations 4, B, and C may be expressed in terms
of the elements IIyy, IT;5, and Iy of the pertinent fourth
rank tensor. It is more interesting, however, to quote
the results in the form of three other constants which
are combinations of the actual tensor elements.

In the casé of cubic crystals there are three combina-
tions of the elastic constants C;;, namely (C1342C12)/3,
Cy and (C11—C12)/2 which relate crystallographically
simple stresses to the corresponding strains and which
have been termed fundamental elastic constants. For
germanium and silicon there are three similar combi-
nations of piezoresistance coefficients IT;;+2IT1a, Iy,
and II;;—II;.. The combination ITy;+ 211, is the nega-
tive of the pressure coefficient. The shear coefficients
Iy and II;;—1I,, give the transverse electric field
which develops when an appropriate shear stress is
applied, but it is simpler to consider their meaning
directly in terms of hypothetical modifications of the
present experiments C and A, respectively. The coeffi-
cient IT44 would give directly (1/X)(8p/p) in arrange-
ment C if, in addition to the longitudinal tensile stress
X, an equal transverse compression were also applied.
The two stresses effectively change the angle between
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two [100] type directions. The coefficient II;;—1II;,
bears the same relation to arrangement 4, the stresses
changing the angle between two -orthogonal [110]
directions. These constants are listed in Table II.

The shear constants II44 and II;;—II;, have the same
adiabatic and isothermal values. The adiabatic pressure
coefficient is listed as directly determined from the
observations. The isothermal pressure coefficients were
obtained by applying the appropriate correction, using
for the temperature coefficients of resistance the values
given by conventional mobility-temperature laws
except for the 16.6 ohm-cm # Ge sample where the
negative temperature coefficient of resistance was meas-
ured. Values of the isothermal pressure coefficient
determined by Bridgman for several samples of # and
# Ge have been included in Table IT for comparison.
The latter have been corrected slightly for dimensional
changes.

TaBLE II. Values of the derived piezoresistance coefficients in
units of 1072 cm? dyne™. Resistivities are in ohm-cm.

Type, Lo _pm, 421012
material, and Pop
resistivity a4 M —112 Adiabatic Isothermal
n Ge 1.5 —138.1 + 1.0 (— 87» —-170
n Ge 4.2P - 83
n Ge 5.7 —136.8 + 1.2 —-10.5 — 88
n Ge 8.4b - 98
n Ge 9.9 —137.9 + 03 —14.7 —-13.0
n Ge 16.6 —138.7 + 03 —16.2 —17.9
n Ge 18.5° —-271
» Ge 0.9-3.3 + 25
pGe 1.1 + 96.7 - 69 + 2.7 + 5.2
p Ge 15.0 + 98.6 — 15.6 - 0.6 + 19
nSi 11.7 — 13.6 —155.6 + 4.6 + 5.74
pSi 7.8 +138.1 + 1.7 + 44 + 6.0

a This value extrapolated from # Ge 5.7 and z» Ge 9.9.

b P. W. Bridgman (see reference 13) and by letter. Values are from the
initial pressure eftect.

¢ P. W. Bridgman (see reference 13). There were six specimens in this
resistivity range, five of which were consistent at the value shown and one
of which showed zero pressure effect.

d Measured directly.

The elastoresistance coefficients defined in the
appendix relate the fractional resistivity change to the
strain and have the advantage of putting all the coeffi-
cients for all the materials on a comparable strain basis.
Simple combinations of these have meanings similar to
those for the fundamental piezoresistance coefficients.
In particular (#1+2my5)/3=4d Inp/d Inv is the volume
dilation coefficient. The shear constant mass gives
(1/€)(8p/p) in arrangement C when the longitudinal
strain e/2 and the transverse strain —e/2 are imposed.
The shear constant (m;,—mys)/2 is similarly related to
arrangement 4. These fundamental elastoresistance
coefficients are listed in Table III.

DISCUSSION OF THE RESULTS

The coefficients presented in Table II or in Table III
are of both signs and show a wide range of magnitudes

reflecting the very high anisotropy of the piezoresistance
in these cubic materials. A convenient measure of the
anisotropy is the quantity Ils/}(II;1—1II;2) (or its
reciprocal for » Si); the smallest value of 14 here for
this quantity contrasts with the frequent value of three
for the equivalent elastic anisotropy. The fundamental
constants separate the large and small effects, and the
discussion below is divided up accordingly.

Tables II and III list essentially 12 coefficients
(four materialsX 3 types of constant). It may be noted
initially that four of these vary with resistivity, »iz., the
pressure effect for # germanium and all three coefficients
for p germanium. The other eight constants are believed
not to vary with resistivity within the experimental
uncertainty. This conclusion must be reached for silicon
by inspection of Table I, where the important longi-
tudinal observations show such marked independence
of resistivity that the difficult third observation was
made only for the lower resistivity value. It is hardly
conceivable that II;; and II44 should botk vary in just
such a way as to keep 1 (II;;+ 112+ 1144) constant.

The Pressure Effect

Values of the isothermal IT;;+2I1;; in Table II are
convenient to consider first because several values
directly determined by Bridgman®® for # germanium
are available for comparison. Inspection of the combined
total of seven measured values show that they vary
smoothly with resistivity. Closer inspection shows that
IT,;+210,, is linear with the resistivity squared and the
resistivity variation is therefore assigned entirely to
the energy gap effect as discussed in the introduction.
The slope of the p? plot is correct for this mechanism.
The energy gap effect may then be extrapolated out
allowing one to deduce a value of the pressure coefficient
which describes the effect of pressure on latfice mobility
alone without the complication of a change in charge
carrier number.

For p-type germanium the sign of II;;-2IT;, agrees
with that determined by Bridgman at low resistivity,
but the magnitude does not. No reason for this dis-
crepancy has been discovered, our own measurements

TasiE III. Values of the dimensionless elastoresistance constants.
Resistivities are in ohm-cm.

dlnp _mi+mi

mat’gligi’ and mu —mis dlny 3
resistivity m 2 Adiabatic Isothermal
n Ge 1.5 - 93.0 + 04 — 6.6 - 53
n Ge 5.7 - 920 + 0.5 — 8.0 — 6.8
n Ge 9.9 - 928 + 0.1 -111 - 98
n Ge 16.6 — 934 + 0.1 —-123 —13.6
p Ge 1.1 + 65.1 — 2.8 + 20 + 3.9
# Ge 15.0 + 66.5 — 6.3 - 0.5 + 14
nSi 11.7 - 10.8 —-179.5 + 4.6 + 5.7
pSi 7.8 + 3.9 + 44 + 6.0

+110.0

18P, W. Bridgman, Proc. Am. Acad. Arts Sci. 82, 71 (1953).
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having been repeated with other specimens as were
Bridgman’s. In any case upon intercomparing the
present low- and high-resistivity pressure coefficients

the effect of the energy gap is again apparent, the

change in coefficient being, correctly, in the same
direction as for n-type germanium. The magnitude of
the resistivity dependence is also very roughly correct,
but the point need not be belabored when only two
data are available. The fact that the pressure effect in
both types of silicon is apparently independent of
resistivity (again see Table I) would seem to imply
zero energy gap effect at room temperature and at
these resistivities.

The values of (m11+2m15)/3=d Inp/d Inv for silicon
and at the lowest resistivity in germanium then describe
the effect of a volume change on the mobility. Such
values may be compared in sign and magnitude with
those given by Eq. (1) which basically describes the
effect of volume dilation on the amplitude of the
thermal waves and hence on mobility. The values
shown in Table II have the normal positive sign given
by Eq. (1) except for » germanium which is anomalous.
The same quantity for Li, Ca, and Sr has anomalous
sign. Frank has suggested that the negative sign in Li

e

FiG. 2. Schematic diagram of probable constant energy surfaces
in momentum space for #» Si. The electrons are located in six
energy valleys at the centers of the constant energy ellipses
which are shown greatly enlarged. The effect of stress on the
two valley energies shown is indicated by the dotted ellipsoids.
The mobilities of the several groups of charge carriers in various
directions are roughly indicated by the arrows. The diagrams

correspond to the two experimental arrangements A and C of

Fig. 1,

results from a decrease with volume of the effective
mass of the electrons.®

The assumptions underlying Eq. (1) are valid only
at temperatures above the characteristic temperature.
This condition is not met by silicon and only barely by
germanium so that magnitudes may be compared only
as to order. For p germanium the experimental value of
(my1+2m49)/3 is somewhere between two and five
compared with the calculated value of 1.7. Both types
of silicon give about 4.5 compared with the calculated
1.4. Thus Eq. (1) gives at least the right order of
magnitude for these three coefficients.

The Small Shear Coefficient

For each of the materials studied one of the shear
constants is large and one is small. The small ones are
(my1—mas)/2 for n Ge (zero within the experimental
uncertainty), p Ge (—2.8 to —6.3) and p Si (+3.9).
The coefficient 44 is small for #» Si (—10.8). The
resistivity dependence of (m11—m15)/2 for p Ge is
certainly real. These values for the small shear coeffi-
cient are also of the order of magnitude of what one
would expect from the shear analog of Eq. (1). It thus
seems unprofitable to look for a more detailed mecha-
nism than that of the effect of strain in general on the
thermal wave amplitude in the case of three volume
dilation coefficients and all four of the smaller shear
coefficients.

The Large Shear Coefficient

The shear coefficient 4, is large for n Ge (—93),
p Ge (~+66), and p Si (4+110). The coefficient
(m11—m13)/2 is, on the other hand, the large one for
n Si (—80). The variation with resistivity of 44 in the
case of p Ge is small but is nevertheless felt to be real.
The fact that the sign of the large effect is the same as
that of the charge carriers is at worst useful as a
mnemonic.

The large shear coefficients are at least one order of
magnitude larger than one would expect from the effect
of strain on the amplitude of the thermal waves. It is
evident that an explanation of these large coefficients
must be sought in an essentially different mechanism.
One such new mechanism which can account for large
shear coefficients is described below.

ELECTRON TRANSFER MECHANISM

C. Herring of these laboratories has suggested such
an effect based on current theoretical ideas of the
structure of the energy bands in these materials.’* The
suggested effect is quite capable of producing a large
shear coefficient and automatically predicts the high
anisotropy which the experiment shows. The mechanism
in the form which will be outlined applies particularly
to » Si and p Ge. We state in advance that there is

4 F. Herman, Phys. Rev. 88, 1210 (1952); F. Herman and
J. Callaway, Phys. Rev. 89, 518 (1953).
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agreement with theory for » Si but disagreement for
p Ge.

The structure of the constant energy surfaces in # Si
is at present thought to be as indicated in Fig. 2. These
surfaces consist of ellipsoids of revolution located on
the cube axes in momentum space, the six-ellipsoid
picture.’® The electrons are located in the energy minima
which means that there are six groups of them centered
at the ellipsoid centers. Because the surfaces are ellip-
soidal the effective mass of an electron in a given group
is anisotropic. Hence, the mobility associated with a
group is anisotropic although the overall mobility is
not. The energy value at a minimum will furthermore
be sensitive to a normal strain component in the direc-
tion of the minimum.

Figure 2 corresponds to experimental arrangement
A except that the simple strain system defining
(m11—m12)/2 is indicated rather than the tensile stress
X. The electric field and the current are in the [100]
direction. In the absence of strain the two energy
valleys shown are equally populated with electrons,
but the two groups of electrons have different mobilities
in the [100] direction. When the strain system is
applied, the two energy minima shift in opposite direc-
tions indicated by the shift of a given constant energy
surface from the full to the dashed positions. There are
then two effects of roughly comparable importance:
(a) the electrons transfer from the x valley to the
lower-energy y valley, and (b) the probability of an
electron being scattered from a y valley into an x valley
is decreased. In the strained state there are then more
electrons that have high mobility and fewer electrons
of low mobility in the field direction. Hence 8p/p and
(my—my)/2 are negative and finite for the situation
assumed in Fig. 2. The experimental value for this
constant in # Si is negative and large.

The sign of the electron transfer effect is changed by
(a) making the ellipsoids oblate rather than prolate or
(b) by reversing the direction of the energy shift. The
present measurements eliminate two of the four possible
combinations but cannot distinguish between the
remaining two. Figure 2 has merely been drawn to be
consistent with the experimental result for » Si. The
order of magnitude of the effect is determined by the
ellipsoid axial ratio and by a factor AE/kT, where AE
is the energy shift per unit strain. The experimental
result of —80 for (m11—m13)/2 for n Si requires AE to
be of the order of several electron volts, which is
reasonable.

The electron transfer mechanism furthermore pre-
dicts a zero contribution to the 4 coefficient for the
six ellipsoid picture. This fact is shown by Fig. 2
which corresponds with experimental arrangement C
except again for the strain. The mobilities of the x and
y groups of electrons are the same in the [[1107] direction
and the strain shifts the energy of the two valleys the

15 W. Shockley, Phys. Rev. 90, 491 (1953).

same, i.e., not at all. In both essential respects the
mechanism will give zero effect. This is reflected in the
low value of ma4 for »n Si.

In using Fig. 2 the ellipsoids in the z direction have
been ignored. The strain systems considered do not
affect these energy valleys and so for small strains
their electron population will not be changed. This
statement does not hold for the stress system imposed
in arrangement C, Fig. 1. The moderately high value
of observation C for # Si reflects the presence of the z
ellipsoids.

The same argument can be carried through for other
arrangements of ellipsoids consistent with cubic sym-
metry although such arrangements are not suggested
by the energy band calculations. In particular, arrange-
ments of eight [111] ellipsoids and 12 [110] ellipsoids
have been considered. The eight [111] ellipsoid picture
predicts a definite 4 contribution and a zero
(my1—m12)/2 contribution roughly corresponding to the
experimental results for » and p Ge and p Si. The
12 [[110] ellipsoid picture predicts that both shear
constants will be finite, of the same sign, and that
Mas> (my1—mys)/2. The predicted [1107] electron trans-
fer anisotropy is not large, however, in disagreement
with all the present results.

The situation relating the electron transfer mecha-
nism plus ellipsoid picture to the present piezoresistance
results may be summarized simply. If ellipsoids are
present and if the electron transfer mechanism is the
principal one operating, then the ellipsoids must be located
on [100] axes for n Si and on [1117] axes for the other
three types of material.

In the case of p germanium the above qualified
conclusion of [111] ellipsoids does not agree with the
energy band calculations which suggest that [111]
ellipsoids are unlikely. There are, also, several other
types of experiment which will not be discussed but
which favor the six [100] ellipsoid picture for p ger-
manium. The existence of another or an additional
mechanism must be considered seriously therefore. The
strain may produce a change of resistance through its
action on the phonons, on the electrons, and on the
coupling between them. As has been pointed out above,
the strain-phonon effect can account for small piezo-
resistance coefficients. The electron transfer effect is
one possible action of strain on the electrons. The
possibility of another strain-electron or of a strain-
coupling action remains for p germanium.

There are indeed two indications in the present
experiments that p germanium is different from the
other materials. The shear constants show a definite
resistivity dependence in contrast to the other materials,
and the temperature dependence of the piezoresistance
in p Ge is different from the others. Preliminary meas-
urement of the temperature dependence of the large
shear coefficient has been carried out from 300 to
200°K. For this purpose only the specimen 4 or C
giving the large observation was used. The temperature
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curves were fitted to the equation II=A47-%at 300 and
-200°K. The values of b are 0.8 for # Ge, 1.1 for.p Ge,
0.7 for » Si, and 0.6 for p Si. These two facts suggest
that an additional mechanism is operating in p ger-
manium.

The discussion of the electron transfer mechanism
has been made in terms of ellipsoidal constant energy
surfaces for the sake of definiteness. It should be
pointed out that all that is really required for the
mechanism is that the energy surfaces be nonspherical
at the location of the charge carriers. The ellipsoid
picture is not particularly indicated by the energy band
calculations for » Ge and p Si but, other nonspherical
energy surfaces could equally well produce the electron
transfer effect and consequently highly anisotropic
piezoresistance. The present results would then show,
again assuming the electron transfer mechanism, that
the charge carriers are located principally in [111]
directions in momentum space for #» germanium and p
silicon.
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APPENDIX
Cubic Piezoresistance Coefficients

The change of resistivity is a symmetrical second
rank tensor as is the stress. The tensor connecting the
two is therefore of fourth rank, and the piezoresistance
effect is strictly analogous to the piezooptical effect?
with the resistivity replacing the dielectric constant.
For germanium and silicon three coefficients are re-
quired to specify completely the piezoresistance prop-
erty. In this section we make the necessary definitions
and show how the fundamental piezoresistance and
elastoresistance coefficients of the text may be computed
from the observations. The restriction of a cubic crystal
is imposed immediately on the resistivity. Crystal
symmetry conditions are used later to restrict the
conclusion of three piezoresistance constants to the
cubic crystal classes T4, O, and Oy, four constants being
required for the other two cubic classes T' and 7.
For convenience the same matrix notation as has been
used relatively recently for the piezooptical effect!® will
be used here.

The starting point of the analysis is

E=pJ, 3
where E is the electric field, J the current density and

18 W. L. Bond, Bell System Tech. J. 22, 1 (1943).
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p a three by three symmetrical matrix!? in the general
case of a triclinic crystal and arbitrary reference axes.
For a cubic crystal and arbitrary axes the p matrix
reduces to a scalar, but it is convenient here to continue

‘thinking of it as a matrix. If a change in p occurs

because of stress, one may write for the special case of
constant current density, which applies in the present

experiments,
0E=(3p)J ; @)

0E is now the change in electric field, a vector, and
(60) is again a three-by-three symmetrical matrix.
For a cubic crystal it is convenient to divide through
by the scalar resistivity, giving

SE=AJ, ©)
and then to write out explicitly:
0E/p=A1J 1+ AT o+ ArsT s,
8B/ p= A1aJ 1+ Asa) 3+ Ans T3, (6)

0Es/p=A13J 1+ AssJ 2+ Ass] 3,

where A;j= (8p):;/p. The nondiagonal terms are not
necessarily zero, nor are the diagonal terms equal in a
general frame of reference in a cubic crystal. The
quantity A relating a vector 8E to a vector J transforms
just like the stress or the dielectric constant but not
like the conventional strain. The diagonal terms in A
giving the change in field along the corresponding
current density component are in a crude sense analo-
gous to an elastic normal strain; the nondiagonal terms
give the change in field (the field which develops in the
cubic case) normal to a given current density compo-
nent, and may be thought of as electrical shear strains.

The matrix A may be written as a six element column
matrix using the descending sequence Ay, Ags, Ags, Ags,
Agy, Ags, and the stress X may be similarly written. The
connection between A and X may be written for a cubic
crystal using general reference axes as

A=IIX, )

where II is a six-by-six matrix of piezoresistance con-
stants. This matrix is not quite symmetrical even for
the cubic case and not at all symmetrical for a triclinic
crystal in the generalized version of Eq. (7). If now the
cubic axes [100], [010], and [001] are chosen as
reference axes and the symmetry of any one of the
cubic crystal classes T4, O, or Oy, is used it can be shown
that II reduces to

IO, I, I, O 0 0
H12 Hn H12 O 0 0
_ (M Iy Iy O 0 0
I=10" 0 0 ms 0 0 ®)
0 0 0 0 INy O
0 0 0 0 0 Il

Germanium and silicon belong to crystal class Os.

¥ For a good discussion see W. Boas and J. K. MacKenzie in
Progress in Metal Physics (Interscience Publishers, Inc., New
York, 1950), Vol. 2, p. 93.
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Experimental arrangements 4 and B make use of
just this array of coefficients. In both arrangements
X1=X and all other stresses are zero. The electrode
arrangement of 4 measures Ay; and that of B measures
Azz; thus for A, Hn'—‘Au/Xu, and for B, H12=A22/X11
are directly measured. '

The choice of axes in arrangements C and D permits
IT44 to be determined in a simple but indirect way. For
the reference axes [1107], [1107], [001] the transfor-
mation of Eq. (8) gives for arrangement C, %(IT;;1+Iy;
+H44) = An/Xu and for D, %(Hn‘l“ IIy— H44) = Azz/Xn.
Thus all three piezoresistance coefficients can be deter-
mined using 4, B, and C, with D left over as a check
on internal consistency. Table I shows that the agree-
ment between the observed D and the value calculated
from A, B, C is reasonable in view of the approximate
correction applied to D.

The necessary third observation cannot be obtained
by making another longitudinal measurement in a third
crystallographic direction. The general longitudinal
effect is given by Il;;=1II;;— 2IIT', where II=11;;— Iy,
—1II4 and T is an orientation function. Only II;; and
the combination IT can be determined by longitudinal
measurements alone, and thus the third measurement
must be of a different type. The transverse observation
B serves this purpose.

The equations reducing the observations to the
fundamental piezoresistance coefficients defined in the

text are then,
I +211,=A+2B,
My=2C—A—B, ©)
Hu'—HuzA“B,
where 4, B, and C refer to the numbers given in
Table 1.
A set of elastoresistance coefficients also can be
deduced from the present results. The change-in-resis-

tivity matrix A can be related to the strain e by the
elastoresistance coefficients 7,

(10)
where the strain e is, to be explicit, the six-element
column matrix of terms du/dx, dv/dy, dw/dz, [ (dv/dz)
+ (9w/3y) ], [ (8w/ 0x)+ (9u/32) ], [ (du/ dy)+ (8v/dx) ],
where %, v, w are the displacements of a point with
coordinates x, ¥, z. Since we have for the relation
between stress and strain,

X=Ce, (11)

where C is the elastic constant matrix, it follows, using
Eq. (7) that

A=me,

m=1IIC. (12)

The fundamental strain coefficients are quickly given
by the aid of this last relation and a little algebra as
3 (my+-2myy) = (T +21010) (C1u+-2C12) /3,
Myg= T144C4,

$(ma—myg) = (U —1Iyp) (Cri—Cr2)/2.

(13)



