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Wannier functions for free electrons in one dimension are discussed in some detail. The effects of the
choice of lattice points and unit cell size are discussed, and details of the symmetry properties of the one-
dimensional nearly-free-electron wave functions are given. The general relation between symmetry in the
local site and three-dimensional space group symmetry is given. The possibilities for localized orbital
treatments of metals and perturbed lattices are considered, and the electronic structure of CdSb is examined
in terms of localized orbitals. The term site orbital is proposed to include the special cases of Wannier func-

tions and Lennard-Jones equivalent orbitals.

INTRODUCTION

NUMBER of different kinds of localized orbitals

have been discussed in recent years. Wannier
functions have been given a central position in Slater’s!
work ; they are defined by

a(q—Qn)=N"*3 upo(q) exp(—ipo- Q./%), (1)

in which po runs over a/l the crystal momenta of a band,
not just those for which the corresponding functions #po
are occupied. There are some ambiguities in this
definition for multidimensional cases, with respect par-
ticularly to the question of which functions are to be
included in a band.

Lennard-Jones’ school? has placed special emphasis
on the equivalent orbital (EO). The EO work has dealt
mostly with molecules, but there has been an applica-
tion® to crystals of the diamond structure. EO are
defined as a set of orbitals spanning the same function
space as some set of filled molecular orbitals or crystal
orbitals, but having the property that their constant
value surfaces are of identical shape, differing only in
location and/or orientation. An antisymmetrized deter-
minant of EO can be shown to be the same function of
electron coordinates and spins as the antisymmetrized
determinant of the molecular or crystal orbitals from
which the EO are formed. As Lennard-Jones has shown,
this property arises from the degrees of freedom pos-
sessed by the solutions of a multielectron Schrodinger
equation according to the Hartree-Fock method.

It proves convenient to make use of a kind of orbital
for which we shall introduce the designation “site
orbital” (SO). These SO are like EO except that they
need not be limited to being linear combinations of filled
orbitals; EO are thus special cases of SO. SO in general
do not have the EO property mentioned at the end of
the last paragraph. The number of SO in a set is the
product of the number of equivalent sites of a kind in

* Supported in part by the Signal Corps.

17. C. Slater, Phys. Rev. 76, 1592 (1949); 87, 807 (1952), and
references therein.

2 J. E. Lennard-Jones, Proc. Roy. Soc. (London) A198, 1 (1949)
and many later papers.

3 G. G. Hall, Phil. Mag. 43, 338 (1952).

the molecule or crystal by the degeneracy of the site
orbital in the site symmetry. :

The great advantage of the EO approach is that
certain features of the EO theory correspond to the
chemical ideas of bond, resonance, and atomic orbitals
left unaffected by bonding. Discussing molecular
orbital theory in EO terms enables contact to be made
with these chemical ideas, thus clarifying the connection
between theory and experiment. Application of the
same kind of idea in crystals has not progressed as far.

WANNIER FUNCTIONS FOR FREE ELECTRONS

It seems worth while to examine the Wannier func-
tions for free electrons in more detail than previous
authors as a prelimary to the discussion of symmetry
properties of localized orbitals. We begin by setting up
Wannier functions for the bands in a one-dimensional,
almost-free-electron situation. Our one-dimensional
crystal has the unit cell length @, and is V unit cells
long, with a total length L given by Na. Except for
functions with energies in the immediate neighborhood
of the band gap, the eigenfunctions are

L exp (ip-q/ 7). 2

As the perturbation is decreased and the potential
becomes more nearly that for completely free electrons,
the neighborhoods of the band gaps are contracted, the
gaps themselves decrease, and the functions at the
band gaps become, for the #th band, as is well known,

(2)*{C05H 7 ]7r 3
— —q. 3
L sin) (in—1la
In a perfectly free-electron case, there are no band gaps,
and any length at all might be chosen for a. The assign-
ment of functions to bands depends on the choice of a;
we will take advantage of this when we discuss the
effect of choosing unit cell lengths which are multiples
of the primitive length.

The Wannier function for the /th band is given by

al(g=Qn)=N"43 upe'(q) exp(—ipo-Qu/h).  (4)
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Evidently the form of ¢(¢—(Q,.) depends on the choice
of phases for the eigenfunctions. The choice made in
expressions (2) is only one of many possibilities; in a
later section we consider the implications of this,
meanwhile keeping to the phases of Eq. (2). Substi-
tution in Eq. (4) gives on this basis

h/2a

ag—=Qn)=NL* X

»=0=Dh/2
+exp[—ip(g—Q.)/k1}. (3)

The p’s in the summation are to be chosen by the
periodic boundary condition

p=(m/N)(h/a), (©)

with m integral. It is to be noted that Eq. (5) is really
inconsistent with Eq. (4) in terms of order N—*; the
band edge functions are really given by Eq. (3), and
the band edge functions used in (4) are

{explip(g—Qn)/1]

-
L cos{ ‘~q. @)
! o

We may expect some difficulties in this connection.
In preparation for replacing the summation in Eq. (5)
by integration, we rewrite:

at(g—Qn)= (WL)¥exp[mi(I—1) (¢—Qn)/c]

N/2

X EO exp[ 2wim (g—Qn)/aN ]
+exp[—wi(I—1) (¢—Qn)/c]
N/2

X Z=0 exp[ —2mim(q—Qn)/aN}.  (8)

We now replace summation over # by integration over
dm, which is equivalent to going to infinite N and
keeping the summation. The result is:

(NL)H27i(g—Qx)/NaJal(g— Q)
= {exp[wi(I—1)(¢—Qn.)/a]}
X {—1+exp[wi(g—Qn)/al}
—{exp[—mi(I—1)(¢—Qn)/a]}
X{—1+exp[—wi(g—Q.)/a]}, (9)

a'(g—Qn)=a*[a/7(¢—Qn) J{sin[in (¢— Q) /a]
—sin[(—D7(¢—0.)/a]} (9A)

=[2e*/7(g— Q)] sin[w (g—Qn)/2a]
Xcos[w(I—3)(q—Qn)/e]. (9B)

All this is a generalization of Wannier’s original work*
and agrees with it, of course, in the case of /=1 worked
out by him. Wannier functions should have the property
of orthonormality in the range — w0« for the indices
1 and #; this is shown to be the case in an appendix.

¢ G. H. Wannier, Phys. Rev. 52, 191 (1937).
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It is instructive to compare the Wannier functions
for the /th band with the eigenfunctions of an electron
in a box centered at Q, with total length a. The /th
such function is

Vi=V2a? cos[ml(g—Qn)/a]; Ei=k1P/8ma?. (10)

Equation (9B) shows that the Ith Wannier function is
similar to Eq. (10); it has (I—1) in place of I and is
modulated by [(2a)/w(g—Q.)] sin[7(g—(Q./20]. The
energies of the /th band run from #?(l—1)2/8ma? to
h1/ 8ma?.

There is another choice of phases for the summation
in Eq. (5) which leads to particularly simple results.
In this choice, functions with po>0 are positive real
at ¢=0; functions with $o<0 are negative real at the
origin. In this case Eq. (8) will have the plus sign con-
necting the summations in curly brackets replaced by
minus sign, and Egs. (9A) and (9B) become

a-t(q—Qn)=[a¥/mi(g—Qn) J{ cos[xl(g—Q.)/c]

—cos[7(I=1)(¢—Qn)/al}, (9A")
a-4(g—Qn)=[2ia}/m(g—Qn) ] sin[w (g—Qx)/c]
Xsin[ ((—$)7w(g—Qn)/a]. (9B')

We shall henceforth refer to the a’s of Egs. (9) as a,
to distinguish them from a_ of Egs. (9’). Since the sets
a4(g—Q,) and a_(g—Q.) can be used to express 'the
eigenfunctions of the same band, we expect to find a
relation between them (probably correct up to terms
of order N—%). This relation, derived below, turns out
to be valid in the general one-dimensional case and is
not limited to the free-electron potential.

Let us try to express a_(¢g—(Q,) in terms of the set
a+(q—Qn). We see immediately that

a(g—Qn)=N"13 f(po)uro(g) exp(—ipo-Qn/k), (11)
»o
where f(po) is plus one for po>0 and minus one for

£0<0, and the eigenfunctions #p, incorporate the phase
choice of the original equations (9). In general,

tupo(q) =N} ;Z a+.(q—Qn) exp(ipo-Qa/h). (12)

We substitute (12) into (11) to get
a-(g—Qn)=N"" f,v‘,; 2 f(po)a+(g—Qx)
Xexp[ipo (Qu—Qn)/R].

Replacing the summation over gy by integration leads
finally to

a-(g—Qn)= —% a(g—Qx)
X {cos[7(Qx—Qx)/a]—1}[a/7 (Q—Qn)].

When we substitute our ay into Eq. (12), the result
should be #»o(g) ; if a_ is used, we should get upo(g) for
20>0, —upo(q) for po<0, or f(po)une(g). Before check-

13)

(14)
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ing this, it is worth while to see what exceptions there
might be. Suppose that our a(¢g—Q.) differs from the
true Wannier function 4 by a term of order N—%:

A (g—0Qn)=0a'(g—0n)+NIX. (15)
X may be taken to be of the form
2 ¢ (po)upd®(q) exp(—ipo-Qn/h). (16)

d,po

In carrying out the operations of Eq. (12), we find that
upo(q)=N"% Zz.: a4 (q—Qm) exp (ipo- Qn/h)
+2 A(po)un(q). (17)
d

Hence, it may be that for certain po (for which
¢ (P0>#0)7

N1 al(g— Q) exp(ipo- Qn/h)
=upot(q)— %: c*(po)une®(g). (18)

In other words, the result of applying Eq. (12) to
a(g—Q.) yields a result which is characterized by po,
but it is not the normalized eigenfunction #pe unless all
¢(po)=0. This comes about because Eq. (12) picks up
the term of order N—* in a(¢— Q=) ; we have to be careful
because we are in effect taking a sum of N terms of
order N~*N—* =N, and this sum need not vanish. It
is plausible, however, to expect this sort of difficulty at
only a finite number of points $, (a vanishingly small
fraction of reciprocal space as N—w), since our a@’s
are actually orthonormal. If ¢?(p,) were not a sum of
§ functions around a limited number of p¢’s, it would
be hard to see how orthonormality could be preserved.
Another way of putting this is that if ¢4(po) were dif-
ferent from zero over a finite range of po’s, the term in
X would no longer really be of order N3,

Keeping the discussion of the preceding paragraph in
mind, we proceed to evaluate Eq. (12) for our a’s at
the points po=0, %/2a, and %/4a. Let ¢/a=x, and
Qn=na. Then, for po=0,

—3% lg— =
N7 L ax'(g—=0n) (Na)%inlw(x_%)

COoS
xsinlhr(s=m]{  [L0~Hre=m] (19)
Sin
Note that for even n
COS
sin[%r(x—nm{ , }[(l—%)r(x—n)]
sSin
CoS
=sin(%7rx){ . ][(l—%)rx:],

sin

HARVEY WINSTON

and for odd # it is given by
(—)¥sin

cos (%mc)' (—)co

S][(l—%m].

It is therefore easy to break the summation of Eq. (19)
into two parts to get

Vo 4oL Z (= Tsintea)] | L fywe

even n M

sin

[ @)1 cos(%m{ ((_) >

odd n

s]w—%mj}.

—)-¢o
We now make use of the relationships

> (x—2r)t=1x cot Gmx),
2. (x—1=2r)"'= —{r tan ($nx)

to evaluate the sums, and obtain®

cos
Vet costia)| | L=s]
sin
- (—)tsin X
- smgmc( (=) cos ][(l— Dra] }
cos
= (Na)“%l ) }(ln-x) for / even, (20)
sin )
cos
= (Noz)“*{ . }[(l— 1)rx] forlodd.
sin
The case of #/2a works out to
cos
(Na)=#{ ][(l—— 1mrx] forleven;
sin
(21)
cos
(Na)—*{  t (lwx) for / odd.
sin

For po="1/4a, it turns out that the sums involved must
be split up into four partial sums, and the final result
is, for I=1, using either @, or a_,

(Na)~* exp (§wix). (22)

Equation (22) is the result we expect for almost all
po’s: it shows that Eq. (12) yields the true normalized
eigenfunctions. The results summarized in Egs. (21)
and (22) are not normalized eigenfunctions; they lack
a factor of V2. Moreover, it is clear that to get the
result even proportional to the correct eigenfunction,

5 The author is indebted to Mr. T. O. Woodruff for pointing
out this relationship.
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ay must be used when the band-edge functions are
cosines, and ¢ when they are sines. At other p¢’s it is
immaterial whether a, or a_ is employed, but at po=0
and /2a, the terms in N—* make trouble.

In this connection it is of interest to see what happens
when we use Eq. (14) to express a— in terms of ¢, and
then try to evaluate upo(q) for po=0:

N3 a_(g—Qn)
{cos[m(Qx—Qn)/a]}—1

=—iN3Y ¥ a4 (g—Qn)
nok T(Qr—Qn)/a
. 1 W(Qk—Qn)/a]—l
=—iN" ) ZCOSE (g—0.). (23)
" [ pE Ry et A

This expression vanishes because the coefficient of
a4+(q—Q,) is a sum over Qy of terms which are odd in
(Qr—0Qn); thus each positive contribution is cancelled
by an equal and opposite one. Under no circumstances
can ¢, be made to express a sine function. When we
try to force the issue, only zero emerges.

CHANGING THE LATTICE POINTS

One rather arbitrary feature of the definition of
Wannier functions is the choice of the lattice points as
the set {Qk}. Let us see, in the general one-dimensional
case, what the effect is of using the set {Qr+A} instead.
Begin by writing the one-electron eigenfunctions in
terms of the Wannier functions defined using Qx as the
set of lattice points, as in Eq. (12). Let

at(q—Qa—A)=N"%3 upy(q)

" expl—ipo (Qub-A)/H]. (24)
Then

at(g—Qn—A)=N"1 Zkl 2 a(g—Qx)
Xexp[ipo- (Qx—Qn— A)/%].  (25)

Summation, or rather integration, over p, leads to:

at(g—0 _A)=ZSin[""(Qk‘Qn‘A)/a]
k T(Qk'_Qn— A)/a

Extending Eq. (26) to three dimensions offers no dif-
ficulty.

The relation (26) illustrates the lack of uniqueness
of the Wannier function definition. Another way to
describe the situation is to regard Eq. (26) as the
formula giving the new Wannier functions appropriate
to a new choice of phases in which the phase of each #p,
is changed by poA/k. The right-hand side of Eq. (26)
appears highly delocalized, with contributions from
Wannier functions centered at many points; but of
course it is equal to the left-hand side, which contains
just one Wannier function of the type ¢*. A direct

a(g—Qx)- (26)
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check of the last equation for our nearly-free-electron
case is given in an appendix. Another possibility for
the free-electron case is a phase change in each function
given by pA/h rather than by poA/k. The interesting
relationships to which this choice leads are also dealt
with in an appendix.

CHANGING UNIT CELL SIZE

Slater® has worked out the effect upon the Wannier
functions of doubling the size of the unit length in a
one-dimensional system. We shall cover approximately
the same ground in this section; the freedom in manipu-
lating Wannier functions given us by Eq. (26) makes
it profitable to do so. :

We have to begin with a system periodic with the
period o. The Wannier function of the band which
concerns us is ¢(¢—Q»). The N different functions of ¢
realizing by choosing Q.=#na form a complete set for
describing any function belonging to the band. If we
now decide to double the unit cell, we will have two
bands of functions spanning the same function space
as our one original band. There will be 2V functions in
each of these bands, so we see that what we are doing is
just choosing another set of NV linear combinations of
the NV original band functions. The Wannier functions
for the new (half-) bands will be designated as
a'(¢g—Q,) and a(¢—Q,), with only even values of #.

In the following equations, po is a crystal momentum
for the original description, and uisa crystal momentum
in the double unit cell system:

h/2a
a(q—Qn)=N“%j) =§L/2 upo(g) exp(—ipo-Qn/k), (27)
h/4a
Q=GN T exp(—iaw 0o/, (29
h/4a
FG-Q=GN? T '@

Xexp(—ipoQu/ k).

Equation (27) is valid for all integral #; Eqgs. (28) and
(29) hold for even # only. We take #uo’=upo=n and
Upo'' =upo=notr/2a using the plus sign for we>0 and
the minus sign for ue<0. We note that the periodic
boundary condition (P.B.C.) gives [m/(N/2)]/(h/2a)
=mh/Na as the allowed values of uo; hence, uo assumes
the same values as po below |uo|=#/4a. Consideration
of the foregoing relations shows fairly directly that

a(g—Qn)=27"[a'(¢g—Qn)+a" (¢—0n)],

(29)

neven; (30)
a(g—Qn—a)=2"a' (g— Qn—a)— e (¢—Qu—a)],
neven. (31)

6 J. C. Slater, Phys. Rev. 87, 807 (1952).
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Note especially the sign of ¢™ in Eq. (31), which is
what takes account of the difference between po and uo.
The expression a!(¢—Q,—a) is to be interpreted as the
function obtained from Eq. (28) by replacing Q. with
Qnta. Obviously, ¢(¢—Q.—«a) is equal to a(¢—Qui1),
which could be shown formally from Eq. (26). We can
also use Eq. (26), modified for the double periodicity,
to express the right-hand side of Eq. (31) in terms of
the set with even #:

a(g=Qn)=2"% 2 k[d‘(q—Qk)~a“(q~Qk)]

even

X {exp[3mi(k—n) }[ 2/ (k—n—1)]. (32)
Equations (30) and (32) show us how to express the NV
Wannier function of the full band in terms of the 2
times 3NV Wannier functions for the two half-bands,
defined for even # only.

The converse problem, that of expressing o and a!!
in terms of a, can be handled by expanding the former
in series of the latter, using Egs. (30) and (32) to
evaluate the coefficients:

#1-09=2" T [,04-0)

exp[3mi(n—r)]

£a(g—Qrir) ] (33)

tr(n—r—1)

We use the plus sign in expanding ¢' and the minus
sign for ol. We see very clearly that the reason for the
appearance of Wannier functions from many sites in
the expansion is our exclusion of half-band functions
at other than even lattice points and our subsequent
use of Eq. (26) to transform these away.

SYMMETRY PROPERTIES OF WANNIER FUNCTIONS

Our aim in this section is to see what can be said
about Wannier functions on the basis of crystal sym-
metry. Previous work in this direction has been done
by Slater,® Koster,” and Feuer.®

The definition of Wannier functions shows that they
are linear combinations of eigenfunctions. Since the
eigenfunctions belong to irreducible representations of
the space group of the crystal, it appears that Wannier
functions could be classified symmetry-wise by speci-
fying just which irreducible representations (I.R.) of
the space group characterize the eigenfunctions of the
band. Another kind of symmetry characterization
which might be desirable is a specification of the be-
havior of a Wannier function under the symmetry
operations which leave invariant the point about which
it is localized.

It is convenient to begin with a one-dimensional
sxample which exhibits some of the results without com-
plicated geometry. A case at hand is our nearly-free-

7G. F. Koster, Phys. Rev. 89, 67 (1952).
8 P. Feuer, Phys. Rev. 88, 92 (1952).
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electron one, which will have a space group involving
translations by multiples of a along the line, and reflec-
tions in lines perpendicular to the line of the crystal at
points $na, with # any integer. Consider the case in
which the (P.B.C.) is applied to a region of the line ¥
unit cells long. No real loss in generality is involved in
assuming that NV is even. Any operation of the group
may be expressed in the form {R|t}, where R is either
the identity or a reflection in the origin, and t is a
translation na. On account of the P.B.C., operations
which leave the line translated by Nea from its position
at the end of a given operation are considered to be the
same as the given operation. All pure translations are
of the form {E|na}, and {E]|(n+N)a} is the same as
{E|na}. Reflections are of two types; those which leave
invariant a point translationally equivalent to the
origin, of the form {o|#a} with # even; and those which

" leave invariant the points translationally equivalent to

1a, of the form {o|na} with # odd. It is to be noted
that {o|na} and {o| (n+N)a} are to be regarded as the
same operation, since they differ only in that the line
is translated by Na after one of these operations with
respect to its position after the other. This (or these)
operation(s) leaves invariant two points, at $na and at
1 (n+N)a.

We can get at the symmetry properties of a band by
considering the character system of the reducible repre-
sentation for which its functions provide a basis. These
character systems are represented in Table I for some
interesting cases. The four rows of entries are for, re-
spectively, the set of even Wannier functions for a band,
the set of odd Wannier functions, the set of eigen-
functions of a band for which the band-edge functions
are cosines, and the set of eigenfunctions with sine-type
band-edge functions. The character entries are obtained
simply, as follows: x(E) is ¥V for all four sets since they
all contain N functions. The functions e, and a_ are
translated into others of the set by any translation, and
hence have zero character for translation. Two of them
are left invariant (for a,) or have their sign changed
(a-). The other kind of reflection interchanges members
of the set. The effect of a translation on any uz is to
multiply it by exp(ipo-¢/%#). This number becomes a
diagonal element of the matrix representing the trans-
lation; the sum of these diagonal elements is the char-
acter, and this sum vanishes. Any reflection in points
equivalent to the origin interchanges functions of the
sets #po contributing nothing to the character, except
for the two band-edge functions. These are left invariant
[for upo(cos)], contributing two, or change sign [for
upo(sin) ], contributing minus two to the character. A
similar argument shows that the contribution to the
character for the other type of reflection and for the
sets #po vanishes for all but the band-edge functions,
and the upper and lower band-edge functions give equal
and opposite diagonal elements, so that the total is zero.

One kind of set of upy which has apparently been
neglected is that with one cosine-like and one sine-like
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band-edge function. Actually, this kind of set is included
already if we reverse the roles of the two types of
reflection, which corresponds to moving the origin from
the initial position to the mid-point of the first unit
cell. This kind of set could have a sine-like upper-edge
function and cosine-like lower one, or vice versa. The
four possibilities correspond to the four possibilities
for band-edge functions discussed originally by Shockley?®
(see Feuer?).

The appropriate kind of Wannier functions to go
with each of these kinds of bands is easily determined
by comparing characters. We note the fact which we
have already used, that e, is even with respect to re-
flection at its center, and ¢ is odd. Then the set a,
goes with #pg(cos) and a_ with #pe(sin), as these sets
have the same characters. Similarly, if we have cos-sin
or sin-cos bands, the appropriate Wannier functions
would be a,-like or a_-like, centered at points transla-
tionally equivalent to e

If we are willing to give up the ability of the Wannier
functions to produce the band-edge eigenfunctions
when substituted into Eq. (12) requiring only that #pg
with p, different from zero or %/2a be properly rendered,
then we have no symmetry requirement at all on the
Wannier function. They can be either odd or even, or a
linear combination of odd and even functions about the
center of localization. An example of this sort of thing
occurred when we were able to express a_ in terms of a4
—only the band-edge function gave difficulty in that
case. The result is trivial when we recognize that the
functions of a band have no symmetry properties
which distinguish them from other bands except for the
symmetry properties of the band-edge functions. How-
ever, it points the way to an understanding of similar
but more complicated situations which arise .in two-
and three-dimensional cases.

In two and three dimensions, situations occur which
make it difficult to assign energies to bands—there is a
sticking together of bands so that, in effect, one energy
may belong to several bands. We wish to settle what
restrictions, if any, there may be on the symmetry
behavior of a Wannier function of a band of energy
levels in a multidimensional crystal. The general case
would be rather complicated to carry through, but the
kind of result to be expected will be clear from the dis-
cussion of a special case, already treated from a some-
what different point of view by Slater® and Koster.”
This special case is a square lattice with a potential
given by the sum of Mathieu potentials in « and y, plus
a small perturbation. The 0—1 and 1—0 bands are
degenerate, and mix under the perturbation to give us
a situation like that mentioned in the last paragraph,
in which the bands stick together at the center and
corners of the Brillouin zone.

It is easy to see that in this case one may choose to
represent this pair of bands a pair of Wannier functions

9 W. Shockley, Phys. Rev. 56, 317 (1939).
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TasLe I. Some characters for reducible representations of the
linear translation group with reflection.

even n odd 7

Basis function {E|0} {E|na} {o|na} {o|na}
ay N 0 2 0
a_ N 0 -2 0
py (cos-like) N 0 2 0
Up, (sin-like) N 0 -2 0

which belong to a degenerate representation of the
group C;, of the “atomic” sites, since these are in fact
the functions with which the analysis of Slater and
Koster began. These degenerate functions are not cor-
related with the individual bands; it takes both Wannier
functions to express an eigenfunction of either band.
Slater and Koster go on to show how nondegenerate
Wannier functions can be formed, each of which will
yield by itself, under proper operations, the functions
of one band. The point which is not clear so far is how
on the one hand a pair of degenerate functions, and on
the other a nondegenerate pair, can give the same bands
of eigenfunctions. The resolution of the difficulty lies in
perceiving that they really do not. Consideration of
Slater’s® Eq. (51) and Table VI indicates that just at
the corners and center of the Brillouin zone the non-
degenerate Wannier functions produce not the appro-
priate eigenfunction, but zero. We have a situation like
that which we have seen already in the one-dimensional
case, when the result of using a Wannier function of
the “wrong” symmetry is to have the expression for an
eigenfunction at some special po yield zero. This circum-
stance is also reminiscent of the redundant coordinates
which appear in the theory of molecular vibrations.
Our conclusion is that we can indeed have nonde-
generate Wannier functions if we are willing to give up
their ability to reproduce the sticking-point eigenfunc-
tions. This is very much in accord with the considera-
tions of Bouckaert, Smoluchowski, and Wigner,"® who
feel that the definition of a band of energy levels should
exclude the sticking-point levels.

Slater’s and Koster’s nondegenerate Wannier func-
tions do, however, retain the ability to yield the eigen-
function (at least to within a nonzero factor) at points
reciprocal space lying on symmetry planes or axes. If
this property is given up, then there would be no sym-
metry restriction at all on the Wannier functions.

RELATION BETWEEN SITE SYMMETRY AND
SPACE GROUP SYMMETRY

We intend to show some of the relations between
crystal orbital theory and site orbital theory which arise
from symmetry and which are of great value in trans-
ferring ideas from one theory to the other. The
argument can be put in a form applicable to either
molecules or crystals; it represents an improvement of

( 10 B)ouckaert, Smoluchowski, and Wigner, Phys. Rev. 50, 58
1936).
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a method due to Hall" in that here account is taken on
the representation of the site group to which the SO
belongs. We consider a set of SO, each belonging to the
representation «; of its site group. If the representation
is degenerate we include all the partners. We seek to
find which irreducible representations I'; of the molec-
ular or crystal (space) group span the reducible repre-
sentation for which our SO form a basis. We proceed
by finding the character Z(R) of this reducible repre-
sentation for each operation of the molecular or crystal
group. For a given operation there is a contribution of
x;5€ (R) for each site left invariant by the operation,
where x,%#(R) is the character for R in the jth site
group representation ; otherwise the contribution is zero.

E(R)=Y 8.(R)x* (R). 6.,=1if Ris in site

group of the ath site; §,=0 otherwise. (34)
We then reduce this representation to find which irre-
ducible representations contribute to it. If &;(R) is the
character of R in T';, we have for the number of times
T'; appears in the reducible representation

ing=(1 /H)§ E*(R)E(R), (35)

where H is the order of the molecular or space group.
We substitute for E(R) from Eq. (34) and use the
relationship (36), based on the site group’s being a
subgroup of the molecular or crystal group, to obtain
Eq. (37). As Eq. (36b) shows, the @i are easy to
determine once the character tables of the two groups
are known:

Ei(R)=2_ aux;**(R), } . (36a)
k R in site group.
ag="I" 32 xi*** (R)E:(R), (36b)
R
mi=H713 2 X aux™ & (R)x>* (R)d(R),  (37)
a R k
ny=a;. (38)

Equation (38) arises from application of the ortho-
gonality relations for group characters and the definition
of 6,(R) to get for the summation over R and % the value
of a;;h, where % is the order of the site group and equal
to H divided by the number of equivalent sites in the
set. Summing over a leaves Eq. (38). This group theo-
retical argument has been used earlier by the author’?
for similar purposes. Equation (38) tells us which
irreducible representations of the crystal or molecular
group are included in the representations induced by
SO belonging to the jth site group representations
located on the sites @, and hence provides a way to
translate the symmetry properties of a site treatment
into those of a molecular or crystal orbital treatment.
As an example of the application of (38) we may deter-

1 G. G. Hall, Proc. Roy. Soc. (London) A202, 323 (1950).
2 H. Winston, J. Chem. Phys. 19, 156 (1951).
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mine the number of times any F-dimensional represen-
tation of the space group (F is the order of its factor
group) appears in the space group representation
induced by a set of SO centered on sites of symmetry Cj.
From Eq. (36b) a;;, and hence 7n; is obviously
1/ D)x1(E)E:(E), or just F.

A converse problem is the determination of the kind
of SO which may be constructed if we know that we
have molecular or crystal orbitals belonging to I';. In
crystals the problem will be nontrivial only when T'; is
a representation for some special value of p, at which
the star is degenerate. Possible candidates for SO must
be those belonging to such representations v; that a;;
does not vanish; we can easily determine these by
running through all representations of all kinds of sites.
Whether the SO going with such j can actually be con-
structed is further determined by whether we have
molecular or crystal orbitals belonging not only to T';
but also to T for all nonzero a;;. Functions of T'; need
the cooperation of functions in the other representations
T in order that linear combinations of them belonging
to v; may be set up.

A point worth mentioning is that sites are not neces-
sarily only the loci of atoms in a molecule or crystal.
Any point in space is a site with a site group of at least
C: symmetry. Of course, the more symmetry there is
around a site, the finer is the symmetry classification of
functions centered at it.

The kind of symmetry information which is given us
by the knowledge that we have a set of SO of a certain
site symmetry on a set of sites is quite similar, we see
from Eq. (38), to information about the symmetry of
molecular orbitals or, in crystals, to information about
the representations of band functions at special points
in crystal momentum space. Further, the SO informa-
tion is so much more closely related to chemical notions
that it may be much more valuable to have the sym-
metry information in the SO form. In the diamond
lattice, for instance, it is much more revealing to know
that the valence band functions can be represented by
SO (here they are also EO) which are symmetric with
respect to inversion at the inversion centers midway
between atoms and, hence, are of a binding character
than it is to know the complete reduction of the space
group representation of these orbitals. Likewise, valu-
able insight into the conduction band orbitals can be
obtained from the “chemical” kind of information
that the corresponding SO are antibonding, having a
node between atoms required by their antisymmetry
under inversion.

EQUIVALENT ORBITALS IN METALS

It seems worth while to see what can be said about
metals. The distinguishing characteristic of metals in
the band theory is that they do not have filled bands
and, hence, it is difficult to define EO for them. How-
ever, the artifice of introducing a superlattice, which in
turn divides up the Brillouin zones for the original
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lattice, always makes it possible just to include all the
occupied crystal orbitals in filled zones of the super-
lattice. The idea is applicable to ferromagnetic as well
as to ordinary metals to the extent that the ground
states can be represented by single antisymmetrized
determinants. Whether the artifice has any value for
quantitative investigations depends on how big the
superlattice has to be made; evidently a superlattice so
large that one cell of it encompassed the whole crystal
would have its zones filled, but it would not simplify
things at all. A point of qualitative interest is that the
superlattice can be superimposed upon the original
lattice in a number of ways equal to the number of
original unit cells in one supercell. Going with each of
these ways are sets of sets of EO. As Lennard-Jones?
has shown, the possibility of defining sets of EO in more
than one way (as for the 7 orbitals of benzene) arises in
situations where other valence theories would invoke
the concept of resonance. Since each of the EO so
defined will be spread over many atoms (at least the
whole super-cell), we seem to have a parallel to Pauling’s
ideas® on the electronic structure of metals, which are
based on an entirely different staring point.

SITE ORBITALS AND PERTURBED LATTICES

SO have a special value in the theory of perturbed
lattices. The methods of Peckar!* and Slater,! which use
the crystal eigenfunctions or the Wannier functions of
one band of the unperturbed lattice as basis functions
for a perturbation calculation, are legitimate as long
as the perturbation is small compared to the energy
separation between bands. This restriction is not satis-
fied in many practical cases in which degenerate bands
occur or where the perturbation is comparable to the
separation between nondegenerate bands. Adams'® has
provided a formalism for taking into account as many
bands of the unperturbed lattice as may be necessary
to expand the perturbed eigenfunctions. We propose a
restatement of his method in terms of SO, which has the
advantage that SO are generally much easier to visualize
than Wannier functions in three dimensions. As in
general the SO are linear combinations of Wannier
functions, no more than a linear transformation of
Adams’ equation is necessary to put it in the SO form.

We can discuss qualitatively the perturbation caused
by the removal of an atom from a diamond lattice,
leaving a vacancy or Schottky defect. The perturbation
is very large, compared even to the valence-conduction
edge separation. A first approximation would consist of
the use of the valence band SO’s, localized functions
which are even with respect to inversion at the inversion
centers of the crystal and which correspond to the
chemical idea of bonds. We see immediately, though,
that limiting ourselves to expansions in these SO is

131, Pauling, Nature 161, 1019 (1948); Physica 15, 23 (1949).

14§, Peckar, J. Phys. (U.S.S.R.) 10, 431 (1946).
15 E. N. Adams IT, Phys. Rev. 85, 41 (1952).
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found to be unsatisfactory, because the complete wave
function will be unable to take full account of changes
within an atomic distance of the vacancy, limited as it
is by the form of the SO. In this case it seems profitable
to supplement our basis functions by the SO for the
conduction bands, which are odd under inversion. Now
the exigencies of the perturbation can cause variations
in the relative amounts of odd and even orbital on the
sites surrounding the vacancy, and the result is likely
to be much more realistic. If convenient, the odd and
even SO could be combined to form one set of new SO,
placed at points along the interatomic axes not on the
inversion center but symmetrically located with respect
to it. There will be four such SO nearer each atom than
any other. They will be rather like the directed orbitals
of a hypothetical carbon atom in space and will be well
suited to describing the situation at vacancy, where we
may well expect the electronic structure at the neigh-

- boring atoms to revert to something like a free-space

arrangement.

SPECULATION ON STRUCTURE OF CdSb

Semiconductors are characterized by possessing filled
bands, with not too large an energy gap before the next
empty band. It is not always easy to see why the energy
gaps should come as they do. However, to the extent
that we can characterize bonds by the corresponding
EO, we can make sense of a filled band structure if it
corresponds to a set of filled bonding EO, and if the next
SO to be filled are obviously of higher energy. This
notion is implicit in the work of Hall on the diamond
structure.

The crystal structure of CdSb and ZnSb has been
determined by Almin.!® These semiconducting com-
pounds contain sixteen atoms per unit cell, arranged
so that there are twenty-eight interatomic distances
corresponding to Sb—Sb bonds and Cd—Sb (or
Zn—Sb) bonds. There are also four interatomic dis-
tances corresponding to Cd—Cd (or Zn—Zn) bonds.
The Cd—Cd, but not the Zn—Zn, distance is signifi-
cantly larger than can be accounted for by Pauling’s
atomic radii, according to Almin. We thus expect that
the Cd— Cd bonds would have higher energies than the
other twenty-eight bonds, and we observe that these
other twenty-eight bonds are just filled by the fifty-six
valence electrons of the sixteen atoms in the unit cell.
The Zn—Zn distance is not indicative of a higher than
usual Zn—Zn bond energy, but we can still argue that
the Zn—Zn bond is different from the other twenty-
eight bonds and very likely has a higher energy even at
its normal distance. In each case, then, we can qualita-
tively assign all the electrons to a set of low-lying bonds,
leaving the next higher ones empty. This illustrates the
maxim that filled bands imply filled bonds, and vice
versa.

16 K. E. Almin, Acta Chem. Scand. 2, 400 (1948).
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APPENDIX

We find directly the relation between ¢ 2 (¢g—(Q,—A)
and a;'(qg—Qx) for the nearly-free electron case by
writing an expression for the former and expanding it

sin{n[1(¢—Qn)—A]/a} —sin[x(I—1) (¢—Qn)/a]
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in a series of the latter. For simplicity we will write
the a’s as a®(qg—Q.—A) and a(g—Qx), letting the I
and = be understood. Equation (A1) is derived in the
same way as Eq. (9).

@(g=Qn—2)= ()

Al
m(g—Qn—A)/a A

Now, a?(¢—Q»—A) can be expanded in series of the orthonormal set a(¢g— Q%) for the same band. Determination
of the expansion coefficients involves evaluation of the integrals

[ dao 0.~ 200600,

a long-winded but straightforward process. The result for this coefficient is

)Hsin{vr[l(Qk— Q) —Al/a}—sin[x(I—1) (Qs—Qn)/a]

(_

(A2)

T(Qs—Qn—A)/a

A little trigonometric manipulation shows that Eq. (A2) is in agreement with Eq. (26). Writing it in this form,
however, brings out the fact that the coefficient is, to within a factor of o%, the same function of (Qy—(Q.,) that

a® is of (g—Q,) in Eq. (Al).

If we define ¢%’ (g— Q.— A) as the free electron Wannier function with the phases so chosen that all eigenfunctions
are positive real at the point A, then obviously a*"(¢—Q»—4) is the same function of (—Q.—A) that a (¢—Q.,)

is of (¢—Q»).

sin[lr(g—Qn—A)/a]—sin[ ((— 17 (g—Qn—A)/a]

@ (g—Qn—8)=a"?

As before, the coefficients in the expansion of ¢4’ in
terms of the a’s can be readily evaluated. The coefficient
of a(g—Q) in the expansion of a4’ (¢—(Q,—A) is

sin[ I (Qx—Qn—A) /a]—sin[ (I— 1) (Qu— Qn—A) /]
7(Qi—0a—A)/a '

(A4)

Again, (A4) is of the same form, except for the factor
a3 as ¢ itself in (A3).

The orthogonality properties of the nearly-free-elec-
tron Wannier functions can be worked out in terms of
the integral

9 (ysmm)= f 01— 0m)ast(g—0ndg.  (AS)

Upon letting ¢—Qn=2, and ¢— Qr=q—Qn+ (On—02)

A3
T(q—Qn—A4)/a (49

=x-+ (m—mn)a, and defining F(l,s; m—n) as

b

1 f“ dx[Sin (wlx/a)] sin{ws[x+ (m—n)o]/a}
av w2 v+ (m—n)o]/a?

we have

gll,ssmm)=F(l,s;m—n)+F(Q—1,s—1; m—n)

~F(l,s—1;m—n)—F(—1,s;m—u). (A6)

We can evaluate the F function as follows:
F(lsr)="[sin({l,s)rn]/rm, (A7)

where (/,s) denotes the smaller of I and s; we get, for
I<s—1,

9(,s;mm)=0,

For /=5 we have

independent of m and #.  (A8)

Il m—1n)=8m, n. (A9)

The preceding equations imply 9 (,s;m,n) =8, s0m, », as
required for orthonormality.



