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Magnetic Properties of the Hydrogen Molecules
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The diamagnetic susceptibility x, the rotational magnetic moment p„ the magnetic shielding constant 0.,
and the spin-rotational magnetic interaction constant II„of the hydrogen molecule are calculated theo-
retically. The.energy of. the rotating molecule, under an external magnetic field, is calculated by means of
the variational method using 7+2 term wave function. By expanding the energy in powers of the appro-
priate parameters, x, p„, 0., and H, are determined and the relations between these quantities are obtained.
Comparison with Ramsey's experiments is also made.

' I. INTRODUCTION

S a result of the increasing accuracy of microwave
and molecular beam measurements, it is found

that the apparent magnetic moment of a nucleus has
different values when it is contained in diferent mole-
cules. This phenomenon, called "chemical shift, " arises
from the fact that the surrounding electric charges
create a magnetic field at the position of the nucleus in
addition to the external one. Based on Wick's theory, '
Ramsey has treated this problem in a series of papers. '

It seems to be important to study the chemical shift
for the hydrogen molecule, since accurate experimental
data are available for this molecule, and its nuclear
magnetic moment is used as the standard for the meas-
urement of magnetic field strength. The calculations
were made by Ramsey~ and by Hylleraas and Skavlem. '
In all these calculations, however, the perturbation
method was adopted, and the difficulty lies chieQy in
the fact that the second-order terms cannot be evalu-
ated accurately.

On the other hand, one of the present authors has
succeeded in calculating the polarizability of the hydro-
gen molecule and in overcoming the difhculty by using
the variational method. 4 The aim of the present paper
is to show that the same method is also applicable in

principle to the calculation of the magnetic properties
of this molecule. We have calculated the chemical shift
o (magnetic shielding constant) as well as the other
magnetic quantities, i.e., the diamagnetic susceptibility

y, the rotational magnetic moment p„, and the spin-
rotational magnetic interaction constant IJ„, and found
that the well-known relations between these quantities
can be formulated quite fundamentally.

For the purpose of examining the usefulness of this
method, a preliminary calculation has been made and
rather good results have been obtained.

2. HAMILTONIAN

The Hamiltonian of a hydrogen molecule placed in
the magnetic field H is given by

(
Z( P.—&b

I + Z I
us+-&

)2M. bE , C ) 2rrtr i & C )

+ l' t 'H(~.—+~b)+f(t '~.,t '~b) (l)

where we neglect the electronic spin which has no
inRuence on our final result within the accuracy of our
approximations. 0, and e~ denote the Pauli matrices
of the two protons a and b, respectively, and p,

' is the
magnitude of the magnetic moment of the proton.
W|. may adopt. the representation in which the total
nuclear spin of the molecule can be specified by a set
of quantum numbers (I,ntr), and take only the diagonal
elements. Then the x and y components of the o's
may be omitted. For the states with my=1, 0, —1, the
expectation values of o„and o-b, are (o„)=(o.b,)=1, 0,—1, respectively. Therefore,

The erst term of BC&,& represents the kinetic energy
of the two-proton system and, neglecting the term for

' G. C. Wick, Phys. Rev. 73, 51 {1948);Z. Physik 85, 25 (1933).
s N. F. Ramsey, Phys. Rev. 77, 567 (1950); 78, 699 (1950);

83, 540 (1951);85, 60 (1952); 243 (1952).
s F.. Hylleraas and S. Skavlem, Phys. Rev. 79, 117 (1950).

Ishiguro, Arai, Mizushima, and Kotani, Proc. Phys. Soc.
(London) A65, 178 (1952).

FzG. 1. Relation between the fixed and moving coordinates.
a and b denote the nuclei. The ( axis is taken to lie in the xy plane.
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the motion of the center of gravity, we can write in
terms of polar coordinates:

A2 B ( B $ B B' B2

K~= — —
i

R'—i+cotS—+—+csc'8-
MR' BR L BRi Bs B82 By'

eI1 ( B p ek 2 ( B)
(3)

2MC E Byi 2MC R' L Byi

where R denotes the internuclear distance of this
molecule. In this derivation, the s direction is chosen
to be parallel to the external magnetic field, the vector
potentials A, and Ab are assumed to be expressed in
terms of the coordinates with their origin at the center
of the gravity as

2p
A.~= —-',aY.——I'.,

R3

2p
A bX = —,H Yb ——Fb)

R'

2p 2p
A,r 2HX,+——X„a—nd A2r= 2HX2+ Xb, —

E3 R3

A.z ——0, Abg ——0,

and the small terms proportional to the square of A 's

are neglected. The last terms of Eqs. (4) are the com-
ponents of the vector potential due to the presence of
the proton magnetic moment.

The second term of X~,& is the kinetic energy of the
two electrons and, together with the third term V, the
electrostatic potential energy of the four particles, can
be expressed most readily in terms of the $, g, l reference
system which has the l axis parallel to the axis of mole-

cule and travels with the nuclei (see Fig. 1). We may
suppose the $ axis to lie in the 2:y plane without loss of
generality. Then the moving and Axed systems are
connected by

A2 ( B' B' B' )
Zf —+ + I+~,

2nz l &ap' aq' ag'i

ek ( B B~
sinSI g; —g—;—~

28lC$2 4 Bpj Btji

( '
+cosS( $,——g,—[, (Sb)

E aq, a( i
85 ( B B

2 sinS) g;——P;—)

2mci i . 0 Bf; Bl;i

+2cosS( (,——q;—( ] +
Bq BP i Er ' rb'i

t.'2

(r. 2 rb,'i ag,

Bc&4' = p(p'+ (g; cosS—g; sinS)'}
Smc' j

In terms of the same coordinate system, we may also
take the wave function as the product of two parts:

@(Rs~y)+(glpll gl $2@12 f2 R 8) ~

Then, since $, g, f depend upon 8 and y through the
relations (5), the differential operators appearing in
the Eq. (3) have to be transformed as

e2 - (1 1~
K"&= p ('+(q; cosS—p;sinS)2}~ +

2mc i . (r„, rb i
R (1 1~-

+—sinS(g; sinS —g,cosS)
~

—
~

. (Se)

$= —x siny+y cosy,

l1= —2: cosS cosy —y cosS siny+2 sinS,

t = 2". sinS cosy+y sinS siny+2 cosS.

a a (ag;a aqua ag;a)
(5) — —+Zi —' + +

as as & as ap, as a~; as a|,&

Using these coordinates and adopting as the vector
potentials A ~, A ~, the following expressions:

( B B
(1Oa)

as L 'at; 'ag, i '

~ .= —(1/2) Hy —( /r. ,')y.—(I2/r»')y»
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where

we obtain
&aj xj Lap etc

( B B i
sinS~ f;

By ~ I E 8(; al i

(
sc,= Q ( p, +-A,-

) +v
2ml ( c i

= 3C@'+H K"'+p K"&+H'K'4'+ Hp K+'+

( B a )
+cosS~ $;——~;—~

. (1Ob)( aq; a()
The physical significance of this transformation . is
most easily seen if, for instance, we consider the
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meaning of the operator B/By. As is well known,

( i—B/By) R & „, .„. . represents the s component of the
angular momentum of the free rotator composed of
two protons. On the other hand, since the new B/By
means diGerentiation with E, 8, P.. . and is kept
constant, the new iB/—By is the operator which repre-
sents the angular momentum of the two-proton system
carrying the two electrons with it. Therefore, the dif-
ference between the new and the old iB—/By should
be equal to the z component of the angular momentum
of the two electrons relative to the nuclear system.
Equations (10b) express this relation. A similar situation
is valid for B/B8 mglalis mllandis.

Substituting Eqs. (10a) and (10b) into (3) and
considering Kq. (1) and tt, 'H(o—„+os,) = 2ttH, we-
6nally obtain the total Hamiltonian:

ttt' B p—
I

R'—I+cot8I i—Lt I

MR' I BR ( BE) (B8 )
I'B . 1', (B

+( —iLs [+csc'8l-
&B8 ) iBy *)

I

ieh (B ) iek p4, ( B+- Hj —iL. f+-
iBy 'i iMc E &By )

(ii) Using the above 4s, one should be able to deter-
mine the vibration-rotation wave function Co in the
case II=@=0.A rigorous treatment might be dificult,
of course. However, it has been shown that to a good
approximation Co can be written as f(E) x(8,y), and
the rotational eigenfunction y(8, y) can be expressed
by the spherical harmonic Y& ~ which has the eigen-
value J for the angular momentum and mg for its
z component.

(iii) Finally, introducing H and tt, we calculate the
internal wave function 4(pt, rtt, t t, (s,rt&,l s, R,8) by means
of the variation method. In this step, y is assumed to
be not considerably diferent from the one obtained in
(ii). Then we can safely replace the operator iB/By-
(s component of the angular momentum of nuclear
system) with its eigenvalue mJ. From the first term of
(11) we pick out the term proportional to ms and con-
sider it as a perturbation in addition to the terms
Hsco), p3c(2&, HUc&4&, and HpK&'i. Then,

21t'ms s [ ( B B q
tttsX&'&= — P tsin8

iME' sin'8i=t I & Bp; @;.i
B B)

+cos8~ j,——rt;—
~

t. (14)
I 'B~; 'BP,) J'

—2ttH+ X+HXu'+tt X"' The remaining electronic terms are all neglected be-
cause they contribute nothing to the quantities in

+H X +HttX ~ (11) which we are interested. Thus the Hamiltonian in
question becomes

where use has been made of the following abbreviations:

B B )
L&=l,'+lP= —i+~ rt;

t E Bi; Bttti

X= X'st+ H X"'+ttX"&

+msX&"+HsX&4t+HttX+&. (1$)

4. APPLICATION OF THE VARIATION METHOD
B B )

L =l '+l '= i+~ —
1

t ( Bg; Bi.;i

( B B p
L,=l,t+lrs= i ZI &; nt- —

t L. 'Bq, B(,i'
L,=L, sin8+Lr cos8.

The electronic wave function of the ground state of
the free hydrogen molecule, which is the solution of

(12) Eq. (13), has the symmetry 'Z,+. When the perturba-
tions are introduced, the electron distribution is de-
formed and the wave function loses its symmetry.
If the perturbations are sufEciently small, the wave
function may be expressed as

3. PROCEDURE

The Hamiltonian given by (11) seems to be un-

manageable. We will, therefore, treat it in the following
manner:

(i) First we determine the internal wave function
0's(gt, qt, lt, pg, gs, f's, R) and its lowest eigenvalue Es in

the case H=O and p, =0, by solving the equation

(13)

As is well known, this calculation has been made by
many investigators, including one of the present au-
thors. ~ %e can, therefore, utilize the results already
obtained.

~ E. Ishiguro, J. Phys. Soc. Japan 3, 129 (1948).

O'= Q;a,8;+H Qsbsys
+tt Etc''t+tlz P tl x +, (16)

where the 8's have the symmetry 'Zg+, and ys, ft, and
y„have the other symmetries. Normalization of 0'
gives

1=+a;*atS;;+Hs P 4*4.S,s
&e7

+Htt Q (bs*ctSat+«*M'u)
k, L

+Hm g P (bs*d„Ss„+d„*btS„s)
k, n

+ttms P (ct*d&t.+A*ctS.t)+, (17)
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where S;,=J'8;*8,dr„S»s= J'y»~fsdr, etc. , and S;k, S;i,
and S;„vanish because of symmetry. The mean value
of the Hamiltonian K with respect to the function 0'
is given by

E=ga;*a;Xi&("+H'{pa;*a;3C@("+Qbk*b» X»» &'&

+Z(a;*bk«k "&+c.c.))
+Hp{Q (a;*csX;s('&+c.c.)+Q (a;*bk X;»&'&+c.c.)

+Q a; u, X;s('&++(bk*ciX»s('&+c.c.))
+Hmg{Q (u;*d„X;„('&+c.c.)+Q (u;*bk X,k(s&

+c.c.)+p(bk~d X»„&'&+c.c.))
+pmg{Q(u;*d X; (s&+c.c.)+Q(a;*c(X,((s&+c.c.)

+P (ci*d„Ki„"&+c.c.)}, (18)

where c.c. means the complex conjugate. We try to
find the coefficient of (16) which minimizes E of Eq.
(18) under the condition given by (17). Differentiating
(18) with respect to a;*, bk*, cs*, and d *, and using the
well-known Lagrangian multiplier method, we obtain:

Q (X &'& S E")a—+H"s(Q X"(s&a++»X»&'&b»)

+Hp(g i X,i&'&ci+g»3C;»&'&b»+P;X;;&'&u, )
+HmJ(goXin de+a»X(» bk)

+&time(Q X;„(s&d„+Q&X;s(s&cs)=0, (19)

H'{pk (Xkk "'—Skk E)bk +p;Xu»' }a
+H&s{Q;X»;('&a;+ps(X»s('& S»(E)c—s)

+HmgQ" (Xk„(0& S»„E—)d„+Q;Xk;(s&a;}=0, (20)

H~ {z;X;"s' +az (Xk"sk' S(»E)—bk}

+&km~{P;Xs;(s&a;+P.(Xi„&'& Si.E—)d„}=0, (21)

Ismg{P;X, u;+P((X„s( & S„(E)—cs

+HmJ{PX.(i a++»(X»(o&S»E)b») —0(22)

+ (27)

The expressions in the square brackets should all
vanish, because guf asoSis= f ~@0(&sdr=1. Making use
of these relations together with (23) and Z(X;;('&
—S@EP)as0=0, etc., we can simPlify (18) as follows:

E=Ep+H'$Q a,'us'X; (0&+Q a,'b»X;k" &g

+H&s[P a'u X"(0&+P aPcsX;s('&

+Q a'b»X k"']+Hm g[Q. a,'b»X;»&'&

+P a d X, ('& j+pmgt P u,'csX;s"&

+g ugd„X;„&'&j+ (28)

Since Lt8;= 0, the second term of 3.'"& and BC&') can be
dropped. Then, we can put

X&'&'= X"'/sin8= —(eMI(."/4mc&&s) sin8 3C('&, (29)

and from (25a) and (25c) we obtain

From Eq. (19) it is seen that a; can be written as

u; =uP+Hsa, &"+IIyu; (0&+Hmgu; (0&

+&smga;(4&+ . . (26)

(The proof of this relation is given in the Appendix. )
Substituting (26) into (17), we get

g a.oa.oS.&+Hsggb»'b»S»». +P (u,ou. (i&

+a;"&us')S@j+Hls[g(bk*c»S»s+cs*b»S&k)

+P(u,oa;(»+a, (»aso)S,,j
+Hmgfg (b»*d S»„+d„*b»S„»)

+Q(a'a "&+u-("a')S;;J
+pm gap (cited Si„+d„~c(S„()

+P(a'a &'&+a ('&a')S;;]

From these we get at once: where

Q» (Xk» (0& —E0S»k )bk = —Q;X», ('&a/, (23a) Snnslarly,

—d„= (4mch/eMRs) sin8b»',

b»' =b»/sin8.

(30)

(31)

cs' = cs/sin8. (32)Zs(Xki EpS»l)cl piXki ai q

Q„(X»„('&—EpS»„)d„=—g;X»;(siu o

Qk(X&k('& —EpSi»)b, = —P;Xs,( &a,'
g„(X, «& EpS, )d P.X .&s&a,o

Qs(X s(0& —E0S i)ci= —Q;X„(s&aip,

Zk(X k(0& —ES )b = —Q.X &"u'

(23b)

(23c) Thus (25a) becomes

Q(X»k "'—EoS»» )b» '= —g 3C» ('&'u;o. (33)(23d)

(23e) Furthermore, if we put

(23f) K"'=sin8 K&"'+cos8 X('&" (34)

To satisfy Eqs. (23) consistently, it is necessary that

(»=»t(=X .

Thus Eqs. (23) can be reduced to:

(23g) it is shown from the symmetry properties that X»;&'&"

vanishes for those values of k to which the non-vanish-
ing X,I„(')' corresponds. On the other hand, if 3CA,;~')'=0,
then (33) gives bk'=0 which makes ahab»X»;(» vanish.
Therefore, KI,;(~)" is of no use for our purposes. Thus
(25b) can be written as

Ek (Kkk "' EOSkk )bk = —Z;X—k;"'a, (25a) Q (X»s ' -E0S»s)cs'= —Z X»' (35)

Zs(X»s "&—E6'ks)cs = —2;Xk,"&a,

Q.(X».&'& —E0S» )d„=—P;X»;is&a,o (25c) Q a b»'3C;»&"'=Q a,'ci'3C;i&"'.

(25b) It follows from (33) and (35) that
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Taking account of the above relations, we Qnally get

E=Ep+8'[P a'a'X;;&'&+sin'8 P uPb&, 'X;s&'&'j

+SIpgg a,'ai'X, ;&'&+sin'0 (2 Q a,'bg, 'X;&,&'&']

28—mg(4m'/eMR')Q a'bp'X s&'&'

imam g—(4mch/eMR')2 P gobi'X, s&s&'+ (36)

On the other hand, the total energy should be written

t see Eq. (11)$ as:

Ei,i= (Rotational energy)+ (vibrational energy)
—(eh/2Mc) Hmg —(ek/2Mc) (4/R')

Xpmz 2pH+E—+
= (Rotational energy)+ (vibrational energy)

+Ep+ (—)(/2)Hs —2(1—o)8&u —8m'„
—2iimgH„+, (37)

TABLE II. The calculated values of ym, l, cr, p,„and H,
for 8=1.3, 1.4, and 1.5 atomic units and for arbitrary 8.'

Xino I

(atomic
R units)

1.3
1,4
1.5
1.3
1.4
1.5
1.3
1.4
1.5
1.3
1.4
1.5

—3.4674 —0.5974 sin%+0. 1469 sin28—3.5814 —0.7339 sin28+0. 1947 sin29—3.7206 —0.8838 sin28+0. 2485 sin28

2.897 —0.1515 sin%+0, 0706 sinS
2.774 —0.0573 sin28+0. 0683 sinS
2.657 +0.0292 sin28+0. 0643 sin28

1 —0.1466
1 —0.1675
1 -0.1862

31.004+2.138
24.823 +1.783
20.182 +1.463

Unit

10 6 erg G 2 mol i
10 8 erg. G 2 mol i
10 8ergG 2mol 1

10 5

10 5

8

eh/2Mc
et'/2M@
efi/2Mc
Gauss
Gauss
Gauss

a The first and the second terms of gmoj come from the first term of (38),
and the third terms (high-frequency terms} from the second term of (38).
The first two terms of each cr come from the first term of (39), and the
last from the second term of (39).The dominant part of Hr (the first terms)
is obtained from the first term of (41).

In the present paper, for PaPt&;, we tentatively adopt
the seven-term wave function obtained by one of the
present authors

+p (1/2pr) exp{—b(4+F2) }L2ui'+ as'(&it'+ ps )
+2&soyi&is+&4'()ii+) s)+&s'()ii'+) s')

+2as9. i)&,siii&us+ 2arPP cos Q i—y,)], (42)x= —2t 2 usa&'oX;;t4&+sin'() Q a obs'X sir&')

o = (1/2)P a,'a,"X,, &s&+sin'8 g a,'bs'X, s&'&',

p, ,= (ek/2Mc)+ (gmc5/eMR')Q a'bs'X;s "&'

(38)
where

)ij= (rgj+rs;)/R, p, = (r„r»')/—R, (43)(39)
RIld

(40) p= {()ti'—1) () s' —1) (1—
1 i') (1—us'))' (44)

where y means the magnetic susceptibility of this
molecule, o- the magnetic shielding constant, p, the
rotational magnetic moment, and JI„ the rotational
magnetic field (spin-rotational magnetic interaction
constant). Comparing (36) with (37), we obtain

8„=(ee/2Mc) (2/Rs)

+ (4mck/eMR')P aPbs'X, &.
&sI' (41.)

TABLE I. Coefhcients and energies of the wave functions.

gP
g 0

g 0

g40

g 0

g60
g70

R. =1.3

2.61810
0.98603—0.70138—0.49117
0.05030
0.00090—0.04938

R =1.4

2.46595
0.90325—0.67659—0.59722
0.05031
0.01191—0.03731

(atomic
R = 1.5 units)

2.29591
0.82526—0.64411—0.66111
0.05333
0.01891—0.02839

These results depend upon the molecular orientation
0 and the internuclear distance 8, and the observed
values are considered as averages over 0 arid E.

S. NUMERICAL CALCULATION

The most accurate wave function %0 of a hydrogen
molecule so far obtained is that of James and Coolidge. '
It is therefore desirable to use it to calculate the x's
and to take as many additional functions as possible.
It is, however, very laborious.

Pi and Ps denote the azimuthal angles of the two elec-
trons, and 8 is fixed as 0.75 throughout this calculation.
The values of u and Eo are tabulated in Table I for
R=1.3, 1.4, and 1.5 (atomic units). For the additional
function, we have used two functions:

9 i-—pi ——Xi ——(1/2ir) exp{—3()&.i+ho))
&& L&ui()&, is —1)i(1—pip)'* cos&f i

+~s()ts' —1)'(1—~s')' c»4s],

'ps lf s —xs ——(1/2ir) exp{—3 (hi+)&,,))
&& L»()& i'—1)*(1 &ui')' cos4'i

+&ui ()&.s' —1)i(1—ps') l cos9&sf. (44)

The details of the calculation are quite analogous to
those of the polarizability calculation4 and we shall
omit them here. The numerical values of the integrals
required for our problem have been taken in part from
the tables published by Kotani et al. 7 The tables made
for the calculation of the polarizability. have also been
utilized. The results obtained are shown in Table II.

6. RESULTS AND DISCUSSION

b1'
b2'

Cy

C2
1

—0.003335$
0.001910i
0.004416i
0.000668i

(atomic
ED units) —1.1553615 —1.1575046

—0.003257i
0.001819i
0.003194i
0.000636i

—'1.1556648

—0.003144i
0.001720i
0.002320i
0.0005815i

In the preceding section, we obtained expressions
for x, 0, p„, and H„ for Axed E and 8. We will now aver-
age these quantities over E. for the lowest vibrational
state. The method is the same as that used for calculat-

7 Kotani, Amemiya, and Simose, Proc. Phys. Math. Soc. Japan
20, extra number (1938); M. Kotani and A. Amemiya, Proc.

' H. M. James and A. S. Coohdge, J.Chem. Phys. 1, 825 (1933). Phys. Math. Soc. Japan 22, extra number (1940).
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TABLE III. The values u, b, c. Each figure in this table corre- Taking jntO aCCOunt the relatiOn
sponds to that of Table II in the same arrangement. The units
used are also the same as in Table II. +J'

mJ' ——(1/3) (2J+1)(J+1)J, (47)
e —3.5827 —0.7353 +0.1952
b -1.2685 —1.4333 +0.5086
c —1.26 —0.67 +0,300

(y,~)g= —3.6750—0.8168 sins8+0. 2260 sin 8 (Hs)
(x,&)n= —3.6469—0.7923 sin'8+0. 2167 sin'8 (D&)

we get
(Cos 8)J = s, (Sill 8)J = s. (48)

e +2.773 —0.0564 +0.0683
b —1.199 +0.9027 —0.0317
c +0.300 —0.385 —0.085

(p)~=2.731—0.0294 sin'8+0. 0667 sin'8
(p )g =2.743—0.0372 sins8+0. 0672 sins8

(H2)
(Ds)

App
c

—0.1677—0.1978
+0.110

&a&,)&= —0.1728 (H2)
(ay.)z= 017143IIp/M—s = —0.0857 (Ds)

g +24.7689 +1,780
b —53.956 —3.372
c +77.000 +1.750

(H„)n= 24.783+1.689
(H„)g= (24.738+1.715)M„/Ms

(Hp)
(Ds)

ing the polarizability: we may express the R dependence
of any quantity as

f(R) = a+b(R R,)+—c(R R,)s, — (45)

2J'+2J—1—2m''
(cos'8)z, mg ———

(2J—1)(2J+3)

2Js+2J—2+2~ps
(sin'8) J',m g ——

(2J—1) (2J+3)

and average it by using the eigenfunction of the Morse-
potential. (See Table III.)

The observed values are considered to be the averages
of the above-obtained values over 0 for the rotational
states. As is well known, the rotational eigenfunctions

can be expressed by spherical harmonics. It follows

from the properties of the spherical harmonics that

The anal results thus obtained are shown in Table IV,
and indicate that our method is useful and gives good
results even in the rough approximation. It should be
noted that we have been able to avoid the difBculty
in the perturbation treatment that the high-frequency
terms become too large. Compared with the observed
values, the calculated values of g~p and Ap, „are large,
and the high-frequency term of II„ is small. However,
the errors arose to the same extent in the calculation
of the polarizability when only three terms were added
to the unperturbed wave function. Therefore, we may
expect the situation to be improved by taking more
terms. In our results, H„of Ds is smaller than H„/2
of H2. Experimentally the reverse is the case. This dis-
agreement seems to come from the approximation in

(45), which is not good for the erst term of II,.
To get more accurate results by our method, it is

necessary (i) to adopt the more accurate wave function
for %p, (ii) to increase the number of the added func-
tions, and (iii) to carry out the calculations for a larger
number of diGerent values of R. Considerable improve-
ment, however, may be expected by increasing the
added functions to Ave or more.

It follows from (38), (39), (40), and (41) that

q= —2 P afaP3C;;&4&

—(n'apR'/8@~) sm'8(IJ, , IJ,~), (49—)

n= (1/2)Q a,'a 5(.',;is&

—(n'a pR'/4IJ, ~) sin'8 (IJ~/R EX,/2), (50)—
where

ap ——5'/me', n = e'/Ac, and. p~ ——ek/2Mc. (51)

TABLE IV. Results of the calculations and comparison with experiment.

Xmol

APr

Calculated

—4.0689
2.756

—0.1727

26.472

0.1507

—3.922

H2
Observed

—3.94, —3.99'

—0.11709+0.00007b

27.32~ 26.74a0.05o

0.0990&0.001b

0.093 &0.007'
—3.66 ~0.20b
—3.9 a2.5o

Calculated

—4.0306
2.763

—0.0857

13.227

0.1445

—3.820

D2
Observed

0 0594~0 0030c

(
14.0 a0.6~
13.43 %0.06'

5 1 ~25o

Unit

10 ' erg G~ mole '
10 5

eh/2Mc

Gauss

10 6 erg G mole '

10 s'/mole

a J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford University Press, Oxford, 1932), p. 279.
b N. J. Harrick and N. F. Ramsey, Phys. Rev. 88, 228 (1951).
e N. F. Ramsey, Phys. Rev. 58, 226 (1940).
d Kolsky, Rabi, and Ramsey, Phys. Rev. 57, 677 (1940).
e Kolsky, Phipps, Ramsey, and Silsbee, Phys. Rev. 79, 883 (1950).
f Kolsky, Phipps, Ramsey, and Silsbee, Phys. Rev. 80, 483 (1950).
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TABLE V. Comparison of our values g, & with those
of other investigators.

system may be described as

exp{ih(mx+MX)/(m+M) l x(x—X)

Lamb's formula
First-order correction

Sum

Second-order correction

Total

H�ylleraa-
sSkavle

3.i648—0.5034
2.6614

0.2864

2.9478

3.24—0.63
2.61 2.711
0.07

(o.o5 ) o o45

2.68
( )

2.756

3.24—0.50
2./4
0.05

2.79

Semi-
Present empiri-

Ramsey calculation cal
where m, M, and x,x are the masses and coordinates of
the electron and the proton, respectively. Then by the
usual procedure we obtain the current due to both elec-
tron and proton.

On the other hand, if we use the B-O wave function
instead of the correct one, namely

exp{ihXl x(g—X),
we cannot obtain the electronic current moving with
the proton. This consideration shows that the B-O
approximation is not justified for the calculation of the
electronic current moving within the nuclear framework.

For the H2 molecule, however, the B-0 approxima-
tion is adequate, as we know from experiment that
electrons are almost completely separate from the
nuclear system. The correction for the B-0 approxima-
tion due to the incompleteness of the separability of
variables introduces Ap„, which is calculated by our
formalism. We will consider the treatment of the other
extreme case in a later paper.

ln conclusion, the authors wish to express their
sincere thanks to Professor M. Kotani for his guidance
and to the members of his laboratory for their aid.
They are also much indebted to Professor G. Araki
for his discussions, and to Professor N. F. Ramsey for
his kind interest. They are grateful to Mr. T. Kawai, Mr.
S. Kawasaki, and Mr. S. Kuroda for their assistance in
carrying out the numerical work. Part of this work was
made possible by research grants from the Educational
Ministry.

a The value obtained by the use of Hr 26.74 gauss.

On the other hand, Ramsey gives the formulas

Q Gp

(Zfr'),
6

cr apR Ir &ur'&

(52)
12 ( u~)

Xaamsey Xo+XErrq Xo

and
1 1 a'apR' (ts&v H„)

&Ramsey= str ao
i I

' (53)
r, t 4R 6&u&v &Rs 2 )

Putting sin'H=xs, Eq. (49) agrees with (52) and the
Erst term of (50) corresponds to the Hylleraas-Skavlem
expression t Eq. (17) of reference 3j:

scr ap(1/ral R~at/2r. ts)Av.

This, however, seems to be difFerent from the corre-
sponding term of (53).The explanation lies in Ramsey's
assumption that "the nuclei are at positiorts where the

electric field is approximately zero. " Under this assump-
tion we obtain (1/4R)=(Rz, t/2r, ts). The results of
these calculations are shown in Table V. The difFerence
between —0.63 (Ramsey) and —0.50 (Hylleraas-
Skavlem) seems to be caused by Ramsey's assumption,
and we list in column 4 the most appropriate values for
the semiempirical 0. value. The agreement with our
values is quite excellent.

As to HD, the calculations become somewhat com-
plicated because of the lower symmetry of this mole-
cule. We will therefore publish it in a separate paper.

From the above calculation we see that if the Born-
Oppenheimer (B-O) approximation holds, then u„=1
and Ap, „=0;namely, electrons are completely separate
from the nuclear system. This rather curious situation
is most easily visualized if we consider the one-dimen-
sional model. When a proton and an electron move in
the x direction, then the correct wave function of the

APPENDIX

DiGerentiating Eq. (19) with respect to II and taking
the limit of vanishing H, p and mJ, one obtains

Z;(X;& io& —S;;Ep) (Ba&/BH) p

—(BE/BH) gZ;S,,a P =0. (A-1)

Multiplying by Z;u p and using the relations

Z;(X;,&'& —S,;Ep)a =0, (A-2)

we get

and therefore,
(BE/BH) p

——0

Z, (K;;&P&—S;;Ep) (Ba;/BH) p 0. ——(A-3)

Comparing (A-3) with (A-2), one can see that

(Ba;/BII) p Paro. ——(A-4)

Similarly, the derivatives of (19) with respect to p
and mg give

(Ba;/Bt )o= qa,'
(Ba;/Bms) p ra, ——

(A-5)
and

(A-6)

Ramsey's original form of this expression LPhys. Rev. 78,
703 (1950), Eq. (24)j is as follows'.

p = (e'/3 mc') (0 i Zs1/rsvp 0)- (a'so&'/6&I&r) (2~y&r/a' y'ff~/trI~). —
This is equivalent to Eq. (53) where some of the notation is altered
for uniformity. The second and the third terms of Eq. (53) corre-
spond to the second term of Ramsey's expression. This recombina-
tion is due to the diferent choice of gauge.
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respectively. Thus we get:

a; =a/+ (i)a;/i)H) H+ (i&a~/ittt), ts

+ (itaj /rtm J)pm J'+ ' '

=ag(1+pH+qts+rm g+ ).
The normalization condition (17) gives

1=S=Za *as'(1+pH+qtt+rmz('Ses+H'( )
+His(" )+ttmJ(" )+".

From this we obtain

which shows that p is purely imaginary. Similarly q
and r are also shown to be purely imaginary. We can
therefore write

(A 7) a;= as'f1+i (aH+ptt+ym g)+ ~ }
= a ' exp(t(ctH+pts+Qmz) }

+ (second order terms). (A-9)

(A-8) This shows that, if we multiply the wave function by
an appropriate phase factor, the c's can be reduced to
the form

I.e.,
0= (itS/8H) p= Zap*as pS,; (p*+p);

P*+P=o
a;= asP+H'a, "&+Htsas&'&

+Hm ga g&'&+ttm ga; &4&+ .. (A-10)
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Electron-Electron and Positron-Electron Scattering Measurements

ARTHUR ASHKIN»* LORNE A. PAGE»t AND W. M. WOODwARD
Laboratory of SNelear Studhes, Corrsell Urteeersety, Ithaca» Tel Fork

(Received November 27, 1953)

A counter experiment is described which measures the absolute differential electron-electron scattering
cross section in the energy interval 0.6 to 1.2 Mev and the absolute differential positron-electron scattering
cross section in the energy interval 0.6 to 1.0 Mev. The ratio of these cross sections is also measured with
somewhat increased accuracy. The technique of measurement combines good resolution with large energy
transfers between the particles to permit a sensitive test of the relativistic features of the Mufller and Bhabha
formulas. The results verify the Mgller formula within the 7 percent experimental error. The Bhabha for-
mula is veri6ed within the 10 percent experimental error. The ratio of the Mgller to the Bhabha formula
is veriied within about 8 percent experimental error.

INTRODUCTlON

HE purpose of this report is to collect and sum-
marize the results obtained at this laboratory

on electron-electron and positron-electron scattering
experiments. ' The object of these experiments was to
check. the M»ilier and Bhabha formulas which are the
predictions for e-e and p-e scattering, respectively,
based on the Dirac theory. When these experiments
were begun the only previous work in this Geld had
been done with cloud chamber techniques. ' Such
experiments were not adequate to check properly
either formula, since the relativistic features of the
scattering begin to be appreciable only at large energy
transfers between the incident and scattered particles,
and these are rarely seen in the cloud chamber.

It is customary to discuss scattering cross sections in
terms of angular distribution, since this is usually the

*Now at Bell Telephone Laboratories, Murray Hill, New
Jersey.

t Now at the University of Pittsburgh, Pittsburgh, Penn-
sylvania.

'Lorne A. Page, Phys. Rev. 81, 1062 (1951); A. Ashkin and
W. M. Woodward, Phys. Rev. 87, 236 (1952).

2Ho Zah-Wei, Compt. rend. 226, 1083 (1948); Groetzinger,
Leder, Ribe, and Berger, Phys. Rev. 79, 454 (1950); The most
recent cloud chamber experiment reported is: G. R. Hoke, Phys.
Rev. 87, 285 (1952).

experimentally measured quantity. However, our
apparatus measures directly the energy transferred in
the collision and this is probably a more meaningful
concept in this particular problem. In any event the
conservation laws provide a ready means of going
from one to the other. We prefer to talk about the
fraction v of the incident kinetic energy transferred in
the collision.

The present experiments were designed to study the
scattering at large energy transfers using a counter
technique. A method has been devised which gives
simultaneously a high resolution and good solid angle.

Apparatus was Grst designed for e-e scattering work,
and extensive measurements were made in the energy
range 0.6—1.7 Mev with v=0.5. Due to the inability
to distinguish incident from scattered particles in t.-e

scattering, the Mfiller formula is symmetrical about
v= 0.5, the largest distinguishable energy transfer. Thus
v= 0.5 represents the most favorable situation for
checking the M&liller formula. In the energy range 0.6
—1.7 Mev the electrons are suSciently relativistic to
check the essential features of the Msliller formula,
which include, besides the Coulomb scattering, addi-
tional contributions arising from spin interactions.
Since the first reports of this work showing agreement


